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Abstract: In this paper, we investigate a class of optimal control problems for turbofan aero-
engines considering external disturbances. The alternating direction method of multipliers (ADMM)
is embedded in the framework of robust model predictive control (RMPC), which is not only able to
reach a predetermined value of the engine fan speed, but is also developed to maintain the robustness
of the engine control system. First, to consider the optimal control strategy for the worst-case scenario,
this optimal control problem is formulated as a minimum-maximum convex optimization problem with
constraints. Second, through a transformation technique, the problem can be equivalently described by
a variational inequality, which is then transformed into a quadratic programming (QP) problem using a
proximal point algorithm (PPA). Finally, the ADMM algorithm is used to solve a series of optimization
subproblems based on the structural characteristics of the model. Computational examples illustrate
the solution efficiency and robustness of the improved algorithm (RMPC-ADMM).
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1. Introduction

The aircraft’s aero-engine is a critical component. Its operation is quite complicated, and it often
fluctuates depending on environmental circumstances and operating states (e.g., maximum state, cruise
state, acceleration and deceleration states, etc.). As a result, optimizing the control of the aero-engine
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is critical in order to make it run reliably and efficiently and to achieve the best performance. Stable-
state control, transition-state control, and limit control are the three main control tasks [1]. There are
various types of aero-engines, and this study focuses on turbofan aero-engines.

Engine control adopted closed-loop feedback control from classical control theory in the
early 1950s, which improved control accuracy, dynamic performance, and engine performance
significantly. Because it is simple to design and implement, this approach is still utilized for many
engine controllers today. Classical feedback control theory, on the other hand, cannot ensure the
system’s stability and dynamic performance. For this reason, modern control theories such as linear
quadratic optimal control, adaptive control, robust control, LPV control, and neural network control
arose in the 1960s. Classical engine linear regulators are conservative and unable to handle complex
systems with output constraint protection [2, 3]. In contrast, model predictive control (MPC) provides
considerable advantages in handling engine operating restrictions explicitly [4, 5], simplifying the
engine control system structure [6], and performing real-time rolling optimization. MPC has received
a lot of attention in the engine control industry since then [7–10].

The MPC algorithm is a finite-horizon optimum control algorithm that uses a time-forward rolling
optimization algorithm. Its rolling implementation can compensate in time for uncertainties caused
by model mis-match, time variations, and disturbances. In order for the control to remain practically
optimal, the algorithm constantly builds additional optimizations in the real system [11]. The classical
finite horizon quadratic value function is used as the objective function in the analysis of MPC problems
in Ref. [12]. In the linear time-invariant (LTI) system, the output variables and their corresponding
output constraints are disregarded. The control input is not taken into consideration in the output
of the LTI system in Ref. [13]. In Ref. [14], the ADMM algorithm is used to improve the real-time
performance of the aero-engine nonlinear MPC by applying it to the MPC rolling optimization. Firstly,
they introduce auxiliary variables and then introduce auxiliary variable constraints. The simulation
results show that the improved method is more efficient. In summary, we try to apply the ADMM
algorithm to the turbofan aero-engine problem according to the previous research on MPC.

The ADMM algorithm can solve block convex optimization problems quickly, reducing the
difficulty of solving them by breaking down large-scale problems into smaller chunks. The ADMM
algorithm is theoretically guaranteed to converge for any convex value function and constraints. In the
last ten years, the ADMM algorithm, which was originally developed to solve variational inequalities,
has become widely used in optimization computing [15–19]. Noor proposed methods for addressing
general variational inequalities [20, 21], including projection, Wiener-Hopf equations, updating the
solution, auxiliary principle, inertial proximal, penalty function, dynamical system and well-posedness.
He [22] selects the appropriate matrix G in the framework of variational inequalities and solves the
convex optimization problem with linear constraints using the PPA algorithm under G-modules. The
method makes the iterative process of solving subproblems easy to solve. Ref. [23] directly applies the
PPA algorithm’s powerful convergence theory to the ADMM algorithm, demonstrating that the essence
of the algorithm is the same. With the further study of the ADMM algorithm, its convergence has been
proved. The PPA algorithm is a fundamental algorithm for computing optimally. It was first proposed
by Martinet in 1970 [24], and then Rockafellar did further research [25, 26]. The PPA algorithm on
Lagrangian multipliers is known as the augmented Lagrangian method (ALM) [27]. He [28] selects
appropriate proximal parameters in the linear constrained convex minimization problem and solves it
with the PPA algorithm. The subproblems obtained by this algorithm are easier to solve than the ones
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of the ALM algorithm. The PPA algorithm has received further attention in recent years, both in terms
of theory and implementation [29–32].

Model uncertainty exists in industrial processes due to factors such as model mismatch and external
disturbances between the practical system and the process model. These make the performance of
MPC worse and even make the system unstable. Therefore, it is critical and realistic to investigate
MPC’s robustness [33]. Within the scope of MPC, which combines the advantages of robust control
with predictive control, RMPC is one of the control methods for dealing with model uncertainty.
The research mainly includes predictive control algorithm robustness analysis and this algorithm
robust control [34]. There are primarily two methods for RMPC to achieve optimal control.
The first is H∞ control [35–39], while the second is min-max optimization [40–42]. The min-
max optimization commonly uses the worst-case performance function. Based on invariant set theory,
the method uses linear matrix inequalities (LMI) to design the RMPC controller. The optimization
problem is then converted into an LMI problem in order to solve the predictive control. Previously, the
system state was thought to be quantifiable online for RMPC [43–46]. However, the system state is not
always measurable in practical applications. Using the state observer, Lee [47] and Mayne [48] built the
output feedback RMPC (OFRMPC) with constraints in the LTI system. The state observer’s parameters
are fixed in this scenario, and the control inputs are optimized online by the OFRMPC. Bemporad [49]
used the dynamic output feedback control method to design the OFRMPC with constraints in the LTI
system.

Overall, we apply the ADMM algorithm to improve the RMPC problem’s rolling optimization. To
increase the solving efficiency and maintain system stability, we apply the modified algorithm to the
turbofan aero-engine LTI system with external disturbances. The following are the primary innovations
in this paper: (1) In this paper, we investigate a more complex model by considering the dual influence
of output variables and state variables on the output values; (2) We improve the algorithm by utilizing
the fact that the PPA algorithm can simplify the subproblem to transform the optimization problem; (3)
We use the ADMM algorithm can take full advantage of the sparsity of the problem to optimize the
algorithm and improve the solution efficiency; (4) Several transformations are applied to the original
optimization problem, and the suggested method is demonstrated by an example in the RMPC problem
for turbofan aero-engines.

The rest of the paper is organized as follows. In Section 2, we introduce the mathematical model of
the RMPC problem for the turbofan aero-engine and its augmented form. In Section 3, we derive the
RMPC prediction equations in matrix form. In Section 4, we transform the optimization problem of
RMPC into a form that is suitable for solving with the ADMM algorithm. In Section 5, we calculate the
comparison problem of RMPC for turbofan aero-engine in ground idling and verify the effectiveness of
the RMPC-ADMM algorithm in terms of robustness and solving efficiency. In Section 6, we conclude
this paper and look forward to future work.

2. RMPC model description

The model of a turbofan aero-engine with external disturbances can be described as follows:

x(k + 1) = Ad x(k) + Bdu(k) + w(k),
y(k) = Cd x(k) + Ddu(k),

(2.1)
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where
x =

[
∆N f ∆Nc

]T
, y =

[
∆T48 ∆SmHPC

]T
, u =

[
∆W f ∆VSV ∆VBV

]T
.

The state variable x denotes the deviation of the fan speed N f (r/min) and the core rotor speed
Nc(r/min). The output variable y (also called the output constrained variable) denotes the deviation
of the high-pressure compressor delivery temperature T48 (◦R) and the high-pressure compressor surge
margin SmHPC(%). The control variable u denotes the deviation of the fuel flow rate W f (kg/s), the
variable stator vane angle VSV (◦), and the variable bleed valve opening VBV. Ad, Bd, Cd, and Dd

denote the input and output matrices of the corresponding variables. The external disturbance variable
w(k) is bounded.

We now introduce the augmented state matrix xa(k) =
[

x(k)T u(k − 1)T
]T

, which has the
advantages of low computational effort, high computational accuracy, and strong computational
stability. By applying xa(k) to (2.1), we can get the following augmented model:[

x(k + 1)
u(k)

]
=

[
Ad Bd

0 I

] [
x(k)

u(k − 1)

]
+

[
Bd

I

]
∆u(k) +

[
I
0

]
w(k),

y(k) =
[

Cd Dd

] [ x(k)
u(k − 1)

]
+ Dd∆u(k).

(2.2)

The compact form can be written as:

xa(k + 1) = Adaxa(k) + Bda∆u(k) + Fw(k),
y(k) = Cdaxa(k) + Dda∆u(k),

(2.3)

where

Ada =

[
Ad Bd

0 I

]
, Bda =

[
Bd

I

]
, Cda =

[
Cd Dd

]
, Dda = Dd, F =

[
I
0

]
,

xa denotes the augmented state variable. ∆u denotes the new control variable. When solving practical
problems, we usually depend on whether it is the tracking variable (∆N f ) or the output constrained
variable (∆T48, ∆SmHPC) to use different matrix coefficients. As a result, we express these two types
of variables, respectively, to fulfill our practical needs. The equivalent model equation can be written
as follows:

xa(k + 1) = Adaxa(k) + Bda∆u(k) + Fw(k),
y(k) = C0xa(k),
p(k) = Cdaxa(k) + Dda∆u(k),

(2.4)

where C0 =
[

1 0 0 0 0
]
, y(k) denotes the expression of ∆N f , and p(k) denotes the expression of

∆T48 and ∆SmHPC.

3. RMPC prediction equation

In order to reduce the number of independent variables in the optimization problem and improve
the algorithm efficiency, we introduce the control horizon nu, the prediction horizon ny, and the control
variable ∆u(k + i), i = 0, 1, 2, · · · , ny − 1.

Since predict the control system needs control inputs throughout the prediction horizon, we make
the following assumptions:
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Assumption 1. The control horizon nu is not larger than the prediction horizon ny, and the control
variable ∆u(k + i) is constant in the later times of the control horizon nu. That is,

nu ≤ ny,

∆u(k + i) = 0, i = nu, nu + 1, · · · , ny − 1.

By iterating the first equation of Eq (2.4), the prediction state columns can be obtained as:

xa(k + 1 | k) = Adaxa(k) + Bda∆u(k) + Fw(k),
xa(k + 2 | k) = Adaxa(k + 1 | k) + Bda∆u(k + 1) + Fw(k + 1)

= A2
daxa(k) + AdaBda∆u(k) + Bda∆u(k + 1) + AdaFw(k) + Fw(k + 1),

...

xa (k + nu | k) =Adaxa (k + nu − 1 | k) + Bda∆u (k + nu − 1) + Fw (k + nu − 1)

=Anu
daxa(k) + Anu−1

da Bda∆u(k) + Anu−2
da Bda∆u(k + 1) + · · ·

+ Bda∆u (k + nu − 1) + Anu−1
da Fw(k) + Anu−2

da Fw(k + 1) + · · ·

+ Fw (k + nu − 1) ,
...

xa

(
k + ny | k

)
=Adaxa

(
k + ny − 1 | k

)
+ Bda∆u

(
k + ny − 1

)
+ Fw

(
k + ny − 1

)
=Any

daxa(k) + Any−1
da Bda∆u(k) + Any−2

da Bda∆u(k + 1) + · · ·

+ Any−nu

da Bda∆u (k + nu − 1) + Any−1
da Fw(k) + Any−2

da Fw(k + 1) + · · ·

+ Fw
(
k + ny − 1

)
.

(3.1)

By iterating the second equation of Eq (2.4), the prediction tracking columns can be obtained as:

y(k + 1 | k) = C0xa(k + 1 | k)
= C0Adaxa(k) + C0Bda∆u(k) + C0Fw(k),

y(k + 2 | k) = C0xa(k + 2 | k)
= C0Ada

2xa(k) + C0AdaBda∆u(k) + C0Bda∆u(k + 1)+
C0AdaFw(k) + C0Fw(k + 1),
...

y (k + nu | k) =C0xa (k + nu | k)

=C0Anu
daxa(k) + C0Anu−1

da Bda∆u(k) + · · · + C0Bda∆u (k + nu − 1) +

C0Anu−1
da Fw(k) + C0Anu−2

da Fw(k + 1) + · · · + C0Fw (k + nu − 1) ,
...

y
(
k + ny | k

)
=C0xa

(
k + ny | k

)
=C0Any

daxa(k) + C0Any−1
da Bda∆u(k) + · · · + C0Any−nu

da Bda∆u (k + nu − 1) +

C0Any−1
da Fw(k) + C0Any−2

da Fw(k + 1) + · · · + C0Fw
(
k + ny − 1

)
,

(3.2)
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where (k + i | k), i = 1, · · · , ny in Eqs (3.1) and (3.2) denotes the prediction of k + i times at the current
time k.

Equations (3.1) and (3.2) can be simplified into matrix form as follows:

x̂a = Exxa(k) + Hx∆û + Gxŵ,

ŷ = Er xa(k) + Hr∆û + Grŵ,

where

x̂a =


xa(k + 1)

...

xa

(
k + ny

)
 , ŷ =


y(k + 1)

...

y
(
k + ny

)
 ,∆û =


∆u(k)
...

∆u (k + nu − 1)

 ,

ŵ =


w(k)

w(k + 1)
...

w
(
k + ny − 1

)
 , Ex =


Ada

Ada
2

...

Ada
ny

 ,Hx =


Bda 0 0 · · ·

AdaBda Bda 0 · · ·
...

...
...

...

Ada
ny−1Bda Ada

ny−2Bda Any−3
da Bda · · ·

 ,

Er =


C0Ada

C0Ada
2

...

C0Ada
ny

 ,Hr =


C0Bda 0 0 · · ·

C0AdaBda C0Bda 0 · · ·
...

...
...

...

C0Ada
ny−1Bda C0Ada

ny−2Bda C0Ada
ny−3Bda · · ·

 ,

Gr =


C0F 0 · · · 0

C0AdaF C0F · · · 0
...

...
. . .

...

C0Ada
ny−1F C0Ada

ny−2F · · · C0F

 ,Gx =


F 0 · · · 0

AdaF F · · · 0
...

...
. . .

...

Ada
ny−1F Ada

ny−2F · · · F

 .

(3.3)

4. RMPC optimization problem

During engine operation, it is necessary to guarantee that the fan speed reaches the specified
reference value and that the control system remains stable at all times. Therefore, we design the
value function to ensure that the tracking variable is close to the reference input variable and that the
control variable’s fluctuation is as small as possible. The value function is as follows:

J(∆û, ŵ) =

ny∑
i=1

e(k + i)T e(k + i) +

nu−1∑
i=0

a∆u(k + i)T ∆u(k + i),

where e(k) = r(k)− ŷ(k), r(k) denotes the reference input (i.e., the given fan speed deviation value). The
first term is expressed as the sum of the squares of the differences between the tracking variable and the
reference input variable in the prediction horizon ny. a denotes the scalar weight (i.e., the weighting
factor). At each prediction time, the larger the weighting factor a, the smaller the fluctuation of the
control variable is. We use a consistent weighting factor to simplify the value function. The second
term is expressed as the sum of the squares of the control variation during the control horizon nu.

When solving the RMPC optimization problem, the system needs to satisfy the assumptions as
follows:
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Assumption 2. The control variable u, the output constraint variable p, and the external disturbances
w are maintained within the allowed range. That is,

U ≤ u(k + i) ≤ U, i = 0, 1, 2, · · · , nu − 1, (4.1)

P ≤ p(k + i) ≤ P, i = 1, 2, · · · , ny, (4.2)
w ≤ w(k + i) ≤ w, i = 0, 1, 2, · · · , ny − 1, (4.3)

where U,U, P(= Y), P(= Y),w and w denote the upper and lower bound vectors of the control variable,
the output constraint variable, and the external disturbances, respectively.

When the disturbances of the system are bounded, we can take the maximum value of the
disturbances to solve the minimum value of the optimization problem. As a result, the optimization
problem can be expressed in terms of the worst-case performance function on a finite horizon.

Problem 1.

min∆û maxŵ J(∆û, ŵ) =
∑ny

i=1 e(k + i)T e(k + i) +
∑nu−1

i=0 a∆u(k + i)T ∆u(k + i)
s.t. U ≤ u(k + i) ≤ U, i = 0, 1, 2, · · · , nu − 1,

P ≤ p(k + i) ≤ P, i = 1, 2, · · · , ny,

w ≤ w(k + i) ≤ w, i = 0, 1, 2, · · · , ny − 1.

The optimization variables of Problem 1 are ∆û and ŵ, but they are not explicit in the value function,
and the variables in the constraints are with respect to u, p and w. Therefore, it is necessary to unify
the variables of both value function and constraints as ∆û and ŵ. The transformations are shown as
follows:

(1) For value function

J(∆û, ŵ) =

ny∑
i=1

e(k + i)T e(k + i) +

nu−1∑
i=1

a∆u(k + i)T ∆u(k + i)

=(r − ŷ)T (r − ŷ) + a∆ûT ∆û

= (r − Er xa(k) − Hr∆û −Grŵ)T (r − Er xa(k) − Hr∆û −Grŵ) + a∆ûT ∆û

=∆ûT
(
Hr

T Hr + aI
)
∆û +

(
2xa

T Er
T Hr − 2rT Hr

)
∆û + ∆ûT

(
2Hr

TGr

)
ŵ−

ŵT
(
−GT

r Gr

)
ŵ −

(
2rTGr − 2xa

T Er
TGr

)
ŵ + J0

=
1
2

∆ûT W∆û + cT ∆û + ∆ûT Mŵ −
1
2

ŵT S ŵ − bT ŵ + J0

=
1
2

∆ûT W∆û + cT ∆û + ∆ûT Mŵ −
(
1
2

ŵT S ŵ + bT ŵ
)

+ J0,

where

W = 2Hr
T Hr + 2aI, (4.4)

c = 2HT
r Er xa − 2HT

r r, (4.5)
M = 2HT

r Gr, (4.6)
S = −2GT

r Gr, (4.7)
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b = 2GT
r r − 2GT

r Er xa, (4.8)
J0 = rT r − 2xT

a ET
r r + xT

a ET
r Er xa,

r =

[
r(k + 1)T r(k + 2)T · · · r

(
k + ny

)T
]T
.

Since J0 is a constant at the current time k, it can be ignored.
(2) For constraints
(i) Constraints for the variable u

U ≤ u(k + i) ≤ U, i = 0, 1, 2, · · · , nu − 1.

Let i = 0 and subtract u(k − 1) from both sides of the inequality simultaneously:

U − u(k − 1) ≤ ∆u(k) ≤ U − u(k − 1). (4.9)

Set k = k + 1, and then substitute u(k) − u(k − 1) = ∆u(k):

U − u(k − 1) ≤ ∆u(k + 1) + ∆u(k) ≤ U − u(k − 1).

Still let k = k + 1, and then substitute u(k) − u(k − 1) = ∆u(k):

U − u(k − 1) ≤ ∆u(k + 2) + ∆u(k + 1) + ∆u(k) ≤ U − u(k − 1).

Similarly, we can obtain:

U − u(k − 1) ≤ ∆u (k + nu − 1) + · · · + ∆u(k) ≤ U − u(k − 1).

Then, it can be expressed in matrix form:
I 0 · · · 0
I I · · · 0
...

...
. . .

...

I I · · · I




∆u(k)
∆u(k + 1)

...

∆u (k + nu − 1)

 ≤


I
I
...

I

 (U − u(k − 1)),

−


I 0 · · · 0
I I · · · 0
...

...
. . .

...

I I · · · I




∆u(k)
∆u(k + 1)

...

∆u (k + nu − 1)

 ≤ −


I
I
...

I

 (U − u(k − 1)).

Let

Cc =


I 0 · · · 0
I I · · · 0
...

...
. . .

...

I I · · · I

 , L =


I
I
...

I

 ,
du = L(U − u(k − 1)), du = −L(U − u(k − 1)). (4.10)
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Then the matrix form can be expressed as:

−du ≤ Cc∆û ≤ du.

(ii) Constraints for the variable p
According to the derivation process (3.2), the prediction equation for the output constraint variable

p can be obtained in the same way:

p̂ = Ecxa(k) + Hc∆û + Gcŵ, (4.11)

where

p̂ =


p(k + 1)
p(k + 2)

...

p
(
k + ny

)
 , Ec =


CdaAda

CdaAda
2

...

CdaAny

da

 ,Gc =


CdaF 0 · · · 0

CdaAdaF CdaF · · · 0
...

...
. . .

...

CdaAny−1
da F CdaAda

ny−2F · · · CdaF

 ,

Hc =


CdaBda Dda 0 · · ·

CdaAdaBda CdaBda Dda · · ·
...

...
...

...

CdaAda
ny−1Bda CdaAda

ny−2Bda CdaAda
ny−3Bda · · ·

 .
(4.12)

According to Eqs (4.2) and (4.12), we can obtain:

p̂min ,


P
P
...

P

 ≤ p̂ ≤


P
P
...

P

 , p̂max. (4.13)

Substitute Eq (4.11) into Eq (4.13),

p̂min − Ecxa(k) −Gcŵ ≤ Hc∆û ≤ p̂max − Ecxa(k) −Gcŵ,

it can be simplified as,
− dp ≤ Hc∆û ≤ dp, (4.14)

where dp = p̂max − Ecxa(k) −Gcŵ and dp = −p̂min + Ecxa(k) + Gcŵ.
In summary, the constraint can be denoted as:

l ,
 −du

−dp

 ≤ Ψ∆û ≤
[

du

dp

]
, h,

ŵmin ≤ ŵ ≤ ŵmax,

(4.15)

where Ψ =

[
Cc

Hc

]
.

(iii) Constraints for the variable w
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For w ≤ w(k + i) ≤ w, i = 0, 1, 2, · · · , ny − 1, the direct deformation yields:

ŵmin ,


w
w
...

w

 ≤ ŵ ≤


w
w
...

w

 , ŵmax. (4.16)

Based on the above transform, Problem 1 can be converted as:

Problem 2.
min∆û maxŵ J(∆û, ŵ) = θ1(∆û) + ∆ûT Mŵ − θ2(ŵ)

s.t. l ≤ Ψ∆û ≤ h,
ŵmin ≤ ŵ ≤ ŵmax,

(4.17)

where θ1(∆û) = 1
2∆ûT W∆û + cT ∆û and θ2(ŵ) = 1

2ŵT S ŵ + bT ŵ.

Solving optimization problems in the framework of variational inequalities can bring great
convenience [50, 51], therefore, we transform Problem 2 into the form of variational inequalities as
follows:

Problem 3. Solve for (∆û∗, ŵ∗) ∈ Λ such that it satisfies:[
∆û − ∆û∗

ŵ − ŵ∗

]T [
f (∆û∗) + Mŵ∗

g (ŵ∗) − MT ∆û∗

]
≥ 0,∀(∆û, ŵ) ∈ Λ, (4.18)

where

∇θ1(∆û) = W∆û + c
def
= f (∆û),

∇θ2(ŵ) = S ŵ + b
def
= g(ŵ),

{(∆û, ŵ) | l ≤ Ψ∆û ≤ h, ŵmin ≤ ŵ ≤ ŵmax}
def
= Λ.

It can effectively exploit the simplicity of the objective function by applying the PPA algorithm to
solve this problem. So, based on the study of linear constrained convex optimization problems in the
papers [22, 28], we use the PPA algorithm to solve Problem 3.

For given (∆ûv, ŵv), the subproblems of ∆û and ŵ can be denoted as:
˜̂wv

= Arg min
{
θ2(ŵ) − ŵT MT ∆ûv + s1

2 ‖ŵ − ŵv‖
2
| ŵmin ≤ ŵ ≤ ŵmax

}
,

∆˜̂uv
= Arg min

{
θ1(∆û) + r1

2

∥∥∥∥∆û −
[
∆ûv − 1

r1
M

(
2˜̂wv
− ŵv

)]∥∥∥∥2
| l ≤ Ψ∆û ≤ h

}
,

(4.19)

where r1 and s1 are constants.
Simplifying Eq (4.19), we can obtain the following problem.

Problem 4.
minŵ y1 = ŵT c1ŵ + d1ŵ
s.t. a1ŵ ≤ b1,

(4.20)

min∆û y2 = ∆ûT c2∆û + d2∆û
s.t. a2∆û ≤ b2,

(4.21)
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where

a1 =

[
I
−I

]
, b1 =

[
ŵmax

−ŵmin

]
,

a2 =

[
Ψ

−Ψ

]
, b2 =

[
h
−l

]
,

c1 = 0.5S + 0.5s1I, d1 = (∆ûv)T M + bT − s1 (ŵv)T ,

c2 = 0.5W + 0.5r1I, d2 = cT − r1eT
1 ,

e1 = ∆ûv −
1
r1

M
(
2˜̂wv
− ŵv

)
.

By solving Eq (4.19), we can obtain: ∆û − ∆˜̂uv

ŵ − ˜̂wv

T 
 f

(
∆˜̂uv)

+ M ˜̂wv

g
(˜̂wv)

− MT ∆˜̂uv

 +

 r1

(
∆ ˜̂uv − ∆ûv

)
+ M

(
˜̂wv − ŵv

)
MT

(
∆˜̂uv
− ∆ûv

)
+ s1

(˜̂wv
− ŵv

) 
 ≥ 0, ∀(∆û, ŵ) ∈ Λ.

(4.22)
It can be observed that the subproblems of Eq (4.19) are all quadratic programming problems with

high-dimension block matrices, and there is a solution order among the subproblems, so the Problem 4
is hard to solve. Considering that the ADMM algorithm has the property of distributed optimization,
we apply it to the rolling optimization of the 4 to increase the solution efficiency.

Firstly, we introduce the slack variable z1(> 0) to Problem 4:

minŵ y1 = ŵT c1ŵ + d1ŵ
s.t. a1ŵ + z1 = b1, (z1 > 0) .

Applying the ADMM algorithm yields the iteration equation:
ŵq+1 = arg min

{
Lβ

(
ŵ, zq

1, λ
q
1

)}
,

zq+1
1 = arg min

{
Lβ

(
ŵq+1, z1, λ

q
1

)
| z1 > 0

}
,

λ
q+1
1 = λ

q
1 + β

(
a1ŵq+1 + zq+1

1 − b1

)
,

(4.23)

where
(
ŵq, zq

1, λ
q
1

)
denotes the current iteration point. Lβ denotes the augmented Lagrangian function

and can be expressed as:

Lβ = (ŵ, z1, λ1) = ŵT c1ŵ + d1ŵ + λT
1 (a1ŵ + z1 − b1) +

β

2
‖a1ŵ + z1 − b1‖

2 . (4.24)

Simplifying Eq (4.23) yields:
ŵq+1 = −

dT
1 +aT

1 λ
q
1+βaT

1 (zq
1−b1)

2c1+βaT
1 a1

,

zq+1
1 = max

{
0,−λ

q
1+β(a1ŵq+1−b1)

β

}
,

λ
q+1
1 = λ

q
1 + β

(
a1ŵq+1 + zq+1

1 − b1

)
.

(4.25)

Iterate until the termination condition is satisfied. We can get the optimal solution ˜̂wv
of Eq (4.20).

Next, we substitute ˜̂wv
into the expression of e1. Similarly, the optimal solution ∆ ˜̂uv of Eq (4.21) can

be obtained. In conclusion, we can obtain the proximal point
(
∆˜̂uv

, ˜̂wv)
∈ Λ.
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After that, the next iteration point is updated to
(
∆ûv+1, ŵv+1

)
. The iteration equation can be denoted

as:  ∆ûv+1 = ∆ûv − γ
(
∆ûv − ∆ ˜̂uv

)
,

ŵv+1 = ŵv − γ
(
ŵv − ˜̂wv)

.
(4.26)

We determine whether the iterative process satisfies the accuracy requirements. The iteration
continues if it is not fulfilled. If it is met, the solution (∆û∗, ŵ∗) of Eq (4.18), which is also the optimal
solution (∆û, ŵ) of Eq (4.17), can be achieved.

According to the system model Eq (2.4), the state variable x(k + 1) and the output variable y(k + 1)
at time k + 1 can be obtained. We continue the procedures above until the whole simulation horizon
Simhor has been finished, where Simhor denotes the time range (Simhor ≤ ny ≤ nu) for solving the
actual problem. In Algorithm 1, the specific solution stages are presented.

Algorithm 1 RMPC-ADMM algorithm

Input: Ad, Bd, Cd, Dd,U, U, Y , Y , w, w, nu, ny, Simhor, a, r, ε > 0, β > 0, γ ∈ [1, 2) and q = 0.
1: Compute the matrices Cc, Ex, Hx, Er, Hr, Gx, Gr, W, M, S , ŵmin, ŵmax, Ec, Gc, Hc and Ψ as in

Eqs (3.3), (4.4), (4.6), (4.7), (4.9), (4.12), (4.15) and (4.16).
2: Initialization (for k = 0, 1, · · · ,Simhor).

(i) Given xa(0), x(0), u(−1), and let u = u(−1);
(ii) Compute y as in Eq (2.4);
(iii) Compute du, du, c and b as in Eqs (4.5), (4.8), (4.10) and (4.14).

3: Solve for the optimal control sequence ∆û(k).
(i) Given (∆ûv, ŵv);
(ii) Solve ˜̂wv

: Given the initial point
(
ŵq, zq

1, λ
q
1

)
, obtain

(
ŵq+1, zq+1

1 , λ
q+1
1

)
by solving Eq (4.25). If

the termination condition is satisfied, then ˜̂wv = ŵq+1. Otherwise, let ŵq = ŵq+1, zq
1 = zq+1

1 ,
λ

q
1 = λ

q+1
1 ;

(iii) Solve ∆˜̂uv
: Substitute ˜̂wv

into dp, dp and e1. Calculate l and h as in Eq (4.15). If

max
(
max

(
abs

(
∆ûv − ∆˜̂uv))

,max
(
abs

(
ŵv − ˜̂wv)))

≥ ε is satisfied, then the new iteration point

is
(
∆ûv+1, ŵv+1

)
. Otherwise ∆û(k) = ∆˜̂uv

.
4: Compute the optimal control variable u(k) at the current time k by taking the first components of

∆û(k) and ŵ respectively.
5: Calculate x(k + 1), y(k + 1) and xa(k + 1) as in Eq (2.4). Update variables u =

[
u u(k)

]
and

y =
[

y y(k + 1)
]
.

6: Let k = k + 1 and go to step (3-iii) until the whole simulation horizon Simhor is finished.

5. Simulation example

The simulation example studies the CMAPSS-40k turbofan aero-engine in ground idling. We want
to reach the required fan speed response ∆N f = 100r/min in the shortest time possible when the
control variable and the output constraint variable are kept within the permitted range. For the sake
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of simplicity, we choose ∆N f = 100r/min, nu = 3, ny = 7, Simhor = 30. The remaining values of
variables(Ad, Bd, Cd, Dd,U, U, Y , Y , w, w) are all consistent with the ones used in [4].

5.1. Comparison of the results of MPC-ADMM algorithm and RMPC-ADMM algorithm

To prove the stability of the improved algorithm, we solve the two problems with and without
disturbances while keeping the common parameter values constant (β = 2.5, γ = 1.5, a = 0.01).

(a) Comparison of control variables with and without disturbances (b) Comparison of output response variables with and without
disturbances

(c) Local diagram of ∆N f with and without disturbances (d) Local diagram of ∆SmHPC with and without disturbances

Figure 1. Results of variables for two control systems with and without disturbances.

In Figure 1(a) and 1(b), the RMPC system can reach the target tracking value when the constraints
are satisfied. Furthermore, there is little difference in the fluctuation of the two system variables. In
Figure 1(c), both systems are almost approaching the specified fan speed response value at the same
time. The difference in surge margin and numerical fluctuation between the two systems is small in
Figure 1(d). These results show that the system is always in stable condition. In conclusion, by using
the improved method to solve the RMPC problem, the system can reach the target value rapidly and
steadily. Section 5.1 illustrates the robustness of the RMPC-ADMM algorithm.

5.2. Comparison of the results of RMPC-QP algorithm and RMPC-ADMM algorithm

In this section, to prove the effectiveness of the RMPC-ADMM algorithm, we calculate the
same RMPC problem by using the QP algorithm (interior point method) and the ADMM algorithm,
respectively. The prediction horizon ny and the control horizon nu may affect the predictive control
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performance. Too small ny may result in failure to satisfy stability and constraints [52], while too large
may affect the dynamic characteristics [53, 54]. So we will discuss it in two cases.
Case 1. nu = ny.

Firstly, we take nu = ny ≤ 15. The results are shown in Table 1.

Table 1. Solution times of the two algorithms (nu = ny ≤ 15).

Number Control horizon nu Prediction horizon ny ADMM/sec QP/sec
1 6 6 0.8924 4.3579
2 7 7 1.0174 5.2839
3 8 8 1.0187 5.7235
4 9 9 1.8554 6.0751
5 10 10 2.9395 6.7447
6 11 11 3.4386 7.2998
7 12 12 3.6307 8.164
8 13 13 3.8529 9.9916
9 14 14 4.5728 13.0046
10 15 15 4.9668 14.4309

As can be seen in Table 1, the ADMM algorithm can reduce the solution time by more than 50%
when nu = ny ≤ 15. This is because the ADMM algorithm keeps the KKT coefficient matrix and
penalty parameters fixed during the iterations. Therefore, the ADMM algorithm needs to calculate the
matrix decomposition only once in each iteration. In contrast, the interior-point method requires the
inverse or decomposition of the KKT matrix in each iteration. Assuming that the solution requires M
iterations, the matrix decomposition time takes t1, and the KKT system solution back takes t2, then the
solution time of the ADMM algorithm takes t1 + Mt2, and the solution time of the interior point method
takes M(t1 + t2). In summary, as compared to the interior-point, the ADMM algorithm applied in this
paper reduces the computational effort and improves the real-time performance.

Next, we further prove the effectiveness of the improved algorithm by computing the case nu =

ny > 15, and the results are shown in Table 2.

Table 2. Solution time for two algorithms (nu = ny > 15).

Number Control horizon nu Prediction horizon ny ADMM/sec QP/sec
1 25 25 0.8924 4.3579
2 26 26 1.0174 5.2839
3 27 27 1.0187 5.7235
4 28 28 1.8554 6.0751
5 29 29 2.9395 6.7447

Case 2. nu , ny.
This section proves that the improved algorithm still has good results when nu , ny. We assume

nu = 1
2ny, and the results are shown in Table 3.
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Table 3. Solution times of the two algorithms (nu , ny).

Number Control horizon nu Prediction horizon ny ADMM/sec QP/sec
1 8 16 0.8924 4.3579
2 9 18 1.0174 5.2839
3 10 20 1.0187 5.7235
4 11 22 1.8554 6.0751
5 12 24 2.9395 6.7447
6 13 26 3.4386 7.2998
7 14 28 3.6307 8.164
8 15 30 3.8529 9.9916
9 16 32 4.5728 13.0046
10 17 34 4.9668 14.4309

6. Conclusions

In this paper, we aim to solve a practical optimization problem quickly and stably. Considering
that the control system in the practical problem is always uncertain, this uncertainty is divided into
external uncertainty (i.e., external disturbances) and internal uncertainty (e.g., measurement error,
parameter estimation error, model mismatch, etc.). As a result, we introduce the external disturbance
w(k) (which is also a general method) and obtain the RMPC problem in order to solve the practical
problem accurately.

We study the RMPC problem for turbofan aero-engines. We take the original optimization problem
as an entry point and transform it into the variational inequality. The PPA algorithm, the ADMM
algorithm, the splitting contraction algorithm, and the projection contraction algorithm can all solve
the variational inequality problem, the first three of which are known to have simple mechanisms
and can be used with great importance in the engineering field and related disciplines. We use the
PPA algorithm to transform it into problem that is applicable for the ADMM algorithm to solve.
Finally, the ADMM algorithm is applied to the rolling optimization to improve its effectiveness. The
application of the RMPC-ADMM algorithm to the ground idling example demonstrates that the system
can still obtain the objective value while maintaining stability. Furthermore, the time it takes to solve
a problem is cut in half. The research has implications for turbofan aero-engine control optimization,
and further work has to be done to increase the solution efficiency. In general, it is easier to solve the
variational inequality problem using the projection contraction algorithm. However, due to the high
dimensionality of this practical problem, the solution is not satisfactory. In our subsequent research,
we will try to solve the problem using this algorithm. Meanwhile, we will concentrate our efforts on
improving the classical ADMM algorithm and increasing its solution efficiency.
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