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1. Introduction

In 1922, Banach proved his famous result known as the Banach contraction principle, which is a
simple and powerful result with a wide range of applications [12]. Many generalizations of Banach
contraction principle can be seen in the literature, see e.g., [5, 9, 16, 17, 19, 21–24].

Consider the kth order nonlinear difference equation

xn = f (xn−1, xn−2, . . . , xn−k), n = k, k + 1, . . . (1.1)

with initial values x0, . . . , xk−1 ∈ X, where k ≥ 1 is a positive integer and f : Xk → X. This difference
equation can be discussed with the perspective of fixed point theory by considering the fact that x∗ is a
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fixed point of f if and only if it is the solution of (1.1) exist, that is,

x∗ = f (x∗, x∗, . . . , x∗).

The first step in this direction is taken by Preŝić in 1965 by establishing a generalization of the
Banach contraction principle in the following manner:

Theorem 1.1. [28] Let (X, d) be a complete metric space. Given k ≥ 1 a positive integer and f :
Xk → X. Assume also that

d( f (x0, . . . , xk−1), f (x1, . . . xk)) ≤
k∑

i=0

ηid(xi−1, xi), ∀ x0, . . . , xk−1 ∈ X,

where η1, η2, . . . , ηk are positive constants such that
k∑

i=1

ηi ∈ (0, 1). Then there exists a unique x∗ ∈ X

such that x∗ = f (x∗, x∗, . . . x∗), that is, f has a unique fixed point x∗ ∈ X. Moreover, for any initial
values x0, . . . , xk−1 ∈ X the iterative sequence given by (6.1) converges to x∗.

Note that for k = 1, the map f : X → X becomes a self map and hence the above Theorem is the
generalization of Banach contraction principle (for contractions defined on Xk). In [14], Theorem 1.1
is generalized by Ćirić and Preŝić in the following way:

Theorem 1.2. [14] Let (X, d) be a complete metric space. Given k ≥ 1 a positive integer and f :
Xk → X. Suppose that

d( f (x0, . . . , xk−1), f (x1, . . . xk)) ≤ µmax {d(x0, x1), . . . , d(xk−1, xk)} , ∀ x0, . . . , xk−1 ∈ X,

where µ ∈ (0, 1) is a constant. Then there exists a unique x∗ ∈ X such that x∗ = f (x∗, x∗, . . . x∗), that
is, f has a unique fixed point x∗ ∈ X. Moreover, for any initial values x0, . . . , xk−1 ∈ X, the iterative
sequence given by (6.1) converges to x∗.

Note that a fixed point of the operator f : Xk → X can be considered as the equilibrium point
of the kth order nonlinear difference Eq (6.1). Therefore, the above theorems can be taken as a tool
to ensure the existence and uniqueness of the kth order nonlinear difference equation. Some other
generalizations are obtained by Pâcurar in [13, 27]. Recently, Ali et al. [3] studied the existence of
an approximate solution of the equation x = f (x, x, . . . , x), where f : Hk → K. This equation has a
solution if H and K have some common element, but has no solution otherwise. Hence in that case we
can only get the approximate solution of the equation. The approximate solution of x = f (x, x, . . . , x),
with the error term d(H,K) is called a best proximity point of f : Hk → K. The classical result of
approximation theory given by Fan [18] is a great source of inspiration for various researchers in study
of approximate solutions of x = f (x). This result is given as follows:

Theorem 1.3. Let H be a nonempty compact convex subset of a normed linear space X and f : H → X
be a continuous function. Then there exists x ∈ X such that

‖x − f (x)‖ = inf
a∈A
{‖ f (x) − a‖}.
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Recently Altun et al. [7, 8] investigated certain best proximity points results on KW-type nonlinear
contractions and fractals. Furthermore Ali et al. [3] used the metric space (X, d) endowed with a graph
and proved some best proximity results. These results are the generalizations of already existing results
which are stated earlier.

Czerwik [15] gave a generalization of the famous Banach fixed point theorem in so-called b-metric
spaces. For some important results on b-metric spaces, we refer the reader to [2, 4, 10, 11, 25, 26].

The purpose of present research is to extend the results of Ali et al. [3], in the setting of b-metric
spaces equipped with an order. Hence, many results in literature become special cases of results
presented in this article. Our paper also contains some examples for the validation of presented results
and an application for further authentication.

2. Preliminaries

We include the following definitions before giving the main results.

Definition 2.1. [6] Consider a metric space (X, d). Suppose H and K are two non-empty subsets of X.
An element x ∈ H is said to be a best proximity point of the mapping T : H → K if

d(x,T x) = d(H,K).

Remark 2.1. From the above definition, it is obvious that a best proximity point reduces to a fixed
point for self-mappings.

Basha and Shahzad [29] have presented the following definition:

Definition 2.2. Consider a complete metric space (X, d). Suppose that H,K are non empty subsets of
X. If each sequence {kn} in K with d(h, kn) → d(h,K), for some h ∈ H, has a convergent subsequence.
Then, K is called approximately compact with respect to H.

Ali et al. [3] introduced path admissible mappings as follows:

Definition 2.3. Suppose that H,K are nonempty subsets of a metric space (X, d) endowed with a binary
relation R. Then T : H × H → K is said to be path admissible, if

d(w1,T (h1, h2)) = d(H,K),
d(w2,T (h2, h3)) = d(H,K),
h1Ph3,

⇒ w1Rw2

where h1, h2, h3,w1,w2 ∈ H.
Here, by w1Rw2 we mean that w1 and w2 are related with each other under the binary relation R and

h1Ph3, we mean that for above mentioned h1, h2, h3 ∈ X we have h1Rh2 and h2Rh3.

Definition 2.4. Suppose H,K are non empty subsets of a metric space (X, d). An element h∗ ∈ H is
said to be a best proximity point of T : H × H → K if

d(h∗,T (h∗, h∗)) = d(H,K), (2.1)

where
d(H,K) = inf{d(h, k) : h ∈ H, k ∈ K}.
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3. Main results

First, we recall some definitions which are used in the sequel. Let (X, db) be a b-metric space with
coefficient b ≥ 1. Suppose that H and K are two nonempty subsets of X, then define the following
sets:

db(H,K) = inf{db(h, k) : h ∈ H, k ∈ K},
db(x0,K) = inf {db(x0, k) : k ∈ K},

H0 = {h ∈ H : db(h, k) = db(H,K) for some k ∈ K},
K0 = {k ∈ K : db(h, k) = db(H,K) for some h ∈ H}.

Definition 3.1. Consider a b-metric space (X, db) with coefficient b ≥ 1. Suppose that H and K are
nonempty subsets of X. The element h∗ ∈ H is said to be a best proximity point of the mapping
T : H → K if

db(h∗,T (h∗)) = db(H,K). (3.1)

Definition 3.2. Consider a b-metric space (X, db) with coefficient b ≥ 1 and let H and K be two
nonempty subsets of X. Then K is said to be approximately compact with respect to H, if each sequence
{kn} ⊆ K with db(h, kn)→ db(h,K) for some h ∈ H, has a convergent subsequence.

Definition 3.3. Let (X, db) be a b-metric space with coefficient b ≥ 1 and R is the binary relation on
X. Suppose H, K are nonempty subsets of X. A mapping T : H × H → K is called path admissible,
whenever ∀ h1, h2, h3,w1,w2 ∈ H we have

db(w1,T (h1, h2)) = db(H,K),
db(w2,T (h2, h3)) = db(H,K),
h1Ph3,

⇒ w1Rw2,

here, by w1Rw2 mean that w1 and w2 are related with each other under the binary relation R and h1Ph3

we mean that for above mentioned h1, h2, h3 ∈ H, we have h1Rh2 and h2Rh3.

Theorem 3.1. Suppose that (X, db) is a complete b-metric space with coefficient b ≥ 1 endowed with
a binary relation R, where db is a continuous functional. Assume that H and K are nonempty closed
subsets of X. Consider a mapping T : H × H → K such that for each h1, h2, h3,w1,w2 ∈ H with h1Ph3

that is h1Rh2, h2Rh3 and db(w1,T (h1, h2)) = db(H,K) = db(w2,T (h2, h3)), we have:

db(w1,w2) ≤ Γ max {db(h1, h2), db(h2, h3)} , (3.2)

where Γ ∈ [0, 1) such that bΓ < 1. Furthermore, suppose that the subsequent conditions are true:

(1) T is path admissible;
(2) ∃ h0, h1, h2 ∈ H which satisfy db(h2,T (h0, h1)) = db(H,K) and h0Ph2;
(3) T (H × H0) ⊆ K0;
(4) K is approximately compact with respect to H;
(5) If {h j} ⊆ X such that h jPh j+2 for each j ∈ N and h j → x∗ as j→ ∞, then h jRx∗ for all j ∈ N and

x∗Rx∗.
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Then T has a best proximity point.

Proof. Using condition (ii), we have h0, h1, h2 ∈ H satisfying

db(h2,T (h0, h1) = db(H,K), and h0Ph2,

that is, h0Rh1, h1Rh2. From condition (iv), T (h1, h2) ∈ K0, and by the definition of K0, we have h3 ∈ H
which satisfies

db(h3,T (h1, h2)) = db(H,K).

Due to condition (i), we have h2Rh3. Hence, h1Ph3. By continuing same process, we build a sequence
{h j}≥2 ⊆ H which satisfies

db(h j+1,T (h j−1, h j)) = db(H,K) for each j ∈ N, (3.3)

and h j−1Ph j+1. That is, h j−1Rh j, h jRh j+1 ∀ j ∈ N. From (3.2), we have

db(h j, h j+1) ≤ Γ max{db(h j−2, h j−1), db(h j−1, h j)} for each j = 2, 3, 4, . . . . (3.4)

For convenience, we take c j = db(h j, h j+1) for each j ∈ N ∪ {0}. Then we can rewrite (3.4) as

c j ≤ Γ max{c j−2, c j−1} for each j = 2, 3, 4, . . . .

By using induction, we can get cn−1 ≤ Zψn where ψ = Γ1/2. It is obviously true for j = 0, 1 by
considering

Z = max{c0/ψ, c1/ψ
2},

since Z is max{c0/ψ, c1/ψ
2}, one writes

c0 ≤ Zψ and c1 ≤ Zψ2.

We obtain

c2 ≤ Γ max {c0, c1} ≤ Γ max{Zψ,Zψ2 } ≤ ΓZψ = Zψ3,

...

c j ≤ Γ max{c j−1, c j−2} ≤ Γ max{Zψ j,Zψ j−1} ≤ ΓZψ j−1

=Zψ j+1.

Therefore, we have
c j−1 ≤ Zψ j ∀ j ∈ N.

Hence,
db(h j−1, h j) ≤ Zψ j ∀ j ∈ N. (3.5)
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By using triangle inequality, we get

db(h j, h j+q) ≤ b{db(h j, h j+1) + db(h j+1, h j+q)},
= bdb(h j, h j+1) + bdb(h j+1, h j+q),
≤ bdb(h j, h j+1) + bb{db(h j+1, h j+2) + db(h j+2, h j+q)},
= bdb(h j, h j+1) + b2{db(h j+1, h j+2) + db(h j+2, h j+q)},
= bdb(h j, h j+1) + b2db(h j+1, h j+2) + b2db(h j+2, h j+q),
≤ bdb(h j, h j+1) + b2db(h j+1, h j+2) + · · · + bqdb(h j+q−1, h j+q),
≤ bZψ j+1 + b2Zψ j+2 + b3Zψ j+3 + · · · + bqZψ j+q,

≤ bψ j+1{1 + bψ + b2ψ2 + · · · + bq−1ψq−1}Z,

≤
1 − (bψ)q

1 − bψ
Zbψ j+1,

<
bψ j+1

1 − bψ
Z.

Thus, {h j} is a Cauchy sequence in H, so there is an element h∗ ∈ H such that h j → h∗ and h j ∈ H0

which satisfies
db(H,K) = db(h∗,T (h j−1, h j)),

that is, h j−1Rh∗.
Furthermore, we have to prove that db(h∗,T (h j−1, h j))→ db(h∗,K) as j→ ∞. Consider,

db(h∗,K) ≤ db(h∗,T (h j−1, h j))
= lim

n→∞
db(h j+1,T (h j−1, h j))

= db(H,K)
≤ db(h∗,K)

Therefore,
db(h∗,T (h j−1, h j))→ db(h∗,K) as j→ ∞ (3.6)

Since T is approximately compact with respect to H, the sequence {T (h j−1, h j)} has a subsequence
{T (h jm−1 , h jm)}, which converges to a point k∗ ∈ K. That is,

db(h∗, k∗) = lim
m→∞

db(h jm+1 ,T (h jm−1 , h jm) = db(H,K).

Hence, h∗ ∈ H0. As we know T (h j, h∗) ∈ K0, we have g ∈ H satisfying

db(g,T (h j, h∗)) = db(H,K). (3.7)

By assumption (vi), we have h jRh∗ for all j ∈ N. Thus, we have

db(h∗,T (h j−1, h j)) = db(H,K), and db(g,T (h j, h∗)) = db(H,K) ∀ j ∈ N.

Hence, we get h j−1Ph∗. Also, h j−1Rh j, and h jRh∗ for all j ∈ N. Hence, from (6.2),

db(h j+1, g) ≤ Γ max{db(h j−1, h j), db(h j, h∗)} for each j = 2, 3, 4, . . . .
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Taking j→ ∞, we obtain db(h∗, g) = 0, that is g = h∗. Putting g = h∗ in (3.7), we have

db(h∗,T (h j, h∗)) = db(H,K).

That is, h∗Rh∗. Furthermore, we know that T (h∗, h∗) ∈ K0, and we have an element t ∈ H which
satisfies

db(t,T (h∗, h∗)) = db(H,K). (3.8)

Condition (vi) implies that h∗Rh∗. Hence,

db(t,T (h∗, h∗)) = db(H,K), and db(h∗,T (h j, h∗)) = db(H,K) for each j ∈ N.

Therefore, h jPh∗ for each j ∈ N, that is, h jRh∗, h∗Rh∗ for each j ∈ N. Thus, from (3.2),

db(h∗, t) ≤ Γ max{db(h j, h∗), db(h∗, h∗)} for each j ∈ N,

Taking limit as j→ ∞, we have db(h∗, t) = 0, that is t = h∗. Putting t = h∗ in (3.8), we have

db(h∗,T (h∗, h∗)) = db(H,K).

�

Theorem 3.2. Let H and K be nonempty subsets of a complete b-metric space (X, db) endowed with
binary relation R, where b-metric is a continuous functional. Consider a mapping T : H × H → K
such that for each h1, h2, h3,w1,w2 ∈ H with h1Ph3, that is, h1Rh2, h2Rh3 and
db(w1,T (h1, h2)) = db(H,K) = db(w2,T (h2, h3)), we have

db(h3,w2) ≤ Γ max {db(h1, h2), db(h2,w1)} , (3.9)

where Γ ∈ [0, 1) such that bΓ < 1.
Furthermore, suppose that the subsequent conditions are true

(1) T is path admissible;
(2) ∃ h0, h1, h2 ∈ H which satisfy db(h2,T (h0, h1)) = db(H,K) and h0Ph2;
(3) T (H × H0) ⊆ K0;
(4) K is approximately compact with respect to H;
(5) When {h j} ⊆ X such that h jPh j+2 for each j ∈ N and h j → x∗ as n→ ∞, then h jRx∗ for all j ∈ N

and x∗Rx∗.

Then there exists a point h∗ ∈ H which satisfies

db(h∗,T (h∗, h∗)) = db(H,K),

that is, T has a best proximity point.

Proof. Proceeding as in Theorem 3.1, we obtain a sequence {h j : j ∈ N − 1} in H0 satisfying

db(h j+1,T (h j−1, h j)) = db(H,K) for each j ∈ N,
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and h j−1Ph j+1, that is h j−1Rh j, h jRh j+1 ∀ j ∈ N.
From (3.9), we have

db(h j, h j+1) ≤ Γ max{db(h j−2, h j−1), db(h j−1, h j)} for each j = 2, 3, 4, . . . .

Following the proof of Theorem 3.1 and above inequality , {h j} is a Cauchy sequence in H such that
h j → h∗ and h∗ ∈ H0. As T (h j, h∗) ∈ K0, we have w ∈ H satisfying

db(w,T (h j, h∗)) = db(H,K). (3.10)

From assumption (vi), we get h jRh∗ for all j ∈ N. We already have

db(h∗,T (h j−1, h j)) = db(H,K).

Thus, we get h j−1Ph∗, that is h j−1Rh j and h jRh∗ for all j ∈ N. Hence, from (3.9), we get

db(h∗,w) ≤ Γ max{db(h j−1, h j), db(h j, h j+1)} for each j ∈ N.

Taking limit as j→ ∞ in above inequality, we get db(h∗,w) = 0, that is, h∗ = w.Using w = h∗ in (3.10),

db(h∗,T (h j, h∗)) = db(H,K).

Further, note that T (h∗, h∗) ∈ K0, and there is q ∈ H which satisfies

db(q,T (h∗, h∗)) = db(H,K).

Hypothesis (vi) implies h∗Rh∗. Hence, we have

db(h∗,T (h j, h∗)) = db(H,K), and db(q,T (h∗, h∗)) = db(H,K),

and h jPh∗, that is h jRh∗ and h∗Rh∗.

Thus, from (3.9),
db(h∗, q) ≤ Γ max {db(h j, h∗), d(h∗, h∗)} for each j ∈ N.

Letting j→ ∞, we have q = h∗. Thus, we have

db(h∗,T (h∗, h∗)) = db(H,K).

�

Example 3.1. Consider X = R2 endowed with the b-metric given by

db((s1, s2), (c1, c2)) = |s1 − c1|
2 + |s2 − c2|

2 for each s = (s1, s2), c = (c1, c2) ∈ R2.

Define a binary relation R on R2 as sRc if and only if s1 ≤ c1 and s2 ≤ c2. Take

H = {(0, s) : s ∈ [−2, 2]}, and K = {(1, s) : s ∈ [−2, 2]}.

Define
T : H × H → K, T ((0, s), (0, c)) = (1, c) ∀ (0, s), (0, c) ∈ H.
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Let h1 = (0, h1), h2 = (0, h2), h3 = (0, h3) ∈ [−2, 2]. To find w1 and w2, we have

db(w1,T (h1, h2)) = db(H,K) = db(w2,T (h2, h3)). (3.11)

For this, consider

db(H,K) = inf{db(h, k) : h ∈ H, k ∈ K},

= inf{db((0, s), (1, s)) : where s ∈ [−2, 2]},
= inf{| 0 − 1 |2 + | s − s |2: where s ∈ [−2, 2]},
=1.

That is,
db(H,K) = 1. (3.12)

db(w1,T (h1, h2) = db((0,w1),T ((0, h1), (0, h2))),
= db((0,w1), (1, h2)),
=| 0 − 1 |2 + | w1 − h2 |

2,

= 1 + (w1 − h2)2.

Then
db(w1,T (h1, h2)) = 1 + (w1 − h2)2. (3.13)

Using (3.12) and (3.13) in (3.11), we obtain

1 = 1 + (w1 − h2)2.

That is,
w1 = h2.

Similarly,

db(w2,T (h2, h3)) = db((0,w2),T ((0, h2), (0, h3))),
= db((0,w2), (1, h3)),
=| 0 − 1 |2 + | w2 − h3 |

2,

= 1 + (w2 − h3)2.

From (3.11), we obtain
w2 = h3.

w1 = (0,w1) = (0, h2), w2 = (0,w2) = (0, h3).

Thus, h1, h2, h3,w1,w2 ∈ H, with h1Ph3.
Also, we have

db(h3,w2) ≤ Γ max{db(h1, h2), d(h2,w1)}, (3.14)

where

db(h3,w2) = db((0, h3), (0,w2)),
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=| 0 − 0 | + | h3 − w2 |
2,

=| h3 − h3 |
2,

= 0.

Using above equation in (3.14), we get

db(h3,w2) = 0 = ψmax{db(h1, h2), db(h2,w1)}.

Here, we say ψ = Γ
1
2 = 1

2 ∈ [0, 1). Now, we will prove condition (i) of Theorem 3.2. Consider

h1 = (0, h1), h2 = (0, h2), h3 = (0, h3) ∈ H such that h1Ph3.

Since w1 = (0,w1) = (0, h2) and w2 = (0,w2) = (0, h3), we now prove

db((0,w1),T ((0, h1), (0, h2))) = db(H,K) and db(H,K) = db((0,w2),T ((0, h2), (0, h3))),

d(w1,T (h1, h2)) = db((0,w1),T ((0, h1), (0, h2))),
= db((0, h2), (1, h2)),
=| 0 − 1 |2 + | h2 − h2 |

2,

= 1 = db(H,K).

Similarly,

db(w2,T (h2, h3)) = db((0,w2),T ((0, h2), (0, h3))),
= db((0, h2), (1, h3)),
=| 0 − 1 |2 + | h3 − h3 |

2,

= 1 = db(H,K).

This implies that w1 R w2. Thus, T is path admissible. Now, we will prove condition (ii):

db(h2,T (h0, h1)) = db(H,K), and h0Ph2.

We need to consider
h1 = (0, 0), h2 = (0,

1
2

), h3 = (0,
5
8

) ∈ H,

such that

db((0,
5
8

),T ((0, 0), (0,
1
2

))) =db((0,
5
8

) − (1,
0 + 1

2 + 2
4

)),

= | (0 − 1 |2 + |
5
8
−

5
8
|2,

=1,
=db(H,K),

and (0, 0)P(0, 5
8 ). Moreover, assumption (v) holds, that is, h jPh j+2 for all j ∈ N, and h j → a as j→ ∞,

then h jRa for each j ∈ N and aRa. Therefore, all axioms are true. Hence, T has a best proximity point.
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Theorem 3.3. Let H and K be nonempty closed subsets of a complete b-metric space (X, db) with
coefficient b ≥ 1 endowed with a binary relation R, where the b-metric is a continuous functional.
Consider a mapping T : H × H → K such that for each h1, h2, h3,w1,w2 ∈ H with h1Ph3, that is,
h1Rh2, h2Rh3, and
db(w1,T (h1, h2)) = db(H,K) = db(w2,T (h2, h3)), we have

db(T (h2,w1),T (h3,w2)) ≤ Γ{db(T (h1, h2),T (h2, h3))}, (3.15)

where Γ ∈ [0, 1) such that bΓ < 1.
Furthermore, suppose that the subsequent conditions are true

(1) T is path admissible;
(2) ∃ h0, h1, h2 ∈ H which satisfy db(h2,T (h0, h1)) = db(H,K) and h0Ph2;
(3) T (H × H0) ⊆ K0;
(4) K is approximately compact with respect to H;
(5) if {h j} and {h j} are in X such that h j → h and h j → h, then T (h j, h j)→ T (h, h).

Then there exists a point h∗ ∈ H so that

db(h∗,T (h∗, h∗)) = db(H,K),

that is, T has a best proximity point.

Proof. By using a similar argument as in Theorem 3.1, we build a sequence {h j≥2} ⊆ H which satisfies

db(h j+1,T (h j−1, h j)) = db(H,K) ∀ j ∈ N,

and h j−1Ph j+1, that is, h j−1Rh j, h jRh j+1 ∀ j ∈ N.
From (3.15), we have

db(T (h j−1, h j),T (h j, h j+1)) ≤ Γ max{db(T (h j−2, h j−1)), db(T (h j−1, h j))} for each j = 2, 3, 4, . . . .

Inductively, we get

db(T (h j−1, h j),T (h j, h j+1)) ≤ Γ j−1 max{db(T (h0, h1), db(h1, h2))}.

By using triangle inequality and above inequality for each j ∈ N, we have

db(T (h j, h j+1),T (h j+1, h j+p)) ≤
j+p−1∑

i= j

db(T (hi, hi+1),T (hi+1, hi+2)).

This proves that T (h j−1, h j) is a Cauchy sequence in the closed subset K. Since X is complete, there
exists k∗ ∈ K such that T (h j−1, h j)→ k∗.

Moreover,

db(h∗,K) ≤ db(h∗,T (h j−1, h j))
= lim

n→∞
db(h j+1,T (h j−1, h j))
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= db(H,K)
≤ db(h∗,K).

Therefore, db(k∗, h j+1) → db(k∗,H) as j→ ∞ .
Using hypothesis (v), {h j} has a subsequence {h jl} that converges to an element h∗ ⊆ H such that

db(h∗,T (h∗, h∗)) = lim
l→∞

db(h jl+1 ,T (h jl−1 , h jl)) = db(H,K).

Then
db(h∗,T (h∗, h∗)) = db(H,K).

�

Theorem 3.4. Let H and K be closed nonempty subsets of a complete b-metric space (X, db) endowed
with a binary relation R where the b-metric is a continuous functional. Consider a mapping T :
H × H → K such that for each h1, h2, h3,w1,w2 ∈ H with h1Ph3, that is, h1Rh2 and h2Rh3, and
db(w1,T (h1, h2)) = db(H,K) = db(w2,T (h2, h3)), we have

db(T (h2,w1),T (h3,w2)) ≤ Γ max{db(T (h1, h2),T (h2, h3)), db(T (h2, h3),T (w1,w2))}, (3.16)

where Γ ∈ [0, 1) such that bΓ < 1.
Furthermore, suppose that the subsequent conditions are true:

(1) T is path admissible;
(2) ∃ h0, h1, h2 ∈ H which satisfy db(h2,T (h0, h1)) = db(H,K) and h0Ph2;
(3) T (H × H0) ⊆ K0;
(4) K is approximately compact with respect to H;
(5) if {h j}, {h j} in X such that h j → h and h j → h, then

T (h j, h j)→ T (h, h).

Then there exists a point h∗ ∈ H which satisfies

d(h∗,T (h∗, h∗)) = d(H,K),

that is, T has a best proximity point.

Proof. Using the assumptions, we can build a sequence {h j}≥2 in H0 which satisfies

db(h j+1,T (h j−1, h j)) = db(H,K) ∀ j ∈ N, (3.17)

and h j−1Ph j+1, that is, h j−1Rh j and h jRh j+1 for all j ∈ N. From (3.16), we have

db(T (h j−1, h j),T (h j, h j+1)) ≤ Γ max{db(T (h j−2, h j−1)),T (h j−1, h j)),
db(T (h j−1, h j),T (h j, h j+1))}

=db(T (h j−2, h j−1)),T (h j−1, h j)) for each j = 2, 3, . . . .

Therefore, we have

db(T j−1,T (h j) ≤ Γdb(T j−2,T j−1) for each j = 2, 3, 4, . . . .
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By using induction, we get

db(T j−1,T j) ≤Γ db(T j−2,T j−1),
≤Γ(Γ db(T j−3,T j−2)),
=Γ2db(T j−3,T j−2),
≤Γ2Γdb(T j−4,T j−3),
=Γ3db(T j−4,T j−3),
...

≤Γ j−1db(T1,T0) for j = 2, 3, 4, . . . .

Hence,
db(T j,T j+1) ≤ Γ jdb(T0,T1) for j = 1, 2, 3, . . . . (3.18)

By using triangle inequality,

db(T j,T j+p) ≤ b{db(T j,T j+1) + db(T j+1,T j+p)},
= bdb(T j,T j+1) + bdb(T j+1,T j+p),
≤ bdb(T j,T j+1) + bb{db(T j+1,T j+2) + db(T j+2T j+p)},
= bdb(T j,T j+1) + b2db(T j+1,T j+2) + b2db(T j+2T j+p),
≤ bdb(T j,T j+1) + b2db(T j+1,T j+2) + · · · + db(T j+p−1T j+p).

(3.19)

By using (3.18) in (3.19), we get

db(T j,T j+p) ≤ bΓ jdb(T0,T1) + b2Γ j+1db(T0,T1) + b3Γ j+2

db(T0,T1) + · · · + bpΓ j+p−1db(T0,T1),
=bΓ jdb(T0,T1)(1 + bΓ + b2Γ2 + · · · + bp−1Γp−1),

≤bΓ j+1db(T0,T1)
1 − (bΓ)p

1 − Γ
,

<bΓ j+1db(T0,T1)
1

1 − Γ
.

Letting j→ ∞ in above inequality, we have

lim
j→∞

db(T (h j,T j+1),T (h j+p, h j+p+1) ≤ 0.

That is,
lim
j→∞

db(T (h j, h j+1),T (h j+p, h j+p+1) = 0.

We get a Cauchy sequence T (h j−1, h j) in the closed subset K. Since X is complete, consider k∗ ∈ K
such that T (h j−1, h j)→ k∗. Moreover, Consider,

db(h∗,K) ≤ db(h∗,T (h j−1, h j))
= lim

n→∞
db(h j+1,T (h j−1, h j))
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= db(H,K)
≤ db(h∗,K).

Therefore, db(k∗, h j+1) → db(k∗,H) as j→ ∞ .
Condition (iv) implies, {h j} has a subsequence {h jl} that converges to an element h∗ ∈ H such that

db(h∗,T (h∗, h∗)) = lim
l→∞

db(h jl+1 ,T (h jl−1 , h jl)) = db(H,K).

Hence,
db(h∗,T (h∗, h∗)) = db(H,K).

�

Theorem 3.5. Consider a complete b-metric space (X, db) with a coefficient b ≥ 1 endowed with a
binary relation R, where b-metric is continuous. Suppose that H and K are non empty closed subsets
of X. Consider a mapping T : H × H → K such that for each h1, h2, h3,w1,w2 ∈ H with h1Ph3 such
that h1Rh2, and h2Rh3, and db(w1,T (h1, h2)) = db(H,K) = db(w2,T (h2, h3)), we have

db(T (h2, h3),T (w1,w2)) ≤ Γ max{db(T (h1, h2),T (h2, h3)), db(T (h2,w1),T (h3,w2))},

where Γ ∈ [0, 1) with bΓ < 1.
Furthermore, suppose that the subsequent conditions are true:

(1) T is path admissible;
(2) There exist h0, h1, h2 ∈ H which satisfy db(h2,T (h0, h1)) = db(H,K) and h0Ph2;
(3) T (H × H0) ⊆ K0;
(4) K is approximately compact with respect to H;
(5) When {h j}, {h j} ⊆ X such that h j → h and h j → h, then T (h j, h j)→ T (h, h).

Then there exists a point h∗ ∈ H which satisfies

d(h∗,T (h∗, h∗)) = d(H,K),

that is, T has a best proximity point.

Proof. This theorem can be proved by using similar argument as in Theorem 3.4. �

4. On metric spaces endowed with a graph

In order to generalize the idea of partial ordering in metric spaces and partially ordered metric
spaces, Jachymski [20] in 2008 has introduced the idea of a metric space endowed with a graph. This
section is about a consequence of our results in the setting of metric spaces endowed with a graph.

Theorem 4.1. Let (X, db) be a complete b-metric space endowed with a graph G, where db is a
continuous functional. Suppose that H and K are non empty closed subsets of X. Consider a mapping
T : H × H → K such that for each h1, h2, h3,w1,w2 ∈ H with h1Ph3, that is, h1Rh2, h2Rh3 and
db(w1,T (h1, h2)) = db(H,K) = db(w2,T (h2, h3)), we have either

db(w1,w2) ≤ Γ max {db(h1, h2), db(h2, h3)} ,

AIMS Mathematics Volume 7, Issue 6, 10711–10730.



10725

or

db(h3,w2) ≤ Γ max {db(h1, h2), db(h2,w1)} ,

where Γ ∈ [0, 1) such that bΓ < 1. Furthermore, assume that all the conditions of Theorem 3.1 are
satisfied. Then T has a best proximity point.

Proof. It follows by using the same procedure as in Theorems 3.1 and 3.2. �

Theorem 4.2. Let H and K be closed nonempty subsets of a complete b-metric space (X, db) endowed
with a graph G = (V(G), E) where the b-metric is a continuous functional. Consider a mapping
T : H × H → K such that for each h1, h2, h3,w1,w2 ∈ H with h1Ph3, that is, (h1, h2) ∈ E and
(h2, h3) ∈ E, and db(w1,T (h1, h2)) = db(H,K) = db(w2,T (h2, h3)), we have either

db(T (h2,w1),T (h3,w2)) ≤ Γ{db(T (h1, h2),T (h2, h3))},

or
db(T (h2,w1),T (h3,w2)) ≤ Γ max{db(T (h1, h2),T (h2, h3)), db(T (h2, h3),T (w1,w2))},

or
db(T (h2, h3),T (w1,w2)) ≤ Γ max{db(T (h1, h2),T (h2, h3)), db(T (h2,w1),T (h3,w2))},

where Γ ∈ [0, 1) such that bΓ < 1. Furthermore, assume that all the conditions of Theorem 3.3 are
satisfied. Then T has a best proximity point.

Proof. It follows by using the same arguments given in Theorem 3.3, Theorem 3.4 and refthm5a. �

5. Application

Taking A = B = X in Theorems 4.1 and 4.2, we obtain the following results, which guarantee the
existence of a fixed point of the mapping T : X × X → X.

Theorem 5.1. Let (X, db) be a complete b-metric space endowed with a graph G, where db is a
continuous functional. Let T : X × X → X be a mapping such that for each h1, h2, h3,w1,w2 ∈ X with
h1Ph3 that is (h1, h2), (h2, h3) ∈ E satisfies one of the following inequalities

db(w1,w2) ≤ Γ max {db(h1, h2), db(h2, h3)} ,

or

db(h3,w2) ≤ Γ max {db(h1, h2), db(h2,w1)} ,

where Γ ∈ [0, 1) such that bΓ < 1. Furthermore, assume that the following conditions are satisfied:

(1) T is path admissible;
(2) There exist a0, a1, a3 ∈ X with a3 = T (a0, a1) and a0Pa3;
(3) If {h j} ⊆ X such that h jPh j+2 for each j ∈ N and h j → x∗ as j→ ∞, then (h j, x∗) ∈ E for all j ∈ N

and (x∗, x∗) ∈ E.
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Then T has a fixed point in X.

Theorem 5.2. Let (X, db) be a complete b-metric space endowed with a graph G, where db is a
continuous functional. Let T : X × X → X be a mapping such that for each h1, h2, h3,w1,w2 ∈ X with
h1Ph3 that is (h1, h2), (h2, h3) ∈ E satisfies one of the following inequalities:

db(T (h2,w1),T (h3,w2)) ≤ Γ{db(T (h1, h2),T (h2, h3))},

db(T (h2,w1),T (h3,w2)) ≤ Γ max{db(T (h1, h2),T (h2, h3)), db(T (h2, h3),T (w1,w2))},

db(T (h2, h3),T (w1,w2)) ≤ Γ max{db(T (h1, h2),T (h2, h3)), db(T (h2,w1),T (h3,w2))},

where Γ ∈ [0, 1) such that bΓ < 1. Furthermore, assume that the following conditions are satisfied:

(1) T is path admissible;
(2) There exist a0, a1, a3 ∈ X with a3 = T (a0, a1) and a0Pa3;
(3) T is continuous with respect to each coordinate.

Then, T has a fixed point in X.

Suppose that G = (V, E) where V = X and E = X × X, then Theorems 5.1 and 5.2 give rise to the
following corollaries, respectively.

Corollary 5.1. Let (X, db) be a complete b-metric space, where db is a continuous functional and
consider T : X × X → X a mapping such that for each h1, h2, h3,w1,w2 ∈ X, we have either

db(w1,w2) ≤ Γ max {db(h1, h2), db(h2, h3)} ,

or

db(h3,w2) ≤ Γ max {db(h1, h2), db(h2,w1)} ,

where Γ ∈ [0, 1) such that bΓ < 1. Then T has a fixed point.

Corollary 5.2. Let (X, db) be a complete b-metric space, where db is a continuous functional and
consider T : X × X → X as a mapping such that for each h1, h2, h3,w1,w2 ∈ X we have either

db(T (h2,w1),T (h3,w2)) ≤ Γ{db(T (h1, h2),T (h2, h3))},

or
db(T (h2,w1),T (h3,w2)) ≤ Γ max{db(T (h1, h2),T (h2, h3)), db(T (h2, h3),T (w1,w2))},

or
db(T (h2, h3),T (w1,w2)) ≤ Γ max{db(T (h1, h2),T (h2, h3)), db(T (h2,w1),T (h3,w2))},

where Γ ∈ [0, 1) such that bΓ < 1. Then T has a fixed point.
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6. Doubled controlled metric space

In this section Theorem 3.1 has been proved in the setting of double controlled metric spaces
introduced by Abdeljawad et al. [1]. In [1] the notion of doubled controlled metric type space is given
as follows.

Definition 6.1. Given non comparable functions α, µ : X×X → [1,∞). If db : X×X → (0,∞) satisfies

(1) db(w1,w2) = 0⇐⇒ w1 = w2

(2) db(w1,w2) = db(w2,w1)
(3) db(w1,w3) ≤ α(w1,w2)db(w1,w2) + µ(w2,w3)db(w2,w3) for all w1,w2,w3 ∈ X.

Then (X, db) is called a double controlled metric type by α and µ.

Remark 6.1. The class of double controlled metric is larger than b-metric. If α(w) = µ(w) = b ≥ 1 for
all w ∈ X then, double controlled metric type is a b-metric with coefficient b.

The notion of convergence, Cauchyness and completeness can be extended naturally in the setting
of double controlled metric type space as in [1] .

Theorem 6.1. Suppose that (X, db) be a complete double controlled metric type space by the functions
α, µ : X × X → [1,∞) such that

sup
m>1

lim
i→∞

α(wi+1,wi+2)
α(wi,wi+1)

µ(wi,wm) <
1

Γ
1
2

(6.1)

and lim
n→∞

α(u, un) and lim
n→∞

µ(u, un) exist and are finite. Let R be a binary relation on X, where db is a
continuous functional. Assume that H and K are nonempty closed subsets of X. Consider a mapping
T : H × H → K such that for each h1, h2, h3,w1,w2 ∈ H with h1Ph3 that is h1Rh2, h2Rh3 and
db(w1,T (h1, h2)) = db(H,K) = db(w2,T (h2, h3)), we have:

db(w1,w2) ≤ Γ max {db(h1, h2), db(h2, h3)} , (6.2)

where Γ ∈ [0, 1) such that bΓ < 1. Furthermore, suppose that the subsequent conditions are true:

(1) T is path admissible;
(2) ∃ h0, h1, h2 ∈ H which satisfy db(h2,T (h0, h1)) = db(H,K) and h0Ph2;
(3) T (H × H0) ⊆ K0;
(4) K is approximately compact with respect to H;
(5) If {h j} ⊆ X such that h jPh j+2 for each j ∈ N and h j → x∗ as j→ ∞, then h jRx∗ for all j ∈ N and

x∗Rx∗.

Then T has a best proximity point.

Proof. Proceeding as in Theorem 3.1 till Eq (3.5) we obtain
db(h j−1, h j) ≤ Zψ j ∀ j ∈ N. Now for m > n

db(hn, hm) ≤ α(hn, hn+1)db(hn, hn+1) + µ(hn+1, hm)db(hn+1, hm)
= α(hn, hn+1)db(hn, hn+1) + µ(hn+1, hm)db(hn+1, hm)
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≤ α(hn, hn+1)db(hn, hn+1)+
µ(hn+1, hm)

[
α((hn+1, (hn+2)db(hn+1, hn+2) + µ(hn+1, hm)db(hn+2, hm)

]
= α(hn, hn+1)db(hn, hn+1) + µ(hn+1, hm)α(hn+1, hn+2)db(hn+1, hn+2)
+ µ(hn+1, hm)µ(hn+2, hm)db(hn+2, hm)
≤ α(hn, hn+1)db(hn, hn+1) + µ(hn+1, hm)α(hn+1, hn+2)db(hn+1, hn+2)
+ · · · + µ(hn+1, hm)µ(hn+2, hm) · · · µ(hm−2, hm−1)α(hm−2, hm−1)db(hm−2, hm−1)
+ µ(hn+1, hm)µ(hn+2, hm) · · · µ(hm−2, hm−1)µ(hm−1, hm)db(hm−1, hm)
≤ α(hn, hn+1)db(hn, hn+1) + µ(hn+1, hm)α(hn+1, hn+2)db(hn+1, hn+2)
+ · · · + µ(hn+1, hm)µ(hn+2, hm) · · · µ(hm−2, hm−1)α(hm−2, hm−1)db(hm−2, hm−1)
+ µ(hn+1, hm)µ(hn+2, hm) · · · µ(hm−2, hm−1)µ(hm−1, hm)α(hm−1, hm)db(hm−1, hm)
≤ α(hn, hn+1)Zψn+1 + µ(hn+1, hm)α(hn+1, hn+2)Zψn+2

+ · · · + µ(hn+1, hm)µ(hn+2, hm) · · · µ(hm−2, hm−1)α(hm−2, hm−1)Zψm−1

+ µ(hn+1, hm)µ(hn+2, hm) · · · µ(hm−2, hm−1)µ(hm−1, hm)α(hm−1, hm)Zψm

= Zψn+1

α(hn, hn+1) +

m−1∑
i=n+1

 i∏
j=n+1

µ(h j, hm)

α(hi, hi+1)ψi−n


Denoting Sq =

q∑
i=0

 i∏
j=0

µ(h j, hm)

α(hi, hi+1)ψi, we have

db(hn, hm) ≤ Zψn+1 [α(hn, hn+1) + (Sm−1 − Sn)]

The ratio test combined with (6.1) imply that the limit of the sequence {Sn} exists. Hence

lim
n,m→∞

db(hn, hm) = 0, (6.3)

implies that {hn} is a Cauchy sequence in H. Since H is complete, there exists some h∗ ∈ H such
that hn → h∗. Hence by (vi) hnRh∗ ∀n ∈ N. Furthermore, we have to prove that db(h∗,T (hn−1, hn)) →
db(h∗,K) as j→ ∞. Consider,

db(h∗,K) ≤ db(h∗,T (hn−1, hn))
= lim

n→∞
db(hn+1,T (hn−1, hn))

= db(H,K)
≤ db(h∗,K)

Therefore db(h∗,T (hn−1, hn)) → db(h∗,K) as n → ∞. The rest of the proof can be carried out in the
same way as in Theorem 3.1 after Equation (3.6). �

Remark 6.2. Note that Theorem 3.1 becomes a special case of Theorem 6.1 by taking α(w) = µ(w) =

b ≥ 1 for all w ∈ X.

AIMS Mathematics Volume 7, Issue 6, 10711–10730.



10729

Acknowledgments

The author Aiman Mukheimer and Suhad Subhi Aiadi would like to thank Prince Sultan University
for paying APC and for the support through TAS research LAB.

Conflict of interest

The authors declare that they have no competing interests.

References

1. T. Abdeljawad, N. Mlaiki, H. Aydi, N. Souayah, Double controlled metric type spaces and some
fixed point results, Mathematics, 6 (2018), 320. https://doi.org/10.3390/math6120320

2. M. U. Ali, H. Aydi, M. Alansari, New generalizations of set valued interpolative Hardy-
Rogers type contractions in b-metric spaces, J. Funct. Space., 2021 (2021), 6641342.
https://doi.org/10.1155/2021/6641342

3. M. U. Ali, M. Farheen, T. Kamran, G. Maniu, Preŝić type nonself operators and related best
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