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1. Introduction

In this paper, we are interested in the following high-order fractional stochastic partial differential
equations (SPDEs for short) driven by fractional noise

O*H, .
t, x,u(t, x)) + B (1, x),
e (txult ) + B7(1,) wn

ot
u(0, x) = uo(x),

a m
—u(t,x) = Dju(t, x) + Ho(t, x,u(t, x)) + Y
k=1

with (z,x) € [0,T] X R and T > 0, where 9 is the fractional differential operator introduced in
Debbi [8], and further studied by Debbi and Dozzi [7], Xie [21] recently. Moreover the coefficients
{Hi,k =1,2,...,m} with m < [a] which is an integer, are some measurable functions satisfying some
conditions and B (¢, x) denotes the fractional noise considered by Jiang et al [12], Hu et al [10] which
will be explained in Section 2.
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Partial differential equation plays a fundamental role in describing various phenomena, such as
diffusion in a disorder or fractal medium, image processing or risk management. However, various
models in the real world must take into account the uncertainty. Hence the investigation of SPDEs,
obtained great attentions. And they have been successfully applied in different fields, such as
population biology, quantum field, statistical physics, neurophysiology and so on. Gaussian noise
are used widely to characterize some kinds of uncertainty in some models. The SPDEs driven by them
are deeply studied until now, see Walsh [22], Dalang [6] , Chow [5], Debbi and Dozzi [7] for more
details. In the meanwhile, there has been some recent interests in studying SPDEs driven by fractional
noise (see Section 2 for the details). More works in the fields can also be found in Balan [1], Balan
and Tudor [2], Bo et al [3],, Hu and Nualart [9], Hu, Nualart and Song [10], Hu, Lu and Nualart [11],
Jiang et al [12], Liu and Yan [13], Liu and Tudor [14] and the references therein.

On the other hand, in recent years, there have been increased interest in fractional order calculus
since the development of the regular integer order calculus. Then several kinds of fractional order
integro-differential operators have been introduced, for example, Debbi and Dozzi [7], Podlubny [20]
and etc. The fractional calculus, containing the fractional operators, such as the fractional Laplacian
operator and the pseudo differential operator, has been widely used to system modelling and controller
design concisely and precisely (for example, the indirect model reference adaptive control in [4], the
output feedback control synthesis in [23] and so on.)

Motivated by the above results on SPDEs and fractional calculus, in this paper, we will study a class
of high-order fractional SPDEs (1.1) which combines the fractional differential operator Df(a > 1)
and the fractional noise Bf. It is known that the operator Oy involved in SPDEs (1.1) extends the
inverse of the generalized Riesz-Feller potential when a > 2, the Riemann-Liouville type operator, the
fractional Laplacian operator with 0 < @ < 2 and a class of pseudo differential operator. Moreover the
fractional SPDEs (1.1) includes the famous Ginzburg-Landau equations with or without conservation
as examples. In fact, in Debbi [7], the author studied the nonlinear stochastic fractional partial
differential equation containing D$(a > 1) and Gaussian space-time white noise. While Xie [21]
studied the similar class of stochastic fractional partial differential equation driven by impulsive noise,
which is singular not only in time but also in space. However, until now, there was little work
on high-order fractional SPDEs driven by fractional noise B”. Such equation can be viewed as a
more flexible alternative to the equations driven by white noise, and it can be used to model the
more complex physical phenomenon which is subject to random perturbations. Hence it is worth
studying SPDEs (1.1) in this sense. Moreover the results obtained in this work generalizes the results
in Debbi [7] to the setting of fractional noise and some results in Balan [1], Balan and Tudor [2], Bo et
al [3] and Hu and Nualart [9] to the setting of fractional differential operator.

The rest of this paper is organized as follows. In Section 2, we briefly recall some properties of the
fractional differential operator 9, then introduce the definition of fractional noise and the Malliavin
calculus with respect to it. In Section 3, we will show the existence and uniqueness for the solution
to SPDE (1.1) under some assumptions. Holder continuity of the solution {u(z, x), (¢, x) € [0,T] X R}
on both space and time parameters is obtained in Section 4. In Section 5, we prove that the law
of the solution to (1.1) is absolutely continuous with respect to Lebesgue measure. Furthermore the
Gaussian-type estimate for the density of such solution is also obtained by using the techniques of

Malliavin calculus and the formulas developed by Nourdin and Viens [16].
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2. Preliminaries

In this section, we will firstly recall some definitions and fundamental properties of the fractional
differential operator D7 and the fractional noise B”. We also recall the techniques of Malliavin calculus
with respect to fractional noise.

2.1. Fractional differential operator D

From Debbi and Dozzi [7], we recall that the fractional differential operator DS is defined by

D f(x) := Do f(x) = FH~| - [ ORF ()0,

where 6 < min{a — [a]»,2 + [a@], — a}, [a] and [@], denote the largest integer and largest even integer
less or equal to @, ¥ and F ! are the Fourier and inverse Fourier transformations respectively.

The operator D¢ is a non-selfadjoint, closed, densely defined operator on L*(R) and it is the
infinitesimal generator of a semigroup which is in general not symmetric and not a contraction. This
operator includes many important operators, such as fractional power of the Laplacian operator with
0 < @ < 2and ¢ = 0, the Riemann-Liouville differential operator when |6] = 2+[a],—a or || = a—[a],.
Evidently, it is Laplacian itself when @ = 2 and 6 = 0.

The Green function G, (t, x) associated to SPDE (1.1) on [0, T'] X R is the fundamental solution of
the following Cauchy problem

0

—G,o(t,x) = D5G,(t,x), (t,x)€[0,T]xR

5; 06X = DGt %), (1,x) €[0,T] 2.0

Go(0,x) = 6o(x), x€R,

where 9y is the Dirac function. Using the Fourier transform, we see that G,(z, x) is given by
1 -
Go(t,x) = F (™) () = = f exp {—idx — flA|"e 3" D) d2, 2.2)

2w R

which may be asymmetric in x (see for example, Debbi [8], Debbi and Dozzi [7] for some details).
Moreover the Green function G,(, x) has some good properties such that it satisfies the Chapmann-
Kolmogorov equation and is smooth in x for each fixed # > 0 and so on. Here, we will list some known
fundamental properties for G, (¢, x) which will be used later on (see e.g. Debbi [8], Debbi and Dozzi [7]
for their proofs).

Lemma 1. [. The Green function G,(t, x) is real but in general it is not symmetric relatively to x
. .. +00
and it is not everywhere positive. Moreover f_ . Go(t, x)dx = 1.

2. The scaling property holds: G,(t, x) = t‘iGa(l, t‘ix). Moreover, for any k > 0

oG, - (9 G
Ok “(t,x) =1 by 2.3)
3. There exists a constant C, such that
aka 1+ |x|a+k—1
w———————, keN. 2.4
)‘ (1 + |x|rk)? 24)
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4. Let a € (1, +00)/N, for any fixed k € N and each € ( 1 “—“) we have

a+k+1° k+1
0 R

5. The Green function G,(t,x) satisfies the semigroup property, or the Chapmann-Kolmogorov
equation, i.e. for)0 < s <t

B
dtdx < .

oG,
221 )

G,(t+s,x) = fG(,(t, V)Go(s, x — y)dy. (2.5
R

2.2. Fractional noise
For some T > 0, a one-dimensional fractional Brownian motion (W,H )iefo.r7 With Hurst parameter
H € (0,1) is a centered Gaussian process on some probability space (Q, ¥, (F;):=0, P) with covariance
1
HyH] _ L (2H | 2H |, 2H
E|w/w!| = 2(t + 52— |t — sPH).
We recall the following fractional Brownian sheet considered in Jiang et al [12], Hu et al [10] and etc.

Definition 1. The fractional Brownian sheet BY = {BH(t,x),(t,x) € [0,T] x R} with parameter
H = (H\,H,) for H; € (0,1), i = 1,2, is a centered Gaussian process on some probability space
(Q, F, (F1)0, P) with covariance

R(t,s;x,y) = E|B"(t, )B"(s.y)|

I
2H 2H 2H 2H. 2H. 2H.
= 2 (P M = ) (P P L= 5P,

forall s,t € [0,T] and x,y € R.

We denote by & the set of step functions on [0, 7] X R. Let H be the Hilbert space defined as the
closure of & with respect to the scalar product

<1[0,t]><[0,x], l[o,s]x[o,y]>w = R(t, 55 x,).

Thus the mapping {9 4xq0.q — B (1jj0.4x0.)) := B (¢, x) is an isometry between & and the linear space
span of {BH (L0007 (£, x) € [0, T] X R}. Moreover, the mapping can be extended to an isometry
from H to Gaussian space associated with B. This isometry will be denoted by ¢ +— B(y) for
¢ € H. Therefore, we can regard B(¢) as the stochastic integral with respect to B”. In general, we
use the notation

T
B'(p) = fo f o(t,y)B(dt,dy), ¢eH.
R

Throughout this paper, we limit our consideration on the two-parameter fractional Brownian sheet
with Hurst parameters H; € (1/2,1),i =1,2. Forany 0 < s <t <T and x,y € R let

Wi, 55x,y) = 4H HyQH, = 1)(2H, = Dt = s 72| — y272

Furthermore, the following properties hold.
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Proposition 1. For ¢,y € H, we have

T
El f f go(t,x)BH(dt,dx)] =0,
0 R
T T
E[ f f o(t, x)BY (dt, dx) f f Wi, x)BH(dt,dx)]
0 R 0 R

B f 2 f 2 o(u, )Yy (u, v; x, yW(v, y)dxdydudy.
0.1P Jr

and

Let us also recall an embedding theorem proved in Jiang et al [12].

Proposition 2. I[f H € (1/2,1) and f,g € L%([a,b]), then

b b
2H-2
fa f Qg =P dudv < Callfl, gl

where Cy > 0 is a constant depending only on H.

On the hand, since B = {B"(t, x), (¢, x) € [0, T] x R} is Gaussian, we might develop the Malliavin
calculus with respect to BY in order to study the density properties for the solution of SPDE (1.1) (see
e.g. Nualart [17]).

Let S be the class of smooth and cylindrical random variables of the form F =
F(B (1), ..., B (g,)), where f € C;(R") (i.e. the set of all functions with bounded derivatives of
all orders) and ¢; € H (i = 1,...,n and n € N). For each F € S, define the derivative D, . F by

0
DoF = Z] a—ﬁ(BH(sol), o B )it ).

Let D' be the completion of S under the norm
IFII}, = E|IFP + IDFIi | .

Then D' is the domain of the closed operator D on L*(2) with the domain D, being the closure of S
under the norm
IFI; = E|IFP + 1Dy FP].

Let {h,,n > 1} be an orthonormal basis of /. Then F € D'? if and only if F € Dy, foreachn € N
and )7, E|D;, F | < co. In this case, D, F = {DF, h)4;. On the other hand, the divergence operator ¢ is
the adjoint of the derivative operator D characterized by

E(DF,u)y = E(F6(u)), for any F €S,
where u € L*(Q, H). Then Dom(6), the domain of 8, is the set of all functions u € L*(Q, H) such that
EKDF, u)y| < CW||F |20

where C(u) is some constant depending on u.
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3. Existence of the solution

In this section, we will prove the existence and uniqueness of the solution to the high-order fractional
SPDE (1.1). Let us first give the following notation of mild solution for SPDE (1.1) in the sense of
Walsh [22].

Definition 2. Let T > 0 be fixed. A random field u = {u(t, x),t,x € [0, T] X R} is a mild solution of
SPDE (1.1) if

u(t, x) = fGa(t, X — 2)up(z2)dz + f fHo(s, Z2,u(s,2))Go(t — s,x — 2)dzds
R 0

R

f m k
+ (=1 f f Z Hi(s,z, u(s, z))a Gka (t—s,x—2)dzds 3.1
0 VR k=1 <

0

!
+f fGQ(t—s,x—z)BH(ds,dz),
0 JRr

for any (t,x) € [0,T] X R, where G,(t, x) is the Green function solving Eq (2.1) and
partial derivative of order k with respect to the spatial variable.

&G,
Oxk

(t,x) is its

In order to explain our theorem, we present some conditions on the functions {H,k = 1,2, ..., m}
for any (7, x,y) € [0,T] xR x R.

(C1) The growth conditions: For any k = 0, 1,2, ..., m, there exists a positive constant K; such that
|H(t, x,y)l < Kr(1 + [y]).
(C2) Lipschitz conditions: For any k =0, 1,2,...,m, there exists a positive constant K7 such that
|Hi(t, x,y) — H(t, x,2)| < Krly — 2.

Then we can state the following main result in this section.

Theorem 1. Under the conditions (C1) and (C2), for a > 1, p > 2, m = [a] and the assumptions that
the initial condition uy is a measurable function and uniformly bounded on R, then the SPDE (1.1) has
a unique adapted mild solution which satisfies

sup sup Ef|u(t, x)|P] < oo.
t€[0,T] xeR

Let us firstly give several useful lemmas.

Lemma 2. Forany 1/2 < H < 1 and t € [0, T], there exists a positive constant K depending on « such
that

f G (t, )| T dx < Kt . (3.2)

R

AIMS Mathematics Volume 7, Issue 6, 10625—-10650.
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Proof. According to scaling property and estimates for the Green function G,(#, x) given in Lemma 1,
we obtain

f G, x)| T dx = 1777 f 1Go(1, 1% )| 7 dx
R

R
1 1 1
kb [
R (1 + |x|t*+e)7 (3.3)
11 : 1 « 1
= K to af —dx + —dx
o (1+x!*)m 1 (1 + x+o)m
< KQ,HI%.
Oa

Lemma 3. Let the sequence {u™,n > 0} be defined by

WO, x) = f Galt, X — Y)itg(y)dy, 34
R

!
u" V(t, x) =u(t, x) + f fHo(S, Y. U (8, )Golt = s,x = y)dyds
0

R

+Z( 1)* ffHk(s ¥, u(s, y)) o Co (1 = 5, x - ydyds (3.5)

f f =8, x— y)BH(ds dy).

Then under conditions (C1), (C2), for any p > 2 and a > 1, the sequence {u"™(t,x),n > 1} is well-
defined and satisfies
sup sup E |u(”)(t, x)|p < oo. (3.6)
t€[0,T] xeR
Proof. We proceed by recurrence. Under the hypothesis that the initial condition uy(x) is LP(€2)-
bounded, it is easy to see that the function (¢, x) and u'"(z, x) exist and are also LP(£2)-bounded.
Now let us prove (3.6). Note that, for each n € N and p > 2, it follows that

p
<K,

E [u®(t, x)"
f Hi(s,y,u"™(s, y)) ( s, x = y)dyds

El(t, )| + Z
R
[ s ]

Elu®(t, ) + Z A" (t,x) + BY(t, x)} .
k=0

+E

=K,

For the first term E|u(t, x)|7, since the initial condition uy(x) is uniformly bounded, then we have
Elu©(t, %) < ||luolleo, Where the notation ||uo||. is defined by |[ug|le := sup g ltto(x)|-

AIMS Mathematics Volume 7, Issue 6, 10625—-10650.
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For the terms Ag?c(t, x) with k =0, 1,...,m, by using the Holder inequality on the measure & G“ 2 (t—
s, x — y)dy and the linear growth condition for the coeflicients Hy,k = 0,1, ...,n, we have

-1
A(")(t x) < (f f (=5, x— y)‘dyds)
[ f f |Hi(s,y, u® s, y))|p

G
(

!
<K,E [ fo fR L+ (s )| 55

!
<K, U sup E(1 + |u
0 yeR

!

< K,o | sup E(1 + [u™(s, )Xt — 5)™¥ds,
0 yeR

k
0'G (l

— (- s5,x— y)'dyds]

t—s8,x— y)‘ dyds]

Oyk

kGa
(t—s,x— y)' dyds]

where we have used the fact that, for some positive constant K

oG,

= | O

For all (¢, x) € [0, T] x R, since the stochastic integral fot fR Go(t — s, x — y)B(ds, dy) is Gaussian,
then according to Lemma 1, we have

!
EffGa(t—s,x—y)BH
0 R
13 ! p
SCp(E f f f f Ga(t—s,x—y)Ga(t—r,x—z)‘PH(s,r;y,z)dydzdrdS)
0 0 R JR

! t
2H;-2
<Cpm, (f f IGo(t = 5, x = pm@llGe(t = 1, x = N pymgyls — rl7" " “drds
0 0

¢ 1/H, PH)
< Cpu.m (fo (”Ga(t - S5,X— ')||L1/H2(R)) ds)

plaH|+Hy—1)
<Commt  ©

dy < K(t — )™, (3.7)

(t—s,x—y)

/2

)"/ > 38

Then we can conclude the proof of this lemma by using Lemma 15 in Dalang [6]. m|
Now let us give the details of the proof of Theorem 1.

Proof of Theorem 1. From (3.4) and (3.5), for each n € N, it follows that

E

u™V(, x) — u(t, x)|p
p

. ! oG,
=ED (=DF [ | [Hils,y,u®(s,3) = Hils, y,u" (s, 3)| =2t = 5, x = y)dyds
=0 0 Jr It

f o~ m
<k, [ [ DE
pORkZ:(;
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=K, Z AB (2, x).
k=0
From Debbi and Dozzi [7], we know that

s
_k n n—
AP (1, %) < Kap f (t—s)@ sup Elu™(s,y) — u” (s, y)Fds.
0 ye

Hence,

t m
EluD(s,5) = u (s, y)l" < K f D= 97 sup Elu (s, y) - u" (s, y)l’ds

0 =0 yeR
, 3.9)
< Kf sup Elu(s,y) — u" (s, )P g1 (t - s)ds,
0 yeR
where (1 — 5) = 3ot — )" and [ g(1)dt < co with m < a.
Note that
sup EluV(t, x) — u®t, x)I” < K, (sup El’(t, x)I” + sup EluV(t, x)|p) < oo,
xeR xeR xeR
Hence
sup E |u("+1)(t, x) — u™(t, x)|p < o0,
=0 (tVEl0.TIXR
Hence, {u(t, x), (t, x) € [0, T] X R},50 is a Cauchy sequence in LP(Q). Let
u(t, x) = lim u™(, x).
Then for each (¢, x) € [0, T] X R,
sup  Elu(t, x)|P < oo. (3.10)

(t,x)€[0,T]xR

Taking n — oo in LP(Q) at both sides of (3.5). Then, it shows that {u(z, x), (¢, x) € [0, T] X R} solves
Eq (3.1).

Finally, we can prove the uniqueness of the mild solution to Eq (3.1) by a standard argument. So
we omit the details. This completes the proof of this theorem. O

4. Holder continuity for the solution
In this section, we will check the Holder continuity of the solution u = {u(t, x) : (¢, x) € [0, T] X R}

of SPDE (1.1) on space and time variables, respectively.

Theorem 2. Under the assumptions in Theorem 1, if we further assume that u is 3-Holder continuous
on R for B € (0,1), let u be the mild solution to SPDE (1.1), for 8 € [O, min {af — [a], ﬂ}) and

2
B (axDH-1 %}) then we have

a’

ue [0, min{

1. For fixed x € R, the process u(t, x) is u-Holder continuous in t, P-a.s.,

AIMS Mathematics Volume 7, Issue 6, 10625-10650.
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2. For a < 3 and for fixed t € [0, T], the process u(t, x) is 6-Holder continuous in x, P-a.s.

Firstly we will give some useful estimates associated with the Green function G,(¢, x) which will
be used frequently.

%+H2—1
a+l

Lemma 4. For 0 € [0, min{ ,% +Hy— 1) and u € [0,
exists a constant K > 0 such that

), then for any (t,x) € [0, T] X R, there

3 2
E f f (Galt = r.x = 2) — Galt — 1y — )B™(dr. d2)| < Klx =y, @.1)
0 R
! 2
E f f(Ga(t —rnx—2—Gu(s—r,x— z))BH(dr, dz)| <K|t- s|2“, 4.2)
2(nH1+H2 1)
f f G,(t—r,x —7)B(dr, dz) < K|t - s| ) 4.3)

Proof. We will divide into three steps to prove this lemma.
Step 1: for the space variable: For any t € [0,T], x,y €e Rand 6 € [0, 1),

t 2
(Go(t = r,x = 2) = Go(t — 1,y — 2))B"(dr, dz)
R

= [|Galt = #,x = ) = Golt = %,y = I3
= [IGalt = s x =) = Gult = -,y = I - Gt = -y x = ) = Gt =y = )|,
< Col[IGalt = s x =) = Galt = -,y = I - (Gt = -, x = N[,

+ Co|[IGalt = 1 x =) = Galt = -,y = I+ Gt = -,y = |,
=Co(ly + 1).

By mean-value theorem, for 7 between x and y, one can get that

9 2

d
=Gt == )| -1Galt = x =)'

0
= [llx — .
lx =yl pp

H
0

= 4H,H,(2H, — N(2H, — 1)|x - ylz" Gt — uy, x — )"

Go(t—u,n—2z1)

0

: 'aGa(f Uy, —2)| 1Go(t — up, x — Zz)| “uy - M2|2H1 lz1 — Zz|2H2_2d21dZ2dM1dM2
Hy 2H,
t (9 6 1-%2 Hy
< Clx -yl f f ( —Go(t—u,n—2)| Gt —u,x —z)|1—f’) dz| duf
0 R ax

where for the last inequality, we have used Proposition 1 twice. Then according to the scaling property
and related estimates for G, (¢, x) given in Lemma 1, one gets

fR 0

0
lGa(t u,x— z)IIH;;a’z
ox

a(t_u n- Z)

AIMS Mathematics Volume 7, Issue 6, 10625-10650.
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0
H

ZGo(LT-2)|  Ga(1,2)| % dz

1_1+0 0
— t_ @ aH-
(t—u) ZLax

1+6

1_
< CH],HZ,H(t - I/l)“ aty |

Therefore, if 1 + HZQ_—H]:H >0,ie. 6 <aH; + H, — 1, then

20
I < Crumplx—y17.

Similarly, we can check
L < Crp, w0l — y|20-
Hence the inequality (4.1) holds.

Step 2: for the time variable: As for the inequality (4.2), for any ¢, s € [0,T], x € R and u € [0, 1),
one obtains

2
E

!
f f(Ga(t —1,x=2) = Go(s — 1, x — 2))B(dr, dz)
0o Jr
= 1Galt = %, x =) = Gals =, x = Iz,
= [IGa(t =, x = ) = Guls = 5, x = W+ 1Galt = 5, x = ) = Guls = .2 =)',
<C, |||Ga(f —#, X =) = Go(s — %, x — )W - |Gols — %, x — .)|1—u||;{
+Cu[IGa(t = %, =) = Guls = 5, x = I 1Gols — %, x = )|,
= C,(Ily + II).
By mean-value theorem, with Proposition 2, for o between s and ¢, it holds that

u 2

Ihznv—W‘ (Gt = 5 x = )

gGw(g — kX )

:4H1H2(2H1—1)(2H2—1)|t—s|2“ffff
0 0 R JR

u
1-
|Go(t — Uz, x — 22)I" Uy — us)

H

u
IGo(t — up, x — z1)|' ™

0
aGa(Q — U, Xx—21)

2H,-2 2H,-2
"z1 — 22" " dz1dzpdu duy

Hy 2H,

5 \7
|Go(t —u, x - z)ll‘“) ’ dz] du

0
. '6—Ga(9 — Uy, X —2)
X
T
< Clt - s* f [f(a
0 R

f a
R

EGQ(Q — X )
=Ga[@—W”TGAL@—mﬁu—@WGALU—mﬂ@—@WW
R

U

Since

=N
H

2 1u
|Go(t —u, x — 2)| ™ dz

ap+

+1
o |x— 2z

0 I a
+(t —u)” 7 Cotl (t— ) (x = 2))
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1
1Gu(L (1= 570 (= I ) ™ d
aptu+l |1

_optl 1 - 1
< Com(t—u) ™7 e + Cop,(t —u)” fo o,

f Hy—(a+1u—1
Hia

aH1+H2 O aH+H>— 1)
s

a+l

Therefore, i +1>0,ie u< L then for u € [

111 < CQ’H’T,MU - Slzﬂ.
Similarly,
112 < C<1,H,T,,1|l‘ - S|2/J.

So (4.2) holds.
Finally let us prove that (4.3) holds. Actually for any s, € [0, T], according to (3.8), we can obtain
(4.3) consequently. This completes the proof of the lemma.
O

Now we are in position to prove the Holder continuity of the solution {u(z, x) : (t,x) € [0,T] X R}
on both space and time variables.

Proof of Theorem 2. Let p > 2, fort,s € [0,T] and x,y € R,
Elu(t, x) — u(s, y)I” < K, (Elu(t, x) — u(s, 0)I” + Elu(s, x) — u(s, y)I") .

We proceed to prove this theorem in two steps.
Step 1: We firstly show the Holder continuity in time variable 7. In fact, forany x e R and ¢, s € [0, T'],
one gets

p

Elu(t, x) — u(s, x)|” <K, [E

G, (t, x — 2)ug(z)dz — f G, (s, x — Duo(z)dz
R R

m

+ZE

- (l —rXxX—- Z)Hk(r’ Z, I/[(r, Z))dZdr
r 0z

k=0 ak )
f f Ga (t — r, x — 2)H(r, z, u(r, 2))dzdr
+E G(t—rx—z)B (dr,dz)
—f f Go(s —r,x — 2)BA(dr, dz) ]
0 R
= A+ Z B, +C.
k=0

Now we will estimate A, Y/, By and C respectively. Note that the initial value u, is S— Holder
continuous with 0 < B < 1, according to the semigroup property for G,(z, x) stated in Lemma 1,
one gets

p

E fG(,(t, x — Qup(z)dz — fGa(S, x — Dup(z)dz

R R
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=FE

R JR R
p

=F

f Go(s, x ) f Go(t = 5,y = 2)(uo(2) — uo(y))dzdy
R R

< Kf IGo(s, x =)l f Go(t = 5,y — 2|z — y|Pdzdy
R R
< K|t — /%

As for Y-, By, we have that

N [ G,
2E f f (0= X = H(rn 2, u(r 2)dedr
k=0 0 JR

0

-, ).
fsf(%(f—rx—z)—aka’
0 R 8Zk ’ aZk
+ZE
k=0

= I(b :E: (lghl +'13K2)'
k=0

P
S(t = 1, x — 2)Hi(r, z, u(r, z))dzdr

oG
0z

<K,

Sk
k=0

07k

From the proof of Theorem 2 in Debbi and Dozzi [7], it holds that

By + By,
y G G
<K su E(l+|ur,z|p)ff(—at—r,x—z——a
b (r,z)e[O,IYJ"JXR (r2) 0 JR dz* ( ) 0zk

+K, sup E(1+|ur2)|")

(r2)el0,TIxXR
S (8G, 8G, ? ’
< K"[ﬁ fR( e (t—-rx—2 - P (s—r,x—z)) dzdr
t 0k(;a p
+K, I L = (t—r,x—2)dzdr
< Kt — 5T

Then

m m

a—k a-m
D Be<K, )l < Klr— s
k=0 k=0

As for C, applying the estimates in Lemma 4, for any p > 2, it is easy to check that

C=E

f fGa(t —r,x — z)B(dr, d?)
0o Jr

AIMS Mathematics

f f G, = Y)Galt — 5,y — Dutol)ddydz — f Gl — Do)z

" (oG,
f f (t — r,x — 2)Hi(r, z, u(r, z))dzdr
K R

" oG,
f f o (t—r,x —2)dzdr
K R

p

(s—rx-— Z)) H(r, z, u(r, 2))dzdr

(s—r,x— z)) dzdr

(4.4)
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p

—fsta(s—r,x—z)BH(dr,dz)
0o Jr

s p
st(Eff(Ga(t—r,x—z)—G(,(s—r,x—z))BH(dr,a’z)
0 JR
‘ P
+EffGa(t—r,x—z)BH(dr,dz) )
K R
= Kp(C1+C2)

Using (4.2), one gets that

cr<k,E

f flGa(t —1,x = 2) = Go(s — 1, x — 2)|BY(dr, dz)
0 R

2)5
SKp(ffffm(r—rl,x—zo—Ga(s—n,x—zm
0 0 R VR

NG ot = 12, X = 22) = Gols = 12y x — 2)W(r1, 123 21, 22)d21d2adr dra))
aH +H, -1
a+1 ’

< Kp,alt - Slpﬂ’ ue [Oa

Similarly, we can easily check
aH|+Hy~1

Cr <K, lt—slP

Hence, {u(t, x) : (¢, x) € [0, T] X R} is u-Holder continuous in ¢ with u € [0, min {ﬁ afitHy-l M})

a’ a+1 > a
Step 2: Now we show the Holder continuous of {u(z, x) : (¢,x) € [0,T] X R} in space variable. Let
a < 3 For any fixed € [0,T], x,y € Rand p > 2, we have

Elu(t, x) — u(t, y)I”

f Ga(t, x — 2ug(2)dz - f Galt,y — Dug(2)dz

R D

+ Z E
k=0

!
f flGa(t A Z) - Ga(l —-ny- Z)lBH(dI", dZ)
0 JR

P
<k £

p

" (G, G,
f f( 97k (t—rx-2)- p (t—ry- Z)) H(r,z,u(r, 2))dzdr
0o Jr

)

+F

::D+kZmOEk+F.

Now we estimate D, };", Ex and F respectively. For the D, }}", Ex, from Debbi and Dozzi [7], we
know that

D+E, <K, lx—y7, with k<m<][al, (4.5)

and
D+ E; < Kyolx =yl V) with k= [a]. (4.6)
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Using (4.1), one obtains

F=K, sup (1+EunI")IG.(t—rx-2) -Gt —ry-2ll
(r,2)e[0,TIXR

< Kpoulx—y1", 0<60<a/2+H,-1.

Hence {u(t,x) : (t,x) € [0,T] x R} is 6-Holder continuous in x with 6§ €
[0, min{e — [«], “T‘l, a/2+ H, - 1}). This completes the proof of the theorem.

5. Density estimates for the solution

In this section, we will prove the absolute continuity of the law of the mild solution u = {u(t, x); t €
[0,T], x € R} to SPDE (1.1) at any fixed point (¢, x) € [0, 7] X R. We will also establish the lower and
upper Gaussian-type bounds for the density of the solution. We firstly prove u(t, x) € D'? and then
derive the expression of Du(t, x).

Lemma 5. Under the assumptions in Theorem I and H), € Cli([O, TIXxRxR), k=0,1,--- ,m. Then
the solution of Eq (3.1) belongs to D'* and its Malliavin derivative satisfies

D, u(t,x) =G,(t —v,x — 2)
(5.1)

m t GkGa ’
) f f (=D ==t = s, x = YH(5, y, u(s,)Dy u(s, y)dyds,
k=0 v R ay

forallv <tandz eR. Ifv >t then D, u(t, x) = 0.

Proof. Recall the sequence {u"(t, x), n > 0} defined by (3.4) and (3.5) in Lemma 3. Now we will prove
u™(t, x) € D'? by induction.

Since the coefficients H;, with k = 0, 1, ..., m are Lipschitz, by a standard argument, one can show
that the sequence {u(t, x),n > 1} converges to u in LP(Q)(p > 2) uniformly for (¢, x) € [0, T] X R as
n — oo. Then an argument similar to Zhang and Zheng [24] shows that for each n € N and h € H, the
sequence u(t, x) € Dy, and it satisfies that

Dhu(n+1)(t? -x) = <Ga(l - X ')a h>‘74
(5.2)

m A k
+ Z(—l)k 9 Ga (t — r,x — 2)H;(r, z, u(r, 2)) D" (r, z)dzdr.
k=0 0 Jr 92

Following the similar lines of Zhang and Zheng [24] to sequences (3.4) and (3.5), we can conclude
that there exists a random process u(%, x) such that D,u™(t, x) — u,(t, x) in LP(Q) uniformly in (¢, x) €
[0,T] xR as n — oo and u,(t, x) satisfies the following

up(t, X) = (Gt = -, x =),

. ! k 5.3
+ Z(—l)k f f 9 Gka (t — r,x — 2)H(r, z, u(r, 2))up(r, z)dzdr. (5-3)
k=0 0 Jr 0%

0
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Hence, from the closeness of the operator Dy, it follows that u(¢, x) € Dy, Dpu(t, x) = uy(¢, x) and

Dhu(ta X) = <Ga/(t - 55X ')’ h>7{
5.4

m t HkGa
+ Z(_l)k f f —(t = r,x = H(r, z,u(r, 2)) Dypu(r, z)dzdr.
k=0 0 Jr 0z

Next we proceed to show that u(t, x) € D'2. Recall that {h,,n > 1} is the orthonormal basis of H
introduced in Section 2. For each n, by (5.3), we obtain

E|Dy, u(t, x)* = EKGo(t = - x = ), By
2

-~ " oG,
+ Z(—l)k f f _k(t — 1, x — 2)H,(r, z,u(r, 2)) Dy, u(r, 2)dzdr
k=0 0 Jr 0z

(5.5)
m t GkGa 2
<K Z E f f —(t = r,x = 2)H(r, 2, u(r, 2)) Dy, u(r, 2)dzdr
k=0 0 Jr 02
+ KKGolt = - x = ), iyl
with K > 0 a constant whose value may change from line to line.
N
Un(t) = sup E ) Dy, u(t, )P (5.6)
xeR =1
By (5.5), Holder inequality and Corollary 2 in Debbi and Dozzi [7], for p = g = 2, we have
m ¢
Un() <K ) f (t = )7+ Un(s)ds + KI|Golt = -, x = )l
k=0 V0
t m
<K+ Kf Dt = ) Up(s)ds
0 k=0
¢t _m t m s m
< K[l + f D=5 vds+ Kf >~ s)—ﬁdsf s r)—iUN(r)dr)
0 %=0 0 k=0 0 k=0
t m r m
<K+K f Dis=n UG | D= s) vdsdr (5.7)
0 %=0 " k=0

t m
<K+K f Z(r — ) Un(s)ds
0 %=o0

t m ¢t m s m
<K+K f (t—s) o ds+K f (t—s) ot f (s — ) 5 Un(r)drds
» 2 »3 v

k=0 k=0

< K(gl(l) + f g (1, S)UN(S)dS) ,
0

where g; and g, are two bounded functions defined on [0, 7']. Then the Gronwall’s lemma yields that

2a-2m

Uy(@) < KX 7,
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where K is independent of m. Let N — oo, then we get

sup E Z Dy, u(t, x)I* < 0,

xeR =1

which implies u(t, x) € D'2.
Since u(t, x) is F;,-adapted, there exists a measurable function D, u(t, x) € H such that D, u(t, x) =

0 for v > t and for all h € H,
Dyu(t, x) = (Du(t, x), h)4. (5.8)

It follows from (5.4), (5.8) and Fubini’s theorem that

<Du(t’ X), h)?‘( = <G01(t - 5X = ')7 h)'H

S " [ 8G, 5.9
+ Z(—l)k (t = r, x = 2)Hi(r, 2, u(r, 2))XDu(r, 2), h)g(dzdr. 69
0 JR (9Zk
k=0
This completes the proof of this lemma.
]

Then we have the following main results in this section.

Theorem 3. Under the assumptions in Theorem 1 and Hy € Cg([O, TIXRXR),k=0,1,...,m, let u be
the solution to (1.1). Then for fixed (t, x) € [0,T] X R, the law of u(t, x) is absolutely continuous with
respect to Lebesgue measure. Moreover, with a > 1, the density of random variable u(t, x) satisfies the
following: for almost every 7 € R,

Elu(t, x) — 7| { (z— 1)
Cro (1) Cio(1)

Elutt, )~ o {-(Z‘T)z}. (5.10)

} <P =—¢6 00 Cro(0)

2aH|+Hy—1) . .
where T = Eu(t, x), o(t) =t " and C\1, C, are positive constants depending on ||H||«, 6, a, T.

Theorem 3 will be a consequence of Theorem 3.1 in [16] and the following Proposition 3. We use
the notation F' = u(t, x) — Eu(t, x) and we remind that we will need to find almost sure lower and upper
bounds for the random variable gr(F), where

gr(F) = f T E |E' ((DF. Z)T?)H) IF|do
o - (5.11)
= fo e “E|E' ((Du(t, ), Du(i, x)), ) IF | dor

where DF = (DF)(e"w + V1 — e 20w).
Proposition 3. Fix T > 0 and assume that the functions Hy (withk = 0,1,...,m) is ofC;([O, T]xRXR)
and has a bounded derivative. Then, with a > 1, there exist two positive constants C| and C, such that

2AaH ) +Hy-1) 2aH| +Hy-1)

Cit— < <gp(F)<Cot™ o, (5.12)

forallte[0,T].
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In order to prove Proposition 3, we will need the following technical lemmas

Lemma 6. Let % < H\,H, < 1, forany s,t suchthat 0 < s <t < T and 2m + 1 < 2aq, then there exists
some constant K > 0 such that for 0 < & <t

t
sup E(f fIDV,Zu(r,y)Izdzdv) < Ksl_%, (5.13)
(ry)e[t—&,r]xR t-e JR
and
!
sup  sup E( f f E' (|Dvgﬁzy)|2|dzdv)31<slé. (5.14)
o€eR (ry)e[t—&,fXR - JR

Proof. For s € [t — ¢, 1], put

!
Ly(t) = supE( f f D, .u(t, x)lzdzdv).
xeR K R

Then by (5.1) and the properties for G, (¢, x) in Lemma 1, for O < 7y < #, we have

t
E( f f 1D, cut, x>|2dzdv)
o R

’ "8G, ’
< KE f f(f fz (t—s,x =) H(s,y,u(s,y))D, u(s, y)dyds) dzdv (5.15)
Oyk ’
Iy R v R k=0
!
+ Kf fGi(t -V, x —2)dzdv.
tp YR
From the estimates about the Green function G, (¢, x) in Lemma 1, we obtain
! ! ) )
f fG?,(r —v,x = 2)dzdv = f(r —y) e ng(l, (t = v) o (x — 2)dzdv
K R K R
!
= f (t—v) & fGi(l, 2)dzdv (5.16)
K R

<Ko (t—5)"",

where we have used the fact that

fci(l,z)dzslq,f ! = 2K, (f dz+f 2adz)<1<
R (I+1z |f')2

Furthermore by formulas of change of variables and estimates on the Green function G,(¢, x) in
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Lemma 1, we have

E[ f t f D, .1, x)| dzdv]
[ f 2w

2 s
) dydsE ( f f (D, ;u(s, y))zdzdv)
1o R

FK(t— ) (5.17)
<Kfti(t $F L, (s)ds (Lt b=y +K(t—s)"7
< — [ — S "

o L R A T H

!
< Kf(t —5) " Ly(s)ds + K(1 — s)"
fo
Hence

!
L, (@) < Kf(f — 8) W Ly(s)ds + K(t — 1) ™%
To

£ s
K f (t— 52 (K f (S—v)_z‘;nLto(V)dVdS‘l'K(S—fo)l_‘l’)dS+K(l_t0)l_"
fo

fo

! !
st L,O(v)dvf(z—s)—zé"(s—v)-zll’ds (5.18)
1o v
!
+Kf(t— )W (s —to) wds + K(t — 1)+
Iy

< K(t—1p)"7 + f L, (v)dv.

fo

It follows from Gronwall’s lemma that
Ly (t) < K(t — 1) 7. (5.19)

Thus the proof of this lemma is completed.
O

In order to prove Proposition 3, we will also need the following lemma, whose proof is similar to
that of the above Lemma 6, Lemma 4.6 in Nualart and Quer-Sardanyons [18] or Lemma 5 in Nualart
and Quer-Sardanyons [19]. So we omit the details here.

Lemma 7. For o € (0, 1], then there exists some positive constant C such that depending on ||H} ||, o
such that

2aH +H2 1

sup  ElIDur Wi-praplF1 < Clot) 7, (5.20)
(ry)el(1-o)t,f]xR
and
2(nH1+H2 I}

sup  sup  E|E (1D g IF] S Clen™ =, as. (5.21)

=1 (ry)e[(1-o)ttIxR

with H([(1-p)t, t] xR) denotes the Hilbert space H associated with B over the rectangle [(1—p)t, t] X
R.
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Proof of Proposition 3. We first recall that the Malliavin derivative of u(z, x), (¢, x) € [0, T] xR, satisfies
D, u(s,y) >0, forall (v,z) € [0, T] X R, a.s. This is because the Malliavin derivative solves the linear
equation (5.1) and the Green function G,(t — s, x — y) is nonnegative. This fact is standard and used in
several works (see, among others, the proof of Proposition 3.2 in Nualart and Quer-Sardanyons [18]).
We can follow the similar arguments in the Section 5 in [15] to prove this assertion. Here we leave the
details to the interested readers.

Let us deal with the proof of (5.12) in two steps. Our methods used here is essentially due to
Nualart and Quer-Sardanyons [18], [19] that is mainly because the noise in this work is also additive.

Step 1. The lower bound. Fix o € (0, 1] and let us first derive the lower bound of (5.12). Since the
Malliavin derivative of u(¢, x) is non-negative, formula (5.11) yields

gr(F) > f e E| B ((Dutt, 0, Dut0), o) IF| 4 (5.22)
0 ,
By (5.1), we can decompose the right-hand side of the above (5.22) in a sum of four terms.

®0(t’ X5 Q) = ”Ga(t — kX ')”‘%'(([(l—g)t,t]XR)’ (523)

- ! oG, ,
0,1, x;0) = Z E [f f (= 5, x = Y)H(s,y, u(s,y))
| Ja-gn Jr Oy (5.24)

{Go(t = -5 x,-), Dus, )’»H([(l_g);,t]xR) dde|F] )

m 00 ~ , ! akGa ,
0,(t, x; 0) =Z f ¢’E|E f f — (=8, x = VH (s, y, u(s, y))
‘=0 Y0 (1-gn Jr OY

(5.25)
. <Ga(t - X—"), D”(S’y)>w([(1—g)z,t]xR) dydsIF)] do,
0Os(1, x;0)
m +00 t t akG
= e_O—E E’f ff f Q(I_S’X_Y)H,(S,y’u(sayn
; fo [ (1-ox JE Ja-on Jr OY* ¢ (5.20)
Gy H, D Du(r, drdsdydz|F || d
i (= X = D 2 ) (DU, ). DUC2) ey ArdsdydaIF || do
Firstly we notice that, by the estimates for G, (¢, x) in Lemma 1, one can easily get that
2aH|+Hy-1)
Oo(t, x;0) > ki(ot)™ @
Thus we can write
2aH|+Hr—1)
gr(F) = Clon~ = =101t x;0) + Oa(1, x;0) + @31, x; 0)] . (5.27)

so that we will need to obtain the upper bounds for the terms O;(z, x;0),i = 1,2,3. We apply Fubini’s
theorem, the boundedness of H; with k = 0,1,...,m , the estimate (4.3) in Lemma 4 and the bound
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(5.20) in Lemma 7. So we have the following estimate

1©1(2, x; 0)|
< CllGo(t = *; X, llri-oyaxw) SUP |1H oo
k=0

..m

[f f‘—(f— 8§, X — )’)‘EHDM(S W#q-oaxmydyds|F |,
1-o)t

k 0
5.28
< CllGo(t =, x — ')”‘H([(l—g)t,t]xR) sup IIHkIIw sup E||Du(s, y)”‘H([(l—g)t,t]xR) ( )
k=0,1,..m (s, ))El(1-p)t,t]xXR
(! G,
Zf f —(1—s,x—y)|dyds
k=0 v (-0} Ay

2aH+Hy—1)

< C(Qt)ﬁ-'—l 7+1

In order to get an upper bound for |®,(¢, x; 0)|, one can proceed using exactly the same arguments
as for |®,(z, x; 0)|, but apply (5.21) in Lemma 7 instead of (5.20) in Lemma 7. Hence one obtains

e H1+H2 1)

0,(t, x;0)| < Clo)™ = *et=% ) as., (5.29)

Let us finally estimate |®3(z, x; 0)|. For this, we apply Fubini’s theorem, the fact H; withk =0, 1,...,m
is bounded, the Cauchy-Schwartz inequality, and we finally invoke Lemma 7

+00
|©@3(7, x;0)| < C  sup ||H1'<||oo2f o [f ff f
k=0,1,....m =0 o)t 1o

&G, a
s «( 3x-%) (5.30)

: (E [”DM(S, y)”(H([(l—g)t,t]x]R)E/ (HD/LI(\E/@H

) |F]) dydsdydg] do,
H([(1-0)t,1]xR)

At this point, we apply Cauchy-Schwartz inequality with respect to the conditional expectation with
respect to F. One can use the bound (5.21) in Lemma 7 and obtain

2(aH+Hy—1)

103(1, x;0)| < Clor) = **"a, as. (5.31)

Eventually, plugging the bounds (5.28), (5.29), (5.31) in (5.27), we have

2(aH 1 Hy-1) 2(aH1+H2 )+1_7+1

gr(F) = ki(o1) e (2(gr>
2aHy+Hy—1)

> (o) [kl - C(2(QT)1—$+1—% + (QT)Z—%)] )

= + (o1)

2(aH|+Hy-1) m
——+2-%

(5.32)

Hence if we assume thato < 1 A %, it only remains to choose o sufficiently small such that the quantity
ki —C (Z(QT)I‘i“‘% + (QT)Z‘%) is strictly positive, then we can write

2(aH) +Hy-1) +H2 )

gr(F) > Ci(ot) «
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Thus, the lower bound in (5.12) has been proved.

Step 2: The upper bound. The upper bound in (5.12) is almost an immediate consequence of the
computations which we have just performed for the lower bound. More precisely, according to gz(F)
and the considerations in the first part of the proof of the upper bound for the density, we have the
following

3
gr(F) < Y O4(t,x; 1),
i=0

where we notice that we have substituted ¢ by 1 in O,(z, x;6),i = 0, 1,2,3. We have already seen that

2aH|+Hy—1)
[e3

1_m .
Ot x;1) < Ct 2=%"w, as., i=1,2,

2(aH|+Hy—1)
al) +Hy—
f”—%,

05(t,x;1) < Ct
So we just need to bound @(z, x; 1), which follows directly from (3.8). Thus

a.s.

AeH|+Hy=)  2aH +Hy-D) 5 | 2(0H1+H21>+2_m)
(02 @ @

gF(F)sC(t L g

2(aH|+Hy—1) 1 m m

<Ct « (2+T1_a :+T2_?), a.s.

for some constant C > 0. Therefore

2aH| +Hy-1)

gr(F) < Cot™ o,

for all @ > 1 and m < a, where the positive constant C, depends on 7', m and «. Therefore we conclude
the proof.
O

Proof of Theorem 3. We will divide into two steps to prove this theorem. Firstly in order to prove the
existence of the density for solution to SPDE (1.1), by Theorem 2.1.3 in Nualart [17], we only need to
check that

[|[Du(t, x)|lz > 0, a.s.

Note that (see for example, Liu and Tudor [14])
[Du(t, )|l > 0,a.s. iff  ||Dut, X)ll20.9xr) > 0.

Hence we only need to prove that

t
f f D,..u(t, x)*dzdr > 0, a.s. (5.33)
0

R
Recall (5.1), note that

! !
f f 1D, u(t, 0Pdzdr = f f 1D, u(t, )dzdv
0 D t—e JR (534)

> I](t, X, 8) - IZ(I’ X, 8)’

| =
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10647

where )
Ii(t,x,€) = f f G2(t — v, x — 7)dzdv,
t—-& JR
Celr rs oo i
L(t,x,&) = f f f f Z ——(t = 5, x = WH(s,y,u(s,y))D, .u(s, y)dyds| dzdv,
- JR |[Jv JR 1 ay
Set

" G, )
T(v,2) = f f 2y (= 823 = H{(s. . (s, ))Dycu(s, )y
v YR =0

ThenfoerEC})([O,T]xRxR),k:O,l,...,mandO<s<t,

!
E (I)(t,x,€)) = E(f flT(v, z)lzdzdv)
t—-¢ JR
" 2
t t m akGa
<KE f f(f fZ —(1 - s,x—y)Dv,Zu(s,y)dyds] dzdv
i t—& R v szo ay
r 2
’ (& #Ge
<KE f f dzdv f f (Z p (t—s,x—y)] (D u(s,y))*dyds
| Ji-¢ R v R\ =0 8)/
2
t m akGa S .
<K f f dyds [Z — - s,x—y)) E [ f f (Dv,zu(s,y))zdde] -35)
t—& R k=0 ay t—& R
2
! = 0°G,
< Kf fdyds [Z - (r— s,x—y)) L,_.(5)
t—e JR k=0 ay

m t 1+ _ ylatk=1)\2
< Ke's Z f (- s)_%ds (d+ 1= ) dy
k=0 V1€

x (L4 [x —yle+kyt
<K& o %, with 2m+1<2a.
which is similar to that of (5.17).

From (5.16), we know there exists some constant K > 0 such that

I(t,x,€) < Ke' "=, (5.36)

Then for each gy > 0, according to (5.34), (5.35) and (5.36)

’ 1
P(f fID,,Zu(t, x)[*dzdr > O) > sup P(ill(t, x,&)— L(t x,&) > 0)
0 Jr

£€(0,&0]

> sup P(Iz(t, x,€) < Cal‘i)

£€(0,&0] (5 37)
. 1 '
>1— inf { -E(I(1, x, 8))}
e€(0.00] | Kel-a
1 m
>1— inf —&" % =1.
e€(0,60] K
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This concludes the proof of the existence of the density for solution to SPDE (1.1).

Secondly, for any fixed (¢, x) € [0, T] X R, we know that the random variable F = u(¢, x) — E(u(t, x))
is centered belongs to D'? and by (5.12), it holds that 0 < CltzmHlﬁHzfl) < gr(F),forall ¢t € [0,T]. We
then apply Theorem 3.1 and Corollary 3.3 in Nourdin and Viens [16], and obtain that the probability

density p : R = R of the random variable F' is given by

o(z) = B0~ Bt )l {_ f y dy},

2gr(2) gr(y)
for almost every z € R. Then, the density p of the random variable u(z, x) satisfies
Elu(t, x) - E(u(t, x)) { f“““(’”‘” y }
p(2) = exp{ — dyy. (5.38)
28r— Et,) P\, ()

In order to conclude the proof, we only need to use the bounds obtained in Proposition 3 into (5.38).
O
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