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Abstract: Let p be a prime, k a positive integer, q = pk, and Fq be the finite field with q elements. In
this paper, by using the Jacobi sums, we give an explicit formula for the number of solutions of the two-
variable diagonal sextic equations x6

1 + x6
2 = c over Fq, with c ∈ F∗q and p ≡ 1(mod 6). Furthermore, by

using the reduction formula for Jacobi sums, the number of solutions of the diagonal sextic equations
x6

1 + x6
2 + · · · + x6

n = c of n ≥ 3 variables with c ∈ F∗q and p ≡ 1(mod 6), can also be deduced.
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1. Introduction

Let p be a prime, k a positive integer, q = pk, and let Fq be the finite field of q elements. Let f be a
polynomial over Fq with n variables, and denote by

N( f , q) = N( f (x1, · · · , xn) = 0) = #{(x1, · · · , xn) ∈ Fn
q | f (x1, · · · , xn) = 0}

the number of solutions of f (x1, · · · , xn) = 0 over Fq.
Studying the value of N( f , q) is one of the main topics in the theory of finite fields. Generally

speaking, it is difficult to give the explicit formula for N( f , q).
The degree d of the polynomial f plays an important role in the estimate of N( f , q). An upper bound

for N( f , q) [14] is given by
N( f , q) ≤ dqn−1.

For any positive integer m, we use ordpm to denote the p-adic valuation of m. Suppose that N( f , q) > 0,
the classical Chevalley-Warning theorem shows that ordpN( f , q) > 0 if n > d. Furthermore, let dxe
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denote the least integer ≥ x and let q = pk, Ax [1] showed that

ordpN( f , q) ≥ k
⌈
n − d

d

⌉
.

Finding the explicit formula for N( f , q) under certain conditions has attracted researchers for many
years. From [13, 14] we know that there exists an explicit formula for N( f , q) satisfying deg( f ) ≤ 2
over Fq. Some other works were done by Baoulina [2–5], Cao et al. [7, 8], Hua and Vandiver [12], Hu
et al. [10, 11], Weil [17], and Zhang and Wan [20, 21].

In 1977, Chowla, Cowles and Cowles [9] got a formula for the number of solutions of the
hypersurface

x3
1 + x3

2 + · · · + x3
n = 0

over Fp. In 1979, Myerson [15] extended the result in [9] to the field Fq and studied the number of
solutions of the equation

x4
1 + x4

2 + · · · + x4
n = 0

over Fq. For q = p2t with pr ≡ −1(mod d) for a divisor r of t and d | (q − 1), Wolfmann [18] gave an
explicit formula of the number of solutions of the equation

a1xd
1 + a2xd

2 + · · · + anxd
n = c

over Fq in 1992, where a1, a2, . . . , an ∈ F
∗
q and c ∈ Fq. In 2018, Zhang and Hu [19] determined an

explicit formula of the number of solutions of the equation

x3
1 + x3

2 + x3
3 + x3

4 = c

over Fp, with p ≡ 1(mod 3) and c ∈ F∗p. In 2020, J. Zhao et al. [22, 23] investigated the number of
solutions of the forms

x4
1 + x4

2 = c,

x4
1 + x4

2 + x4
3 = c,

and
x4

1 + x4
2 + x4

3 + x4
4 = c

over Fq, with c ∈ F∗q.
In this paper, we consider the problem of finding the number of solutions of the diagonal sextic

equation
f (x1, x2, · · · , xn) = x6

1 + x6
2 + · · · + x6

n − c = 0

over Fq, where q = pk and c ∈ F∗q.
It is well-known that (see [13], p. 105)

N(x6
1 + x6

2 + · · · + x6
n = c) = N(xgcd(6,q−1)

1 + xgcd(6,q−1)
2 + · · · + xgcd(6,q−1)

n = c)

over Fq. Let q = pk with p a prime. If p = 2, then gcd(6, q − 1) = 1 or 3 depends on k is odd or even.
From Corollary 4 in [18], we can obtain the following result.
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Theorem 1.1. Let p = 2, k an integer, q = pk and c ∈ F∗q. Then

N(x6
1 + x6

2 + · · · + x6
n = c) = qn−1

if k is odd, and

N(x6
1 + x6

2 + · · · + x6
n = c) =

 qn−1 + ξn+1q
n
2−1[2nq

1
2 − (q

1
2 + ξ) 2n+2(−1)n

3 ], if c
q−1

3 = 1,

qn−1 + ξn+1q
n
2−1[(−1)nq

1
2 − (q

1
2 + ξ)2n+2(−1)n

3 ], otherwise

if k is even and n ≥ 2, with ξ = (−1)
k
2 +1.

If p = 3 and k is an integer, or p ≡ 5(mod 6) and k is an odd integer, then gcd(6, q − 1) = 2. It
follows from Theorems 6.26 and 6.27 in [14] that the following result is given.
Theorem 1.2. Let p = 3 and k an integer, or p ≡ 5(mod 6) be a prime and k an odd integer, q = pk

and c ∈ F∗q. Then

N(x6
1 + x6

2 + · · · + x6
n = c) = qn−1 − q

n−2
2 η((−1)

n
2 )

if n is even, and
N(x6

1 + x6
2 + · · · + x6

n = c) = qn−1 + q
n−1

2 η((−1)
n−1

2 c)

if n is odd, where η is the quadratic multiplicative character of Fq.
If p ≡ 5(mod 6) and k is an even integer, Hua and Vandiver [12] studied the number of solutions

of some trinomial equations over Fq and Wolfmann [18] also got the number of solutions of certain
diagonal equations over Fq. The following result can be deduced from Corollary 4 of [18].
Theorem 1.3. Let p ≡ 5(mod 6) be a prime, k an even integer, q = pk, n ≥ 2 and c ∈ F∗q. Then

N(x6
1 + x6

2 + · · · + x6
n = c) =

 qn−1 + ξn+1q
n
2−1[5nq

1
2 − (q

1
2 + ξ) 5n+5(−1)n

6 ], if c
q−1

6 = 1,

qn−1 + ξn+1q
n
2−1[(−1)nq

1
2 − (q

1
2 + ξ)5n+5(−1)n

6 ], otherwise,

where ξ = (−1)
k
2 +1.

However, the formula for N(x6
1 + x6

2 + · · · + x6
n = c) is still unknown when p ≡ 1(mod 6). In this

paper, we solve this problem by using Jacobi sums and an analog of Hasse-Davenport theorem. We
give an explicit formula for the case with 2 variables. The case with arbitrary n ≥ 3 variables can be
deduced from the reduction formula for Jacobi sums.

Let g ∈ F∗q be a fixed primitive element of Fq. For any β ∈ F∗q, there exists exactly one integer
r ∈ [1, q− 1] such that β = gr. Such r is called the index of β with the primitive element g, and denoted
by indgβ := r.

For any element α ∈ E = Fpk and F = Fp, the norm of α relative to Fp are defined by (see, for
example, [6, 14])

NE/F(α) := ααp · · ·αpk−1
= α

q−1
p−1 .

For the simplicity, we write N(α) for NE/F(α).
The main result of this paper is stated as follows.
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Theorem 1.4. Let t and k be positive integers, p = 6t + 1 be a prime, q = pk, and let Fq be the finite
field with q elements. Let c ∈ F∗q, g be a primitive element of Fq and Z = indN(g)2. Then

N(x6
1 + x6

2 = c) =



q − 5 + (−1)k−1( 3u+r
2k−1 + 12a), if indgc ≡ 0(mod 6),

q − 5 + (−1)k( r−u−3s−3v
2k + 4a − 12b), if indgc ≡ 1(mod 6),

q − 5 + (−1
2 )k(3u + 3s + r − 9v), if indgc ≡ 2(mod 6),

q − 5 + (−1)k( u−r
2k−1 + 4a), if indgc ≡ 3(mod 6),

q − 5 + (−1
2 )k(9v + 3u + r − 3s), if indgc ≡ 4(mod 6),

q − 5 + (−1)k( 3v+r+3s−u
2k + 4a + 12b), if indgc ≡ 5(mod 6)

when t or k is even, and

N(x6
1 + x6

2 = c) =



q + 1 + r+u
2k−1 + 4a, if indgc ≡ 0(mod 6),

q + 1 + 3s+3u+9v−r
2k , if indgc ≡ 1(mod 6),

q + 1 + 3v−r−3s−u
2k + 4a + 12b, if indgc ≡ 2(mod 6),

q + 1 + r−3u
2k−1 − 12a, if indgc ≡ 3(mod 6),

q + 1 + 3s−u−3v−r
2k − 12b + 4a, if indgc ≡ 4(mod 6),

q + 1 + 3u−9v−r−3s
2k , if indgc ≡ 5(mod 6)

when both t and k are odd, where a + ib
√

3 = (a′ + ib′
√

3)k, u + iv
√

3 = (u′ + iv′
√

3)k, r + is
√

3 =

(r′ + is′
√

3)k with a′ and b′ being integers such that

a′2 + 3b′2 = p, a′ ≡ −1(mod 3), and 3b′ ≡ a′(2g(q−1)/3 + 1)(mod p),

and the integers r′, s′, u′ and v′ are given by
u′ = r′ = 2a′, v′ = s′ = 2b′, if Z ≡ 0(mod 3),

u′ = 3b′ − a′, r′ = −a′ − 3b′, v′ = −a′ − b′, s′ = a′ − b′, if Z ≡ 1(mod 3),

u′ = −a′ − 3b′, r′ = 3b′ − a′, v′ = a′ − b′, s′ = −a′ − b′, if Z ≡ 2(mod 3).

This paper is organized as follows. In Section 2, we recall some useful known results which will be
needed later. In Section 3, we prove Theorem 1.4 and then present an example to illustrate the validity
of our result.

2. Preliminary lemmas

In this section, we present some useful lemmas that are needed in the proof of Theorem 1.4. For any
multiplicative character λ of Fq, it is now convenient to extend the definition of λ by setting λ(0) = 1 if
λ is the trivial character and λ(0) = 0 otherwise.

Let λ1, · · · , λs be s multiplicative characters of Fq, the Jacobi sum J(λ1, · · · , λs) is defined by

J(λ1, · · · , λs) :=
∑

γ1+···+γs=1

λ1(γ1) · · · λs(γs),
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where the summation is taken over all s-tuples (γ1, · · · , γs) of elements of Fq with γ1 + · · · + γs = 1.
It is clear that if σ is a permutation of {1, · · · , s}, then

J(λσ(1), · · · , λσ(s)) = J(λ1, · · · , λs).

Also for any α ∈ F∗q, we have that∑
γ1+···+γs=α

λ1(γ1) · · · λs(γs) = (λ1 · · · λs)(α)J(λ1, · · · , λs).

The readers are referred to [6] and [14] for basic facts on Jacobi sums.
The following theorem is an analog of Hasse-Davenport theorem for Jacobi sums which establishes

an important relationship between the Jacobi sums in Fq and the Jacobi sums in Fp.
Lemma 2.1. [14] Let χ1, · · · , χs be s multiplicative characters of Fp, not all of which are trivial.
Suppose χ1, · · · , χs are lifted to characters λ1, · · · , λs, respectively, of the finite extension field E of Fp

with [E : Fp] = k. Then
J(λ1, · · · , λs) = (−1)(s−1)(k−1)J(χ1, · · · , χs)k.

Let χ be a multiplicative character of F and λ be a multiplicative character of E. Recall that χ can be
lifted to E by setting λ(α) = χ(N(α)). The characters of Fp can be lifted to the characters of Fq, but not
all the characters of Fq can be obtained by lifting a character of Fp. The following lemma tells us when
p ≡ 1(mod 6), then the multiplicative character λ of order 6 of Fq can be lifted by a multiplicative
character of order 6 of Fp.
Lemma 2.2. [14] Let Fp be a finite field and Fq be an extension of Fp. A multiplicative character λ of
Fq can be lifted by a multiplicative character χ of Fp if and only if λp−1 is trivial.

Let g be a generator of F∗q = F∗pk . Since

N(g)p−1 = (g
q−1
p−1 )p−1 = gq−1 = 1

and
Nl(g) = (g

q−1
p−1 )l , 1 for 1 ≤ l ≤ p − 1,

one knows that N(g) is a generator of F∗p. Then we can state the following lemma.
Lemma 2.3. [6] Let p ≡ 1(mod 6) be a prime, q a power of p, g be a generator of F∗q, and let χ be a
multiplicative character of order 6 over Fp. Then

J(χ, χ2) = a′ + ib′
√

3,

where the integers a′ and b′ are uniquely determined by

a′2 + 3b′2 = p, a′ ≡ −1(mod 3), and 3b′ ≡ a′(2g(q−1)/3 + 1)(mod p).

Lemma 2.4. [6] Let p = 6t+1 be a prime number. Let g′ be the generator of F∗p and χ be a multiplicative

character of order 6 over Fp such that χ(g′) = 1+i
√

3
2 . Let the integers a′ and b′ be defined as in

Lemma 2.3 and the integers u′, v′, r′, s′ are given as in Theorem 1.4. The values of the 36 Jacobi sums
J(χm, χn) (m, n = 0, 1, 2, 3, 4, 5) are given in the following Table 1.
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Table 1. The values of the Jacobi sums J(χm, χn).

m \ n 0 1 2 3 4 5

0 p 0 0 0 0 0
1 0 (−1)t 1

2 (u′ + iv′
√

3) a′ + ib′
√

3 (−1)t(a′ + ib′
√

3) 1
2 (u′ + iv′

√
3) −(−1)t

2 0 a′ + ib′
√

3 1
2 (r′ + is′

√
3) a′ + ib′

√
3 −1 1

2 (u′ − iv′
√

3)
3 0 (−1)t(a′ + ib′

√
3) a′ + ib′

√
3 −(−1)t a′ − ib′

√
3 (−1)t(a′ − ib′

√
3)

4 0 1
2 (u′ + iv′

√
3) −1 a′ − ib′

√
3 1

2 (r′ − is′
√

3) a′ − ib′
√

3
5 0 −(−1)t 1

2 (u′ − iv′
√

3) (−1)t(a′ − ib′
√

3) a′ − ib′
√

3 (−1)t 1
2 (u′ − iv′

√
3)

The following lemma gives an explicit formula for the number of solutions of the diagonal equation
in terms of Jacobi sums.
Lemma 2.5. [6, 12, 17] Let k1, · · · , ks be positive integers, a1, · · · , as, c ∈ F∗q. Set di = gcd(ki, q − 1),
and let λi be a multiplicative character on Fq of order di, i = 1, · · · , s. Then the number N of solutions
of the equation a1xk1

1 + · · · + asx
ks
s = c is given by

N = qs−1 +

d1−1∑
j1=1

· · ·

ds−1∑
js=1

λ
j1
1 (ca−1

1 ) · · · λ js
s (ca−1

s )J(λ j1
1 , · · · , λ

js
s ).

3. Proof of Theorem 1.4

In this section, we give the proof of Theorem 1.4.
Proof. Let g be a primitive element of Fq and λ be a multiplicative character of Fq of order 6 with
λ(g) = 1+i

√
3

2 . Since q ≡ 1(mod 6), then gcd(6, q − 1) = 6. Using Lemma 2.5, we have

N(x6
1 + x6

2 = c) = q +
5∑

j1=1

5∑
j2=1

λ(c j1+ j2)J(λ j1 , λ j2)

= q +
∑

1≤i≤5
λ2i(c)J(λi, λi) + 2

∑
1≤i< j≤5

λi+ j(c)J(λi, λ j).

Since p ≡ 1(mod 6), it follows that λp−1 is trivial. By Lemma 2.2, the multiplicative character λ can
be lifted by a multiplicative character χ of order 6 of Fp. By Lemma 2.1, we obtain

N(x6
1 + x6

2 = c) = q + (−1)k−1

( ∑
1≤i≤5

λ2i(c)J(χi, χi)k + 2
∑

1≤i< j≤5
λi+ j(c)J(χi, χ j)k

)
. (3.1)

Consider the case when t or k is even. Noting that λ(1) = 1, from (3.1), one has

N(x6
1 + x6

2 = 1) = q + (−1)k−1

∑
1≤i≤5

J(χi, χi)k + 2
∑

1≤i< j≤5

J(χi, χ j)k

 . (3.2)

From Table 1 of Lemma 2.4, we derive that∑
1≤i≤5

J(χi, χi)k =
(

u′+iv′
√

3
2

)k
+

(
r′+is′

√
3

2

)k
+ (−1)k +

(
r′−is′

√
3

2

)k
+

(
u′−iv′

√
3

2

)k

= u+iv
√

3
2k + r+is

√
3

2k + (−1)k + r−is
√

3
2k + u−iv

√
3

2k

= 1
2k−1 (u + r) + (−1)k, (3.3)
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and

2
∑

1≤i< j≤5
J(χi, χ j)k = 6(a′ + ib′

√
3)k +

(u′+iv′
√

3)k

2k−1 + 4(−1)k +
(u′−iv′

√
3)k

2k−1 + 6(a′ − ib′
√

3)k

= 6(a + ib
√

3) + u+iv
√

3
2k−1 + 4(−1)k + u−iv

√
3

2k−1 + 6(a − ib
√

3)

= 4
(
3a + u

2k + (−1)k
)
. (3.4)

Thus if indgc ≡ 0(mod 6), then it follows from (3.2)–(3.4) that

N(x6
1 + x6

2 = c) = q − 5 + (−1)k−1
(
3u + r
2k−1 + 12a

)
.

From (3.1), we have

N(x6
1 + x6

2 = g) = q + (−1)k−1

∑
1≤i≤5

λ2i(g)J(χi, χi)k + 2
∑

1≤i< j≤5

λi+ j(g)J(χi, χ j)k

 . (3.5)

Noting that λ(g) = 1+i
√

3
2 and λ6(g) = 1, then from Table 1 of Lemma 2.4, we deduce that∑

1≤i≤5
λ2i(g)J(χi, χi) = −1+i

√
3

2

(
( u′+iv′

√
3

2 )k + ( r′−is′
√

3
2 )k

)
−1+i

√
3

2

(
( r′+is′

√
3

2 )k + ( u′−iv′
√

3
2 )k

)
+ (−1)k

= −1+i
√

3
2k+1 (u + iv

√
3 + r − is

√
3)

−1+i
√

3
2k+1 (r + is

√
3 + u − iv

√
3) + (−1)k

= 3s−3v−r−u
2k + (−1)k, (3.6)

and

2
∑

1≤i< j≤5

χi+ j(g)J(χi, χ j) = −4a + 12b +
u + 3v
2k−1 + 4(−1)k. (3.7)

Thus if indgc ≡ 1(mod 6), from (3.5)–(3.7), one can deduce that

N(x6
1 + x6

2 = c) = q − 5 + (−1)k

(
r − u − 3s − 3v

2k + 4a − 12b
)
.

In the similar way, one can deduce that

N(x6
1 + x6

2 = c) =



q − 5 + (−1
2 )k(3u + 3s + r − 9v), if indgc ≡ 2(mod 6),

q − 5 + (−1)k( u−r
2k−1 + 4a), if indgc ≡ 3(mod 6),

q − 5 + (−1
2 )k(9v + 3u + r − 3s), if indgc ≡ 4(mod 6),

q − 5 + (−1)k( 3v−u+r+3s
2k + 4a + 12b), if indgc ≡ 5(mod 6).

The case when both t and k are odd can also be proved by the same argument. �
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Remark. (Reduction formula for Jacobi sums) [6] Let χ1, · · · , χk be k nontrivial multiplicative
characters of Fq. If k ≥ 2, then

J(χ1, · · · , χk) =

 −qJ(χ1, · · · , χk−1), if χ1 · · · χk−1 is trivial,

J(χ1 · · · χk−1, χk)J(χ1, · · · , χk−1), if χ1 · · · χk−1 is nontrivial.

One can use the reduction formula for Jacobi sums to give an explicit formula for the number of
solutions of the diagonal sextic equation

x6
1 + x6

2 + · · · + x6
n = c

of n ≥ 3 variables over Fpk , with c ∈ F∗pk and p ≡ 1(mod 6). But we omit the tedious details here.
By concluding this section, we present an example to demonstrate the validity of Theorem 1.4.

Example. Let q = 193. We consider the numbers of solutions of the sextic equation

x6
1 + x6

2 = c

over Fq, where c ∈ F∗q.
Since 2 is a primitive root modulo 19, we have Z = ind22 = 1. Let g be a generator of F∗193 such that

N(g) = g
193−1
19−1 = 2.

That means
g

193−1
3 = (g

193−1
19−1 )

19−1
3 = 26.

The integers a′ and b′ are determined by

a′2 + 3b′2 = 19, a′ ≡ −1(mod 3) and 3b′ ≡ 15a′(mod 19).

We can get that a′ = −4, b′ = −1. Since Z ≡ 1(mod 3), we obtain that r′ = 7, s′ = −3, u′ = 1
and v′ = 5. Thus we have a = −28, b = −45, r = −224, s = −360, u = −224 and v = −360. By
Theorem 1.4, one can get that

N(x6
1 + x6

2 = c) =



6636, if indgc ≡ 0(mod 6),

6264, if indgc ≡ 1(mod 6),

6264, if indgc ≡ 2(mod 6),

7308, if indgc ≡ 3(mod 6),

7344, if indgc ≡ 4(mod 6),

7344, if indgc ≡ 5(mod 6).

4. Conlusions

Studying the number of solutions of the polynomial equation f (x1, x2, · · · , xn) = 0 over Fq is one
of the main topics in the theory of finite fields. Generally speaking, it is difficult to give an explicit
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formula for the number of solutions of the equation f (x1, x2, · · · , xn) = 0. There are many researchers
who concentrated on finding the formula for the number of solutions of f (x1, x2, · · · , xn) = 0 under
certain conditions. Exponential sums are important tools for solving problems involving the number
of solutions of the equation f (x1, x2, · · · , xn) = 0 over Fq. In this paper, by using the Jacobi sums and
the Hasse-Davenport theorem for Jacobi sums, we give an explicit formula for the number of solutions
of the two-variable diagonal sextic equations x6

1 + x6
2 = c over Fq, with c ∈ F∗q and p ≡ 1(mod 6), where

p is the characteristic of Fq. Furthermore, by using the reduction formula for Jacobi sums, the number
of solutions of the diagonal sextic equations x6

1 + x6
2 + · · · + x6

n = c of n ≥ 3 variables with c ∈ F∗q and
p ≡ 1(mod 6), can also be deduced.
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