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1. Introduction

The notion of fractional derivative (FD) is more than three thousand years old, the role of
fractional calculus has been increasing due to its application zone in various domains including
biology, semiconductor industry, optical communication, energy quantization, quantum chemistry,
wave propagation, protein folding and bending, condensed matter physics, solid state physics,
nanotechnology and industry, laser propagation, nonlinear optics etc. the fractional differential
equations (FDEs), have received a great deal of interest from scholars and researchers. Many
mathematicians presented diverse types of FDs, such as that given in [1, 2]. The most famous ones are
Hadamard, Marchaud, Riemann-Liouville, Grunwald-Letnikov, Kober, Caputo, Riesz and Erdelyi.

Lately, a novel FD has been presented by Khalil et al. [3] and others [4–6], called conformable FD.
Due to the significance of the exact solutions of NLSEs, plenty of mathematicians solved them with
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conformable derivative, who used the different methods like first integral method (FIM) [7, 8],
functional variable method (FVM) [7, 9], trial equation method (TEM) [10], modified trial equation
method (MTEM) [11], direct algebraic method (DAM) [12] and sine-Gordon expansion method
(SGEM) [13] to find the exact solutions to NLSEs.

In [14], Younas et al. presented CTFMNLSE and studied the exact solutions of it by the generalized
exponential rational function method. Also in [15, 16], authors introduced some new solutions of
CTFMNLSE via FIM, FVM, TEM and MTEM.

Motivated by the work done in [14–16], we consider the following CTFMNLSE:

iDα
τΨ + σ1ΨXX + σ2|Ψ|

2Ψ = iδ1ΨXXX + iδ2Ψ
2Ψ∗X − iδ3|Ψ|

2ΨX + δ4Ψ 0 < α ≤ 1, (1.1)

where σ1 =
P0

8K2
0 (−3 cos(Θ) + 2)

, σ2 =
−P0K

2
0

2
, δ1 =

P0 cos(Θ)
16K3

0 (−5 cos2(Θ) − 6)
, δ2 =

P0K0 cos(Θ)
4

,

δ3 =
3P0K0

2
, δ4 = K0|Ψ|

2
X

∣∣∣∣∣
X=0

, P0 and K0 are the frequency and the wave number of the carrier wave,

respectively, and the operator Dα of order α, where α ∈ (0, 1] represents the conformable fractional
derivative.

2. Preliminaries

In this section, we present some properties and definitions of the conformal derivative and other
Preliminaries.

Definition 2.1. [3] Suppose Ω : (0,∞) → R is a function. Therefore the conformal fractional
derivative of Ω of order α is as follows

Tα(τ) = lim
ε→0

Ω(τ + ετ1−α) −Ω(τ)
ε

(2.1)

for all 0 < α < 1, 0 < τ.

Definition 2.2. [3] Suppose ι ≥ 0 and τ ≥ ι. Also, suppose Ω is a function defined on (ι, τ] and α ∈ R.
Therefore, the α-fractional integral of Ω is defined by,

Iαι Ω(τ) =

∫ τ

ι

Ω(ς)
ς1−α dς, (2.2)

if the Riemann improper integral exists.

Theorem 2.3. [3] Suppose 0 < α ≤ 1, and Ω and f are α−differentiable at a point τ, therefore
(i) Tα($1Ω +$2f) = $1Tα(Ω) +$2Tα(f), ∀$1, $2 ∈ R.
(ii) Tα(t$) = $τ$−α, ∀$ ∈ R.
(iii) τTα(Ωf) = ΩTα(f) +fTα(Ω).

(iv) Tα

(
Ω

f

)
=
fTα(Ω) −ΩTα(f)

f2 .

Furthermore, if Ω is differentiable, then Tα(Ω)(τ) = τ1−αdΩ

dτ
.
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Theorem 2.4. [3] Suppose Ω : (0,∞) → R is a function s.t. Ω is differentiable and also
α-differentiable. Suppose f is a function defined in the range of Ω and also differentiable; therefore,
one has the following rule

Tα(Ωof)(τ) = τ1−αf(τ)Ω′(f(τ)).

Remark 2.5. Let
Q′(ξ) = Ln(A)(P0 +P1Q(ξ) +P2Q

2(ξ)), A , 0, 1. (2.3)

The solutions of ODE (2.3) are:
(1) When P2

1 − 4P0P2 < 0 and P2 , 0,

Q1(ξ) = −
P1

2P2
+

√
−(P2

1 − 4P0P2)

2P2
tanA

( √
−(P2

1 − 4P0P2)

2
ξ
)
,

Q2(ξ) = −
P1

2P2
−

√
−(P2

1 − 4P0P2)

2P2
cotA

( √
−(P2

1 − 4P0P2)

2
ξ
)
,

Q3(ξ) = −
P1

2P2
+

√
−(P2

1 − 4P0P2)

2P2
tanA(

√
−(P2

1 − 4P0P2)ξ)

±

√
−sr(P2

1 − 4P0P2)

2P2
secA(

√
−(P2

1 − 4P0P2)ξ),

Q4(ξ) = −
P1

2P2
−

√
−(P2

1 − 4P0P2)

2P2
cotA(

√
−(P2

1 − 4P0P2)ξ)

±

√
−sr(P2

1 − 4P0P2)

2P2
cscA(

√
−(P2

1 − 4P0P2)ξ),

Q5(ξ) = −
P1

2P2
+

√
−(P2

1 − 4P0P2)

4P2
tanA(

√
−(P2

1 − 4P0P2)

4
ξ)

−

√
−(P2

1 − 4P0P2)

4P2
cotA(

√
−(P2

1 − 4P0P2)

4
ξ),

(2) When P2
1 − 4P0P2 > 0 and P2 , 0,

Q6(ξ) = −
P1

2P2
−

√
P2

1 − 4P0P2

2P2
tanhA

( √
P2

1 − 4P0P2

2
ξ
)
,
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Q7(ξ) = −
P1

2P2
−

√
P2

1 − 4P0P2

2P2
cothA

( √
P2

1 − 4P0P2

2
ξ
)
,

Q8(ξ) = −
P1

2P2
−

√
P2

1 − 4P0P2

2P2
tanhA(

√
P2

1 − 4P0P2ξ)

± i

√
sr(P2

1 − 4P0P2)

2P2
sechA(

√
P2

1 − 4P0P2ξ),

Q9(ξ) = −
P1

2P2
−

√
P2

1 − 4P0P2

2P2
cothA(

√
P2

1 − 4P0P2ξ)

±

√
sr(P2

1 − 4P0P2)

2P2
cschA(

√
P2

1 − 4P0P2ξ),

Q10(ξ) = −
P1

2P2
−

√
P2

1 − 4P0P2

4P2
tanhA(

√
P2

1 − 4P0P2

4
ξ)

−

√
P2

1 − 4P0P2

4P2
cothA(

√
P2

1 − 4P0P2

4
ξ),

where generalized hyperbolic and triangular functions are given by

coshA(θ) =
sAθ + rA−θ

2
, sinhA(θ) =

sAθ − rA−θ

2
,

cothA(θ) =
sAθ + rA−θ

seθ − re−θ
, tanhA(θ) =

sAθ − rA−θ

seθ + re−θ
,

cschA(θ) =
2

sAθ − rA−θ
, sechA(θ) =

2
sAθ + rA−θ

,

cosA(θ) =
sAiθ + rA−iθ

2i
, sinA(θ) =

sAiθ − rA−iθ

2i
,

cotA(θ) = i
sAiθ + rA−iθ

sAiθ − rA−iθ , tanA(θ) = −i
sAiθ − rA−iθ

sAiθ + rA−iθ ,

cscA(θ) =
2i

sAiθ − rA−iθ , secA(θ) =
2

sAiθ + rA−iθ ,

where θ is an independent variable, A , 0, 1, and s and r are arbitrary constants greater than zero and
are called deformation parameters.
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3. Methods and applications

In this section, we present the first step of the DAM and the SGEM, for finding analytical solutions
of CTFMNLSE defined as (1.1). Suppose a CTFNLPDE,

Γ

(
Φ,Φτ,ΦX,Dα

τΦ,D
β

X
Φ,D2α

τ ,D
2β
X
, . . .

)
= 0, 0 < α, β ≤ 1, (3.1)

where Γ and Φ are a polynomial and an unknown function in its arguments, respectively. Using a
fractional travelling wave transformation

Φ(X, τ) = Λ(ξ), ξ = X −
V

α
τα (3.2)

whereV is velocity and substituting (3.2) into (3.1), we have a NLODE given by

Υ(Λ,Λ′,Λ′′,Λ′′′, . . .) = 0, (3.3)

in which ′ signifies the derivative with respect to ξ.
Since Ψ = Ψ(X, τ) in (1.1) is a complex function, we begin with the following travelling wave

assumption
Ψ(X, τ) = Λ(ξ)eiψ (3.4)

where ξ = η(X −
V

α
τα) and ψ = −KX +

P

α
τα + ζ, and ζ,P and K are parameters, represent the

phase constant, frequency and wave number respectively. Substitute (3.4) into (1.1), we get real and
imaginary parts as follows

η2(σ1 − 3δ1K)Λ′′ + (σ2 + (δ2 + δ3)K)Λ3 + (−P − σ1K
2 + δ1K

3 − δ4)Λ = 0, (3.5)

and
(3δ1K

2 −V − 2σ1K)Λ′ − δ1η
2Λ′′′ + (δ3 − δ2)Λ2Λ′ = 0. (3.6)

Now integrating the imaginary part of the equation and taking constant equal to zero one may have

3(3δ1K
2 −V − 2σ1K)Λ − 3δ1η

2Λ′′ + (δ3 − δ2)Λ3 = 0. (3.7)

From (3.5) and (3.7), it can be followed that

K3δ1 − P − σ1K
2 − δ4

3(3δ1K
2 −V − 2σ1)K

=
σ1 − 3δ1K

−3δ1
=
Kδ2 +Kδ3 + σ2

δ3 − δ2
. (3.8)

From above, it can be followed that

V = −
δ1P + δ1δ4 + 2K(σ1 − 2δ1K)2

σ1 − 3δ1K
,

K =
σ1(δ2 − δ3) − 3σ2δ1

6δ1δ2
.
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Rewrite (3.5) into following form

Λ′′ + λ1Λ
3 − λ2Λ = 0 (3.9)

or
Λ′′ = λ2Λ − λ1Λ

3 (3.10)

where λ1 =
σ2 + (δ2 + δ3)K
η2(σ1 − 3δ1K)

and λ2 = −
−P − σ1K

2 + δ1K
3 − δ4

η2(σ1 − 3δ1K)
.

In the next two subsections, we investigate the primary steps for detecting the exact solution
of (3.5) by using DAM and the SGEM. Similarly we can find the exact solution of (3.7).

3.1. Direct algebraic method (DAM)

Firstly, CTFNLPDE (3.1) is reduced to NLODE (3.3) under the transformation (3.2). Secondly,
let us consider that Eq (3.3) has a formal solution of the form

Λ(ξ) =

N∑
j=0

b jQ
j(ξ), bN , 0, (3.11)

where b j( j = 0, . . . ,N) are constant coefficients to be detected later and Q(ξ) satisfies the ODE in
the form (2.3). Now, we are able to determine the value N in (3.11) by balancing the highest order
derivative term and the highest order nonlinear term in (3.3). Substitute (3.11) along with its required
derivatives into (3.3) and compares the coefficients of powers of Q(ξ) in the resultant equation for
getting the set of algebraic equation. In the end, we solve the set of algebraic equations and put the
results generated in (3.11) to obtain the exact solutions of (3.1).

Now, balancing the order of Λ′′ and Λ3 in (3.10), we get N = 1. Therefore, Eq (3.11) is presented
by

Λ(ξ) = b0 + b1Q(ξ). (3.12)

By substituting (3.12) into (3.10) and gathering all terms with the same order of Q(ξ) together,
the left-hand side of (3.10) are converted into polynomial in Q(ξ). Putting every coefficient of every
polynomial to zero, we get a set of algebraic equations for b0 and b1. Now, we have

Λ3 = b3
0 + 3b2

0b1Q + 3b0b2
1Q

2 + b3
1Q

3 and Λ′′ = b1Q
′′, (3.13)

where

Q′′ = Ln2(A)(P0 +P1Q +P2Q
2)[P1 + 2P2Q]. (3.14)

Coefficients of Q(ξ) as follows:

{0 : b1Ln2(A)P0P1 + λ1b3
0 − λ2b0 = 0

{1 : b1Ln2(A)[P2
1 + 2P0P2] + 3λ1b2

0b1 − λ2b1 = 0
{2 : 3b1Ln2(A)P1P2 + 3λ1b0b2

1 = 0
{3 : 2b1Ln2(A)P2

2 + λ1b3
1 = 0.

AIMS Mathematics Volume 7, Issue 6, 10807–10827.
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We earn the following values, by solving the above system of equations for b0 and b1:

b0 = ±
i
√

2λ1
Ln(A)P1, b1 = ±i

√
2
λ1

Ln(A)P2. (3.15)

The solutions of (1.1) corresponding to (3.4), (3.12) and (3.15) are:
(1) When P2

1 − 4P0P2 < 0, and P2 , 0,

Ψ1,2(X, τ) = (±i)ln(A)

√
−(P2

1 − 4P0P2)
√

2λ1
e

i(−KX+
P

α
τα+ζ)

tanA

( √
−(P2

1 − 4P0P2)

2

(
η(X −

V

α
τα) + ξ0

))
,

Ψ1,3(X, τ) = (±i)ln(A)

√
−(P2

1 − 4P0P2)
√

2λ1
e

i(−KX+
P

α
τα+ζ)

cotA

( √
−(P2

1 − 4P0P2)

2

(
η(X −

V

α
τα) + ξ0

))
,

Ψ1,4(X, τ) = (±i)ln(A)e
i(−KX+

P

α
τα+ζ)[ √

−(P2
1 − 4P0P2)
√

2λ1
tanA

(√
−(P2

1 − 4P0P2)
(
η(X −

V

α
τα) + ξ0

))

±

√
−sr(P2

1 − 4P0P2)
√

2λ1
secA

(√
−(P2

1 − 4P0P2)
(
η(X −

V

α
τα) + ξ0

))]
,

Ψ1,5(X, τ) = (±i)ln(A)e
i(−KX+

P

α
τα+ζ)[

−

√
−(P2

1 − 4P0P2)
√

2λ1
cotA

(√
−(P2

1 − 4P0P2)
(
η(X −

V

α
τα) + ξ0

))

±

√
−sr(P2

1 − 4P0P2)
√

2λ1
cscA

(√
−(P2

1 − 4P0P2)
(
η(X −

V

α
τα) + ξ0

))
,

Ψ1,6(X, τ) = (±i)ln(A)e
i(−KX+

P

α
τα+ζ)[ √

−(P2
1 − 4P0P2)
√

8λ1
tanA

( √
−(P2

1 − 4P0P2)

4

(
η(X −

V

α
τα) + ξ0

))

−

√
−(P2

1 − 4P0P2)
√

8λ1
cotA

( √
−(P2

1 − 4P0P2)

4

(
η(X −

V

α
τα) + ξ0

))]
,

(2) When P2
1 − 4P0P2 > 0, and P2 , 0,

Ψ1,7(X, τ) = (±i)ln(A)

√
P2

1 − 4P0P2
√

2λ1
e

i(−KX+
P

α
τα+ζ)

tanhA

( √
P2

1 − 4P0P2

2

(
η(X −

V

α
τα) + ξ0

))
,

Ψ1,8(X, τ) = (±i)ln(A)

√
P2

1 − 4P0P2
√

2λ1
e

i(−KX+
P

α
τα+ζ)

cothA

( √
P2

1 − 4P0P2

2

(
η(X −

V

α
τα) + ξ0

))
,
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10814

Ψ1,9(X, τ) = (±i)ln(A)e
i(−KX+

P

α
τα+ζ)[

−

√
P2

1 − 4P0P2
√

2λ1
tanhA

(√
P2

1 − 4P0P2

(
η(X −

V

α
τα) + ξ0

))

± i

√
sr(P2

1 − 4P0P2)
√

2λ1
sechA

(√
P2

1 − 4P0P2

(
η(X −

V

α
τα) + ξ0

))]
,

Ψ1,10(X, τ) = ±e
i(−KX+

P

α
τα+ζ)[

−

√
P2

1 − 4P0P2
√

2λ1
cothA

(√
P2

1 − 4P0P2

(
η(X −

V

α
τα) + ξ0

))

±

√
sr(P2

1 − 4P0P2)
√

2λ1
cschA

(√
P2

1 − 4P0P2

(
η(X −

V

α
τα) + ξ0

))]
,

Ψ1,11(X, τ) = (±i)ln(A)e
i(−KX+

P

α
τα+ζ)[ √

P2
1 − 4P0P2
√

8λ1
tanhA

( √
P2

1 − 4P0P2

4

(
η(X −

V

α
τα) + ξ0

))

+

√
P2

1 − 4P0P2
√

8λ1
cothA

( √
P2

1 − 4P0P2

4

(
η(X −

V

α
τα) + ξ0

))]
,

where ξ0 is an arbitrary constant. For more details see [17, 18].

3.2. Sine-Gordon expansion method (SGEM)

Consider the sine-Gordon equation from [19, 20]

ΨXX − Ψττ = m2 sin(Ψ), (3.16)

where Ψ = Ψ(X, τ) and m is a constant. To solve the equation through sine-Gordon expansion
algorithm, first we use the transformation Ψ(X, τ) = Λ(ξ) where ξ = µ(X − cτ) which reduce (3.16) to
the following NLODE:

Λ′′ =
m2

µ2(1 − c2)
sin(Λ). (3.17)

After that, we multiply Λ′ on both sides of (3.17) and integrate it once which gives[(
Λ

2

)]2

=
m2

µ2(1 − c2)
sin2

(
Λ

2

)
+ k, (3.18)

in which k is an integration constant. Therefore by putting k = 0, Λ2 = w(ξ), and
m2

µ2(1 − c2)
= a2

in (3.18), we get
w′ = a sin(w), (3.19)

AIMS Mathematics Volume 7, Issue 6, 10807–10827.
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which by setting a = 1 in (3.19), we have

w′ = sin(w). (3.20)

Equation (3.20) is a simplified form of the sine-Gordon Eq (3.16). Thus, it has the following
solutions:

sin(w) = sech(ξ), cos(w) = tanh(ξ), (3.21)

and
sin(w) = icsch(ξ), cos(w) = coth(ξ). (3.22)

Here, firstly, CTFNLPDE (3.1) is reduced to NLODE (3.3) under the transformation (3.2).
Secondly, we apply the following transformation

Λ(w) =

N∑
j=1

cos j−1(w)[B j sin(w) + A j cos(w)] + A0. (3.23)

It is supposed that the solution Λ(ξ) of the nonlinear (3.3) along with (3.21) and (3.22) can be
demonstrated as

Λ(ξ) =

N∑
j=1

tanh j−1(ξ)[B jsech(ξ) + A jtanh(ξ)] + A0. (3.24)

and

Λ(ξ) =

N∑
j=1

coth j−1(ξ)[B jcsch(ξ) + A jcoth(ξ)] + A0. (3.25)

After detecting the value of N by means of using the homogeneous balance principle, substituting
its value into (3.23) and setting the result into the reduced ODE (3.20) give a nonlinear algebraic
system. Equating the coefficients of sin j(w) and cos j(w) equal to zero and solving the acquired system
yield the values of A j and B j. Finally, after substituting the values of A j and B j into (3.24) and (3.25),
we are able to earn the solitary wave solutions for (3.1).

We used the balancing technique to Eq (3.10) by considering the highest derivative Λ′′ and the
highest power nonlinear term Λ3, which the value of N is gained as N + 2 = 3N or N = 1. Thus, we
have the following equations

Λ(w) = B1 sin(w) + A1 cos(w) + A0, (3.26)

Λ′(w) = B1 cos(w) sin(w) − A1 sin2(w), (3.27)

and
Λ′′(w) = B1[cos2(w) sin(w) − sin3(w)] − 2A1 sin2(w) cos(w). (3.28)

Also we have

Λ3 = B3
1 sin3(w) + A3

1 cos3(w) (3.29)
+ 3A0B2

1 sin2(w) + 3A2
1A0 cos2(w)

+ 3A2
0B1 sin(w) + 3A2

0A1 cos(w)
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+ 3A1B2
1 sin2(w) cos(w) + 3A2

1B1 cos2(w) sin(w)
+ 6A0A1B1 sin(w) cos(w)
+ A3

0.

By substituting (3.26)–(3.29) into (3.10), we obtain the following nonlinear algebraic system:

sin3(w) : −B1 + λ1B3
1 = 0,

cos3(w) : λ1A3
1 = 0,

sin2(w) : 3λ1A0B2
1 = 0,

cos2(w) 3λ1A1A0 = 0,
sin(w) : 3λ1A2

0B1 − λ2B1 = 0
cos(w) : 3λ1A2

0A1 − λ2A1 = 0,
sin2(w) cos(w) : −2A1 + 3λ1A1B2

1 = 0,
cos2(w) sin(w) : B1 + 3λ1A2

1B1 = 0,
sin(w) cos(w) : 6λ1A0A1B1 = 0,
sin0(w) cos0(w) : λ1A3

0 − λ2A0 = 0.

Using (3.21) and (3.26), we earn the following traveling wave solutions:

Case 1: A0 = ±

√
λ2

λ1
or ±

√
λ2

3λ1
or 0, A1 = ±

√
−

1
3λ1

, B1 = 0.

Ψ2,1 = e
i(−KX+

P

α
τα+ζ)[

±

√
−

1
3λ1

tanh
(
η(X −

V

α
τα) + ξ0

)
+ A0

]
, (3.30)

Ψ2,2 = e
i(−KX+

P

α
τα+ζ)[

±

√
−

1
3λ1

coth
(
η(X −

V

α
τα) + ξ0

)
+ A0

]
. (3.31)

Case 2: A0 = ±

√
λ2

λ1
or ±

√
λ2

3λ1
or 0, A1 = 0, B1 = ±

√
2

3λ1
.

Ψ2,3 = e
i(−KX+

P

α
τα+ζ)[

±

√
2

3λ1
sech

(
η(X −

V

α
τα) + ξ0

)
+ A0

]
, (3.32)

Ψ2,4 = e
i(−KX+

P

α
τα+ζ)[

± i

√
2

3λ1
csch

(
η(X −

V

α
τα) + ξ0

)
+ A0

]
. (3.33)

Case 3: A0 = ±

√
λ2

λ1
or ±

√
λ2

3λ1
or 0, A1 = 0, B1 = ±

√
1
λ1
.

Ψ2,5 = e
i(−KX+

P

α
τα+ζ)[

±

√
1
λ1

sech
(
η(X −

V

α
τα) + ξ0

)
+ A0

]
, (3.34)
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Ψ2,6 = e
i(−KX+

P

α
τα+ζ)[

± i

√
1
λ1

csch
(
η(X −

V

α
τα) + ξ0

)
+ A0

]
. (3.35)

Case 4: A0 = ±

√
λ2

λ1
or ±

√
λ2

3λ1
or 0, A1 = ±

√
−

1
3λ1

, B1 = ±

√
1
λ1
.

Ψ2,7 = e
i(−KX+

P

α
τα+ζ)[

±

√
1
λ1

sech
(
η(X −

V

α
τα) + ξ0

)
±

√
−

1
3λ1

tanh
(
η(X −

V

α
τα) + ξ0

)
+ A0

]
, (3.36)

Ψ2,8 = e
i(−KX+

P

α
τα+ζ)[

± i

√
1
λ1

csch
(
η(X −

V

α
τα) + ξ0

)
±

√
−

1
3λ1

coth
(
η(X −

V

α
τα) + ξ0

)
+ A0

]
. (3.37)

Case 5: A0 = ±

√
λ2

λ1
or ±

√
λ2

3λ1
or 0, A1 = ±

√
−

1
3λ1

, B1 = ±

√
2

3λ1
.

Ψ2,9 = e
i(−KX+

P

α
τα+ζ)[

±

√
2

3λ1
sech

(
η(X−

V

α
τα) + ξ0

)
±

√
−

1
3λ1

tanh
(
η(X−

V

α
τα) + ξ0

)
+ A0

]
, (3.38)

Ψ2,10 = e
i(−KX+

P

α
τα+ζ)[

± i

√
2

3λ1
csch

(
η(X−

V

α
τα) + ξ0

)
±

√
−

1
3λ1

coth
(
η(X−

V

α
τα) + ξ0

)
+ A0

]
, (3.39)

where ξ0 is an arbitrary constant. For more details, see [21, 22].

4. Comparing the real and imaginary part of solutions of CTFMNLSE defined in (1.1)

Let δ1 = δ3 = η = s = r = P0 = P1 = P2 = 1, P = δ2 = δ4 = σ2 = A = 2, ζ = V = 0.5, K =

0.25, σ1 = −1, α = 0.90, ξ0 = A0 = 0. Therefore, we have λ1 = −1.57143 and λ2 = −2.24107. We
now present numerical results in tables and charts.

Figure 1 (a) and (e) show the 3D with the both real and imaginary parts of the solution Ψ1,1 and
Ψ1,3 for different values of X and τ and also, Figure 1 (b), (f) and (c), (d) show the 3D and 2D with the
both real and imaginary part of the solution Ψ1,1 and Ψ1,3 for fixed X and different values of τ through
DAM, using the above values. Now, Figure 2 (a) and (c) show the 3D with the both real and imaginary
parts of the solution Ψ2,1 and Ψ2,3 for different values of X and τ and also Figure 2 (b) and (d) show the
3D with the both real and imaginary part of the solution Ψ2,1 and Ψ2,3 for fixed X and different values
of τ through SGEM, using the above values.

Moreover, Figure 3 displays the 3D with the real and imaginary part of solution Ψ2,1 for fixed X
and different values of α (= 0.50 − 0.09), obtained via SGEM.

Figure 4 (a) shows the 3D with the differences between the real and also the imaginary part of
solutions Ψ1,1 and Ψ2,1, and also Figure 4 (b) shows the 3D with the differences between the real and
also the imaginary part of solutions Ψ1,3 and Ψ2,3, for fixed X and fixed α. Note that, these differences
are minor in a wide range of domains. which implies that both methods leads to similar results except
for some values.
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(a) (b)

(c) (d)

(e) (f)

Figure 1. The figures (a) and (e) show the 3D with the both real and imaginary parts of the
solution Ψ1,1 and Ψ1,3 for different values of X and τ and also the figures (b), (f) and (c), (d)
show 3D and 2D with the both real and imaginary parts of the solution Ψ1,1 and Ψ1,3 for fixed
X and different values of τ through DAM, under the values presented in Section 4.
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(a) (b)

(c) (d)

Figure 2. The figures (a) and (c) show the 3D with the both real and imaginary parts of the
solution Ψ2,1 and Ψ2,3 for different values of X and τ. The figures (b) and (d) show 3D with
the both real and imaginary parts of the solution Ψ2,1 and Ψ2,3 for fixed X and different values
of τ through SGEM, under the values presented in Section 4.

(a) (b)
Figure 3. The 3D with the real and imaginary parts of solution Ψ2,1 for fixed X and different
values of α (= 0.50 − 0.09), obtained via SGEM.
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(a) (b)

Figure 4. (a) shows the 3D with the differences between the real and also the imaginary part
of solutions Ψ1,1 and Ψ2,1, and also (b) shows the 3D with the differences between the real
and also the imaginary part of the solutions Ψ1,3 and Ψ2,3, for fixed X and fixed α.

Tables 1–4 present the numerical results of the solutions of CTFMNLSE (1.1) obtained by DAM
and SGEM with several point sources trough arbitrary.

In Table 5, based on Tables 1–4, separately, we calculate the differences between solutions
Ψ1,1,Ψ1,3,Ψ2,1, and Ψ2,3, represented by ∆Ψ1,1,∆Ψ2,1,∆Ψ2,1, and ∆Ψ2,3, for fixed X = 0.012 and
different values of τ. Note that < and = show the real and imaginary part of solutions. As we
can observe, for fixed X by changing the value of τ, both DAM and SGEM result major changes
for solutions Ψ1,3 and Ψ2,3, and here we are not dealing with an advantageous result. Nevertheless,
SGEM results more minor changes than DAM.

Tables 6–9 propose the real and imaginary part of exact solutions of CTFMNLSE (1.1) obtained
by six different methods: FIM, FVM, TEM, MTEM [15, 16] and also DAM and SGEM, with several
point sources trough arbitrary. For some values the results obtained through DAM and SGEM, are near
to the results obtained in four other methods.

Table 1. The real part of exact solutions of CTFMNLSE (1.1) obtained by DAM, with several
point sources trough arbitrary.

X τ Ψ<1,1(X, τ) Ψ<1,2(X, τ) Ψ<1,3(X, τ) Ψ<1,4(X, τ)
0.012 0.00058 -0.00058 587.19354 -587.19354

0.012 0.037 -0.00550 0.00550 -55.91444 55.91444
0.062 -0.01056 0.01056 -26.29075 26.29075
0.012 0.00933 -0.00933 36.46445 -36.46445

0.037 0.037 0.00284 -0.00284 109.34814 -109.34814
0.062 -0.00266 0.00266 -105.25186 105.25186
0.012 0.01816 -0.01816 18.87874 -18.87874

0.062 0.037 0.01124 -0.01124 27.81915 -27.81915
0.062 0.00531 -0.00531 53.34247 -53.34247
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Table 2. The imaginary part of exact solutions of CTFMNLSE (1.1) obtained by DAM, with
several point sources trough arbitrary.

X τ Ψ=1,1(X, τ) Ψ=1,2(X, τ) Ψ=1,3(X, τ) Ψ=1,4(X, τ)
0.012 0.00034 -0.00034 350.78189 -350.78189

0.012 0.037 -0.00385 0.00385 -39.18969 39.18969
0.062 -0.00852 0.00852 -21.21368 21.21368
0.012 0.00549 -0.00549 21.47530 -21.47530

0.037 0.037 0.00196 -0.00196 75.62594 -75.62594
0.062 -0.00212 0.00212 -83.84577 83.84577
0.012 0.01054 -0.01054 10.96007 -10.96007

0.062 0.037 0.00767 -0.00767 18.98398 -18.98398
0.062 0.00417 -0.00417 41.95143 -41.95143

Table 3. The real part of exact solutions of CTFMNLSE (1.1) obtained by SGEM, with
several point sources trough arbitrary.

X τ Ψ<2,1(X, τ) Ψ<2,2(X, τ) Ψ<2,3(X, τ) Ψ<2,4(X, τ)
0.012 0.00065 -0.00065 241.48348 -241.48348

0.012 0.037 -0.00624 0.00624 -22.75660 22.75660
0.062 -0.01197 0.01197 -10.70930 10.70930
0.012 0.01055 -0.01055 14.88481 -14.88481

0.037 0.037 0.00320 -0.00320 44.79798 -44.79798
0.062 -0.00304 0.00304 -42.62661 42.62661
0.012 0.02052 -0.02052 7.71125 -7.71125

0.062 0.037 0.01270 -0.01270 11.36482 -11.36482
0.062 0.00599 -0.00599 21.83731 -21.83731

Table 4. The imaginary part of exact solutions of CTFMNLSE (1.1) obtained by SGEM,
with several point sources trough arbitrary.

X τ Ψ=2,1(X, τ) Ψ=2,2(X, τ) Ψ=2,3(X, τ) Ψ=2,4(X, τ)
0.012 0.00038 -0.00038 144.25913 -144.25913

0.012 0.037 -0.00437 0.00437 -15.94980 15.94980
0.062 -0.00965 0.00965 -8.64120 8.64120
0.012 0.00621 -0.00621 8.76623 -8.76623

0.037 0.037 0.00221 -0.00221 30.98259 -30.98259
0.062 -0.00241 0.00241 -33.95722 33.95722
0.012 0.01191 -0.01191 4.47677 -4.47677

0.062 0.037 0.00866 -0.00866 7.75543 -7.75543
0.062 0.00471 -0.00471 17.17404 -17.17404
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Table 5. According to Tables 1-4, separately, we calculate the differences between solutions
Ψ1,1,Ψ1,3,Ψ2,1, and Ψ2,3, represented by ∆Ψ1,1,∆Ψ2,1,∆Ψ2,1, and ∆Ψ2,3, for fixed X = 0.012
and different values of τ. Note that< and = show the real and imaginary part of solutions.

X = 0.012
τ = 0.012, 0.037, 0.062
DAM SGEM
∆Ψ<1,1 ∆Ψ=1,1 ∆Ψ<1,3 ∆Ψ=1,3 ∆Ψ<2,1 ∆Ψ=2,1 ∆Ψ<2,3 ∆Ψ=2,3
0.00608 0.00419 643.10798 389.97158 0.00689 0.00475 264.24008 160.20893
0.01114 0.00886 613.48429 771.99557 0.01262 0.01003 252.19278 152.90033
0.00506 0.00467 29.62369 17.97601 0.00573 0.00528 12.04730 7.30860

Table 6. The real part of exact solutions of CTFMNLSE (1.1) obtained by 6 different
methods, with several point sources trough arbitrary.

X τ

FIM︷     ︸︸     ︷
Ψ<1,2(X, τ)

FVM︷     ︸︸     ︷
Ψ<1,2(X, τ)

TEM︷     ︸︸     ︷
Ψ<1,2(X, τ)

MTEM︷     ︸︸     ︷
Ψ<1,2(X, τ)

DAM︷     ︸︸     ︷
Ψ<1,2(X, τ)

SGEM︷     ︸︸     ︷
Ψ<1,2(X, τ)

0.012 0.012 ∓ 0.00099 ∓ 0.86524 ± 1.44911 ∓ 0.00083 ± 0.00057 ± 0.00064
0.037 ± 0.01209 ∓ 0.96849 ± 1.38186 ± 0.00941 ∓ 0.00549 ∓ 0.00623
0.062 ± 0.02666 ∓ 1.06066 ± 1.31204 ± 0.02081 ∓ 0.01055 ∓ 0.01196
0.087 ± 0.04264 ∓ 1.14551 ± 1.23880 ± 0.03333 ∓ 0.01482 ∓ 0.01679

0.037 0.012 ∓ 0.01689 ∓ 0.85415 ± 1.45334 ∓ 0.01342 ± 0.00933 ± 0.01055
0.037 ∓ 0.00583 ∓ 0.95628 ± 1.38820 ∓ 0.00478 ± 0.00283 ± 0.00319
0.062 ± 0.00691 ∓ 1.04758 ± 1.32017 ± 0.00518 ∓ 0.00266 ∓ 0.00303
0.087 ± 0.02124 ∓ 1.13177 ± 1.24849 ± 0.01639 ∓ 0.00738 ∓ 0.00838

0.062 0.012 ∓ 0.03247 ∓ 0.84187 ± 1.45547 ∓ 0.02575 ± 0.01815 ± 0.02052
0.037 ∓ 0.02346 ∓ 0.94274 ± 1.39254 ∓ 0.01873 ± 0.01124 ± 0.01270
0.062 ∓ 0.01251 ∓ 1.03303 ± 1.32641 ∓ 0.01019 ± 0.00530 ± 0.00598
0.087 ± 0.00016 ∓ 1.11640 ± 1.25641 ∓ 0.00028 ± 0.00013 ± 0.00012

0.087 0.012 ∓ 0.04776 ∓ 0.82848 ± 1.45550 ∓ 0.03784 ± 0.02705 ± 0.03053
0.037 ∓ 0.04079 ∓ 0.92793 ± 1.39486 ∓ 0.03244 ± 0.01972 ± 0.02227
0.062 ∓ 0.03165 ∓ 1.01707 ± 1.33074 ∓ 0.02533 ± 0.01336 ± 0.01509
0.087 ∓ 0.02062 ∓ 1.09949 ±1.26251 ∓ 0.01673 ± 0.00773 ± 0.00872
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Table 7. The real part of exact solutions of CTFMNLSE (1.1) obtained by 6 different
methods, with several point sources through arbitrary.

X τ

FIM︷     ︸︸     ︷
Ψ<3,4(X, τ)

FVM︷     ︸︸     ︷
Ψ<3,4(X, τ)

TEM︷     ︸︸     ︷
Ψ<3,4(X, τ)

MTEM︷     ︸︸     ︷
Ψ<3,4(X, τ)

DAM︷     ︸︸     ︷
Ψ<3,4(X, τ)

SGEM︷     ︸︸     ︷
Ψ<3,4(X, τ)

0.012 0.012 ∓ 378.21073 ∓70.07373 ±351.38054 ∓351.20376 ±587.19354 ±241.48348
0.037 ± 38.81779 ∓30.84863 ∓39.15773 ±39.17920 ∓55.91443 ∓22.75659
0.062 ± 21.08640 ∓19.36377 ∓21.19424 ±21.20629 ∓26.29074 ∓10.70930
0.087 ± 15.32460 ∓14.48859 ∓15.38516 ±15.39533 ∓16.74259 ∓6.82515

0.037 0.012 ∓ 21.73603 ∓28.35492 ±21.46931 ∓21.47600 ±36.46444 ±14.88481
0.037 ∓ 78.99292 ∓24.09697 ±75.68598 ∓75.67674 ±109.34813 ±44.79797
0.062 ± 80.05677 ∓18.81347 ∓83.68725 ±83.77139 ∓105.25185 ∓42.62660
0.087 ± 30.34363 ∓15.03660 ∓30.84459 ±30.86541 ∓33.98710 ∓13.82036

0.062 0.012 ∓11.06619 ∓16.76490 ±10.95095 ∓10.95634 ±18.87873 ±7.71124
0.037 ∓ 19.30540 ∓16.27571 ±18.97941 ∓18.98481 ±27.8191 ±11.36481
0.062 ∓43.52313 ∓14.65664 ±41.97445 ∓41.97341 ±53.34247 ±21.83730
0.087 ±3894.75067 ∓12.88518 ±1783.25721 ∓1751.00331 ±1903.01800 ±950.20622

0.087 0.012 ∓7.36271 ∓11.81796 ±7.29069 ∓7.29620 ±12.76218 ± 5.21999
0.037 ∓10.90080 ∓11.82677 ±10.75601 ∓10.76155 ±15.99035 ±6.53613
0.062 ∓16.93629 ∓11.28924 ±16.60991 ∓16.61494 ±21.40072 ±8.74788
0.087 ∓30.39447 ∓10.50579 ±29.40686 ∓29.40818 ±33.17835 ±13.57924
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Table 8. The imaginary part of exact solutions of CTFMNLSE (1.1) obtained by 6 different
methods, with several point sources through arbitrary.

X τ

FIM︷     ︸︸     ︷
Ψ=1,2(X, τ)

FVM︷     ︸︸     ︷
Ψ=1,2(X, τ)

TEM︷     ︸︸     ︷
Ψ=1,2(X, τ)

MTEM︷     ︸︸     ︷
Ψ=1,2(X, τ)

DAM︷     ︸︸     ︷
Ψ=1,2(X, τ)

SGEM︷     ︸︸     ︷
Ψ=1,2(X, τ)

0.012 0.012 ± 0.00165 ±1.44929 ±0.86568 ±0.00140 ±0.00034 ±0.00038
0.037 ∓ 0.01726 ±1.38406 ±0.96853 ∓0.01342 ∓0.00385 ∓0.00437
0.062 ∓0.033041 ±1.31780 ±1.05867 ∓0.02579 ∓0.00851 ∓0.00965
0.087 ∓0.04635 ±1.24922 ±1.13976 ∓0.03622 ∓0.01364 ∓0.01544

0.037 0.012 ± 0.02868 ±1.45317 ±0.85592 ±0.02279 ±0.00549 ±0.00621
0.037 ± 0.00844 ±1.38971 ±0.96009 ±0.00691 ±0.00196 ±0.00220
0.062 ∓ 0.00867 ±1.32525 ±1.05167 ∓0.00651 ∓0.00212 ∓0.00241
0.087 ∓ 0.02338 ±1.25853 ±1.13434 ∓0.01804 ∓0.00671 ∓0.00762

0.062 0.012 ± 0.05593 ±1.45494 ±0.84497 ±0.04436 ±0.01054 ±0.01191
0.037 ± 0.03438 ±1.39330 ±0.95027 ±0.02745 ±0.00767 ±0.00866
0.062 ± 0.01591 ±1.33069 ±1.04316 ±0.01295 ±0.00417 ±0.00470
0.087 ∓0.00018 ±1.26590 ±1.12728 ±0.00031 ±0.00011 ±0.00011

0.087 0.012 ± 0.08346 ±1.45459 ±0.83287 ±0.06613 ±0.01548 ±0.01747
0.037 ± 0.06058 ±1.39481 ±0.93913 ±0.04818 ±0.01327 ±0.01499
0.062 ±0.04077 ±1.33411 ±1.03317 ±0.03263 ±0.01037 ±0.01171
0.087 ±0.02328 ±1.27129 ±1.11860 ±0.01889 ±0.00685 ±0.00773

Table 9. The imaginary part of exact solutions of CTFMNLSE (1.1) obtained by 6 different
methods, with several point sources through arbitrary.

X τ

FIM︷     ︸︸     ︷
Ψ=3,4(X, τ)

FVM︷     ︸︸     ︷
Ψ=3,4(X, τ)

TEM︷     ︸︸     ︷
Ψ=3,4(X, τ)

MTEM︷     ︸︸     ︷
Ψ=3,4(X, τ)

DAM︷     ︸︸     ︷
Ψ=3,4(X, τ)

SGEM︷     ︸︸     ︷
Ψ=3,4(X, τ)

0.012 0.012 ±633.10822 ±12.28177 ∓588.19565 ±587.89974 ±350.78189 ±144.25913
0.037 ∓55.38382 ±19.40644 ±55.86884 ∓55.89947 ∓39.18969 ∓15.94980
0.062 ∓26.13300 ±14.23268 ±26.26665 ∓26.28158 ∓21.21368 ∓8.64120
0.087 ∓16.65633 ±10.67754 ±16.72216 ∓16.73321 ∓15.40396 ∓6.27945

0.037 0.012 ±36.90715 ∓7.51554 ∓36.45427 ±36.46563 ±21.47530 ±8.76623
0.037 ±114.21647 ±1.26633 ∓109.43494 ±109.42158 ±75.62594 ±30.98259
0.062 ∓100.49552 ±4.11852 ±105.05287 ∓105.15849 ∓83.84576 ∓33.95722
0.087 ∓33.39707 ±4.55124 ±33.94843 ∓33.97135 ∓30.87972 ∓12.55679

0.062 0.012 ±19.06153 ∓6.31111 ∓18.86303 ±18.87231 ±10.96007 ±4.47677
0.037 ±28.29015 ∓2.73162 ∓27.81244 ±27.82036 ±18.98398 ±7.75543
0.062 ±55.34093 ∓0.47397 ∓53.37174 ±53.37043 ±41.95143 ±17.17404
0.087 ∓4340.87665 ±0.69068 ∓1987.52122 ±1951.57277 ±1707.43866 ±852.55044

0.087 0.012 ±12.86682 ∓5.00514 ∓12.74097 ±12.75059 ±7.30283 ±2.98701
0.037 ±16.19046 ∓3.32263 ∓15.97541 ±15.98364 ±10.76607 ±4.40068
0.062 ±21.81420 ∓2.01126 ∓21.39382 ±21.40030 ±16.61527 ±6.79175
0.087 ±34.30495 ∓1.10820 ∓33.19028 ±33.19177 ±29.39629 ±12.03132
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5. Conclusions

Using the DAM and SGEM, firstly we found the exact solutions of CTFMNLSE (1.1) and finally,
we presented numerical results in tables and charts. Also, we compared the real and imaginary parts
of the exact solutions of CTFMNLSE (1.1) obtained by DAM and SGEM with four other different
methods: FIM, FVM, TEM, MTEM. For some values the results obtained through DAM and SGEM,
were near to the results obtained in four other methods. Overall, the performance of the proposed
methods (DAM and SGEM) is reliable and effective and gives more solutions. These methods are
direct and concise. Therefore, we conclude these methods can be extended to solve many nonlinear
conformable fractional PDEs which are arising in the theory of solitons and other areas.
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time-fractional modified nonlinear Schrödinger equation by first integral method and functional
variable method, Opt. Quant. Electron., 54 (2022), 218. https://doi.org/10.1007/s11082-022-
03605-y

17. Y. Tian, J. Liu, Direct algebraic method for solving fractional Fokas equation, Therm. Sci., 25
(2021), 2235–2244. https://doi.org/10.2298/TSCI200306111T

18. S. Duran, Exact solutions for time-fractional Ramani and Jimbo-Miwa equations
by direct algebraic method, Adv. Sci. Eng. Med., 12 (2020), 982–988.
https://doi.org/10.1166/asem.2020.2663

19. S. Ham, Y. J. Hwang, S. Kwak, J. Kim, Unconditionally stable second-order accurate scheme for a
parabolic sine-Gordon equation, AIP Adv., 12 (2022), 025203. https://doi.org/10.1063/5.0081229

20. A. T. Deresse, Double Sumudu transform iterative method for one-dimensional
nonlinear coupled Sine-Gordon equation, Adv. Math. Phys., 2022 (2022), 6977692.
https://doi.org/10.1155/2022/6977692

AIMS Mathematics Volume 7, Issue 6, 10807–10827.

http://dx.doi.org/https://doi.org/10.1016/j.ijleo.2020.165208
http://dx.doi.org/https://doi.org/10.37094/adyujsci.827964
http://dx.doi.org/https://doi.org/10.1016/j.ijleo.2021.166877
http://dx.doi.org/https://doi.org/10.1002/mma.3533
http://dx.doi.org/https://doi.org/10.1016/j.ijleo.2018.06.111
http://dx.doi.org/https://doi.org/10.1088/1402-4896/abf269
http://dx.doi.org/https://doi.org/10.1016/j.rinp.2020.103766
http://dx.doi.org/https://doi.org/10.1155/2022/4318192
http://dx.doi.org/https://doi.org/10.1007/s11082-022-03605-y
http://dx.doi.org/https://doi.org/10.1007/s11082-022-03605-y
http://dx.doi.org/https://doi.org/10.2298/TSCI200306111T
http://dx.doi.org/https://doi.org/10.1166/asem.2020.2663
http://dx.doi.org/https://doi.org/10.1063/5.0081229
http://dx.doi.org/https://doi.org/10.1155/2022/6977692


10827

21. Y. Yıldırım, E. Topkara, A. Biswas, H. Triki, M. Ekici, P. Guggilla, et al., Cubic-quartic optical
soliton perturbation with Lakshmanan-Porsezian-Daniel model by sine-Gordon equation approach,
J. Opt., 50 (2021), 322–329. https://doi.org/10.1007/s12596-021-00685-z

22. K. K. Ali, M. S. Osman, M. Abdel-Aty, New optical solitary wave solutions of Fokas-Lenells
equation in optical fiber via Sine-Gordon expansion method, Alex. Eng. J., 59 (2020), 1191–1196.
https://doi.org/10.1016/j.aej.2020.01.037

c© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 7, Issue 6, 10807–10827.

http://dx.doi.org/https://doi.org/10.1007/s12596-021-00685-z
http://dx.doi.org/https://doi.org/10.1016/j.aej.2020.01.037
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Methods and applications
	Direct algebraic method (DAM)
	Sine-Gordon expansion method (SGEM)

	Comparing the real and imaginary part of solutions of CTFMNLSE defined in (??)
	Conclusions

