
http://www.aimspress.com/journal/Math

AIMS Mathematics, 7(6): 10513–10533.
DOI: 10.3934/math.2022586
Received: 18 December 2021
Revised: 11 March 2022
Accepted: 15 March 2022
Published: 28 March 2022

Research article

A linearly convergent proximal ADMM with new iterative format for BPDN
in compressed sensing problem

Bing Xue1, Jiakang Du2, Hongchun Sun1,∗ and Yiju Wang2,∗

1 School of Mathematics and Statistics, Linyi University, Linyi 276005, China
2 School of Management Science, Qufu Normal University, Rizhao 276800, China

* Correspondence: Email: hcsun68@126.com, wang-yiju@163.com.

Abstract: In recent years, compressive sensing (CS) problem is being popularly applied in the fields of
signal processing and statistical inference. The alternating direction method of multipliers (ADMM)
is applicable to the equivalent forms of basis pursuit denoising (BPDN) in CS problem. However,
the solving speed and accuracy are adversely affected when the dimension increases greatly. In this
paper, a new iterative format of proximal ADMM, which has fast solving speed and pinpoint accuracy
when the dimension increases , is proposed to solve BPDN problem. Global convergence of the new
type proximal ADMM is established in detail, and we exhibit a R− linear convergence rate under
suitable condition. Moreover, we apply this new algorithm to solve different types of BPDN problems.
Compared with the state-of-the-art of algorithms in BPDN problem, the proposed algorithm is more
accurate and efficient.
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1. Introduction

Compressive sensing (CS) problem is to recover a sparse signal x̄ from an undetermined linear
system Ax̄ = b, where x̄ ∈ Rn, A is the sensing matrix and A ∈ Rm×n (m � n), b is the observed signal
and b ∈ Rm. A fundamental decoding model of CS problem is the following basis pursuit denoising
(termed as BPDN) problem:

min
x∈Rn

1
2
‖Ax − b‖22 + µ‖x‖1 (1.1)

where µ (> 0) is a parameter, and the norm ‖ · ‖1 and ‖ · ‖2 denote the Euclidean 1-norm and 2-norm,
respectively.
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Recently, a lot of numerical algorithms about BPDN problem have been extensively developed. In
fact, the BPDN problem can be equivalently converted into a separable convex programming by
introducing auxiliary variable. Thus the numerical methods, which can be used to solve the separable
convex programming, are applicable to BPDN problem, such as the alternating direction method of
multipliers and its linearized version [1–4], the Peaceman-Rachford splitting method (PRSM) or
Douglas-Rachford splitting method (DRSM) of multipliers [5–8], the symmetric alternating direction
method of multipliers [9], etc. Yang and Zhang [1] investigate the use of alternating direction
algorithms for several `1-norm minimization problems arising from sparse solution recovery in CS,
including the basis pursuit problem, the basis-pursuit denoising problems, and so on. Yuan [2]
presents a descent-like method, which can obtain a descent direction and an appropriate step size and
improve the proximal alternating direction method. Yu et al. [5] apply the primal DRSM to solve
equivalent transformation form of BPDN problem. He and Dan [6] furtherly study the multi-block
separable convex minimization problem with linear constraints along the way by the primal
application of DRSM, and present the exact and inexact versions of the new method in a unified
framework. Compared to the DRSM, the PRSM requires more restrictive assumptions to ensure its
convergence, while it is always faster whenever it is convergent. He and Liu et al. [7] illustrate the
reason for this difference, and develop a modified PRSM for separable convex programming, which
includes BPDN problem as a special case. Sun and Liu [8] develop a generalized PRSM for BPDN
problem, of which both subproblems are approximated by the linearization technique. He et al. [9]
obtain the convergence of the symmetric version of ADMM with step sizes, where step sizes can be
enlarged by Fortin and Glowinski’s constant. On the other hand, BPDN problem can be equivalently
transformed into an equation or variational inequality problem by splitting technique [10–15], which
can be solved by some standard methods such as conjugate gradient methods, proximal point
algorithms and projection-type algorithms. Xiao and Zhu [10] transform BPDN problem into a
convex constrained monotone equation, and present a conjugate gradient method for the equivalent
form of the problem. Sun and Tian [11] propose a class of derivative-free conjugate gradient (CG)
projection methods for nonsmooth equations with convex constraints, including the BPDN problem.
Sun et al. [12] reformulate BPDN problem as variational inequality problem by splitting the decision
variable into two nonnegative auxiliary variables, and propose a novel inverse matrix-free proximal
point algorithm for BPDN problem. Base on the same transformation of BPDN problem, Feng and
Wang [13] also propose a projection-type algorithm without any backtracking line search. Although
there are so many ways to solve the problem, it is still needed to improve the solving speed and
accuracy. In particular, as the dimension increases greatly, the solving speed and accuracy are
adversely affected. In the paper, we will establish a new iterative format of proximal ADMM, which
has closed-form solutions. The motivation behind this is for the better numerical performance when
the dimension increases. Furthermore, the linear rate convergence result for new algorithm is
established, which is also one of the most important motivations.

The rest of this paper is organized as follows. In Section 2, some equivalent reformulations of (1.1)
and related theories of (1.1), which are the basis of our analysis, are given. In Section 3, basing on a
special iterative format, we present a new type proximal ADMM, in which the corresponding
subproblems have closed-form solutions. The global convergence of new method is discussed in
detail. We establish a R−linear rate convergence theorem under suitable condition. In Section 4, some
numerical experiments on sparse signal recovery are given, and we compare the CPU time and the
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relative error among the Peaceman-Rachford splitting method of multipliers [8], the conjugate
gradient methods [11], the proximal point algorithms [12], the projection-type algorithms [13] and
our algorithm, and show that our algorithm is more accurate and efficient than other algorithms.
Finally, some conclusive remarks are drawn in the last section.

We end this section with some notations used in this paper. Vectors considered in this paper are
all taken in Euclidean space equipped with the standard inner product. The notation Rm×n stands for
the set of all m × n real matrices. For x, y ∈ Rn, we use (x; y) to denote the column vector (x>, y>)>.
If G ∈ Rn×n is a symmetric positive definite matrix, we denote by ‖x‖G =

√
x>Gx the G-norm of the

vector x.

2. Equivalent reformulations of BPDN problem and preliminaries

2.1. Equivalent reformulations of BPDN problem

In this section, we first establish some equivalent reformulations to the BPDN problem via some
the related optimality theories.

It is obvious that the BPDN problem can be equivalently reformulated as the following optimization
problem [8]

min 1
2‖Ax1 − b‖22 + µ‖x2‖1

s.t. x1 − x2 = 0
x1 ∈ R

n, x2 ∈ R
n.

(2.1)

Then the augmented Lagrangian function of the convex programming (2.1) can be written as

Lβ(x1, x2, λ) := θ1(x1) + θ2(x2) −
〈
λ, x1 − x2

〉
+
β

2

∥∥∥x1 − x2

∥∥∥2
, (2.2)

where λ is the Lagrangian multiplier for the linear constraints of (2.1) and λ ∈ Rn,

θ1(x1) =
1
2
‖Ax1 − b‖22, θ2(x2) = µ‖x2‖1.

By invoking the first-order optimality condition for convex programming, we can equivalently
reformulate problem (2.1) as the following variational inequality problem: finding vector
x∗ = (x∗1; x∗2) ∈ Rn × Rn and λ∗ ∈ Rn such that

θ1(x1) − θ1(x∗1) − (x1 − x∗1)>λ∗ ≥ 0, ∀x1 ∈ R
n,

θ2(x2) − θ2(x∗2) + (x2 − x∗2)>λ∗ ≥ 0, ∀x2 ∈ R
n,

x∗1 − x∗2 = 0.
(2.3)

Obviously, the system (2.3) is equivalent to the following problem: Find a vector w∗ ∈ W such that

θ(x) − θ(x∗) + (w − w∗)>F(w∗) ≥ 0, ∀w ∈ W, (2.4)

where w = (x1; x2; λ) ∈ W = Rn × Rn × Rn, θ(x) = θ1(x1) + θ2(x2), and

F(w) :=


−λ

λ

x1 − x2

 =


0 0 −In

0 0 In

In −In 0




x1

x2

λ

. (2.5)
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We denote the solution set of (2.4) byW∗.
It is easy to verify that the mapping F(·) is not only monotone but also satisfies the following nice

property

(w′ − w)>(F(w′) − F(w)) = 0, ∀w′,w ∈ W.

2.2. Preliminaries

To proceed, we present the following definition, which will be needed in the sequel.
Definition 2.1. For sequence vector µk = (µk

1, µ
k
2, · · · , µ

k
n)> ∈ Rn (k = 1, 2, · · · ), we define two new

functions ψ(µk) and δ(µk).
(i) The function ψ(µk) = (ψ1(µk

1), ψ1(µk
2), · · · , ψ1(µk

n))>, and

ψ1(µk
i ) =

 0, if |µk
i | ≤

C
n2k ,

µk
i , if |µk

i | >
C

n2k .
(i = 1, 2, · · · , n) (2.6)

where k is positive integer, and C > 0 is a constant.
(ii) The function δ(µk) = µk − ψ(µk).

3. Algorithm and convergence

In this section, we present a new type proximal ADMM for solving (2.1) by a special iterative
format, and the global convergence of new method is also established in detail.
Algorithm 3.1.
Step 0. Select constants β, γ, ε > 0, two positive semi-definite matrices Ri ∈ R

n×n(i = 1, 2). Choose an
arbitrarily initial point w0 = (x0

1; x0
2; λ0) ∈ Rn × Rn × Rn. Take

η =

{
γ, if 0 < γ ≤ 1,
1
γ
, if γ > 1. (3.1)

Set k = 0.
Step 1. By current iterate wk, compute the new iterate ŵk = (x̂k

1; x̂k
2; λ̂k) via


x̂k

1 ∈ argminx1∈RnLβ(x1, xk
2, λ

k) + 1
2‖x1 − xk

1‖
2
R1
,

x̂k
2 ∈ argminx2∈RnLβ(x̂k

1, x2, λ
k) + 1

2‖x2 − xk
2‖

2
R2
,

λ̂k = λk − γβ
(
x̂k

1 − x̂k
2

)
,

(3.2)

Step 2. If ‖wk − ŵk‖ ≤ ε, then stop; otherwise, go to Step 3.
Step 3. Set wk+1 = ρŵk + (1 − ρ)ψ(wk), where ρ ∈ (0, η) and η is a constant defined in (3.1). Go to
Step 1.

In the following, we show that it is reasonable to use ‖wk − ŵk‖ ≤ ε to terminate Algorithm 3.1.
Lemma 3.1. If wk = ŵk, then the vector wk is a solution of (2.4).
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Proof. For x1-subproblem in (3.2), using the first-order optimality condition, for any x1 ∈ R
n, we

obtain
0 ≤ θ1(x1) − θ1(x̂k

1) + (x1 − x̂k
1)>

{
−λk + β

(
x̂k

1 − xk
2

)
+R1(x̂k

1 − xk
1)
}

= θ1(x1) − θ1(x̂k
1) + (x1 − x̂k

1)>
{
−λ̂k + β(1 − γ)

(
x̂k

1 − x̂k
2

)
− β(xk

2 − x̂k
2)

+R1(x̂k
1 − xk

1)
}

= θ1(x1) − θ1(x̂k
1) + (x1 − x̂k

1)>(−λ̂k)

+ (x1 − x̂k
1)>

{
1−γ
γ

(λk − λ̂k) − β(xk
2 − x̂k

2)
}

+ (x1 − x̂k
1)>R1(x̂k

1 − xk
1),

where the first and the second equalities are by λk = λ̂k + γβ(x̂k
1 − x̂k

2), i.e.,

θ1(x1) − θ1(x̂k
1) + (x1 − x̂k

1)>(−λ̂k)
≥ (x1 − x̂k

1)>R1(xk
1 − x̂k

1) + β(x1 − x̂k
1)>(xk

2 − x̂k
2) − 1−γ

γ
(x1 − x̂k

1)>(λk − λ̂k). (3.3)

For x2-subproblem in (3.2), similar to discussion above, one has

0 ≤ θ2(x2) − θ2(x̂k
2) + (x2 − x̂k

2)>
{
λk − β

(
x̂k

1 − x̂k
2

)
+ R2(x̂k

2 − xk
2)
}

= θ2(x2) − θ2(x̂k
2) + (x2 − x̂k

2)>
{
λ̂k − β(1 − γ)

(
x̂k

1 − x̂k
2

)
+ R2(x̂k

2 − xk
2)
}

= θ2(x2) − θ2(x̂k
2) + (x2 − x̂k

2)>λ̂k

− (x2 − x̂k
2)>

{
1−γ
γ

(λk − λ̂k)
}

+ (x2 − x̂k
2)>R2(x̂k

2 − xk
2),

where the first and second equalities are by λk = λ̂k + γβ(x̂k
1 − x̂k

2), i.e.,

θ2(x2) − θ2(x̂k
2) + (x2 − x̂k

2)>λ̂k ≥ (x2 − x̂k
2)>R2(xk

2 − x̂k
2) +

1 − γ
γ

(x2 − x̂k
2)>(λk − λ̂k). (3.4)

For λ-subproblem in (3.2), for any λ ∈ Rn, one has

(λ − λ̂k)>
(
x̂k

1 − x̂k
2

)
=

1
βγ

(λ − λ̂k)>(λk − λ̂k). (3.5)

By (3.3)–(3.5), we get

θ(x) − θ(x̂k) + (w − ŵk)>F(ŵk) ≥ (w − ŵk)>G(wk − ŵk), ∀w ∈ W, (3.6)

where

G =


R1 βIn −

1−γ
γ

In

0 R2
1−γ
γ

In

0 0 1
βγ

In

 . (3.7)

Combining wk = ŵk with (3.6), one has

θ(x) − θ(x̂k) + (w − ŵk)>F(ŵk) ≥ 0, ∀w ∈ W. (3.8)

Substituting ŵk and x̂k in (3.8) with wk and xk, respectively, we obtain

θ(x) − θ(xk) + (w − wk)>F(wk) ≥ 0, ∀w ∈ W,

which indicates that wk is a solution of (2.4). �
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Remark 3.1. From Lemma 3.1, if Algorithm 3.1 stops at Step 2, then wk is a proximal solution of (2.4).

In the following, we assume that Algorithm 3.1 generates infinite sequences {wk} and {ŵk}. For
convenience, we define two matrices to simplify our notation in the later analysis.

M =


R1 0 0
0 βIn + R2 0
0 0 1

βγ
In

 , Q =


R1 0 0
0 βIn + R2

−1
2γ In

0 −1
2γ In

1
βγ2 In

 . (3.9)

The following lemma gives some interesting properties of the two matrices M,Q just defined. These
properties are crucial in the convergence analysis of Algorithm 3.1.

Lemma 3.2. If R1 and R2 are two positive semi-definite matrices, then we have
(i) Both matrices M and Q are positive semi-definite;
(ii) The matrix H1 := 2Q − γM is positive semi-definite if 0 < γ ≤ 1;
(iii) The matrix H2 := 2γQ − M is positive semi-definite if γ > 1.

Proof. (i) For any w = (x1; x2; λ), one has

w>Mw = ‖x1‖
2
R1

+ β‖x2‖
2 + ‖x2‖

2
R2

+
1
βγ
‖λ‖2 ≥ 0.

So the matrix M is positive semi-definite.
The matrix Q can be written as

Q =


R1 0 0
0 R2 0
0 0 0

 +


0 0 0
0 βIn − 1

2γ In

0 − 1
2γ In

1
βγ2 In

 := Q1 + Q2.

Obviously, the matrix Q1 is positive semi-definite, and we have

w>Q2w = βx>2 x2 + 1
βγ2λ

>λ − 1
γ

x>2 λ
≥ βx>2 x2 + 1

βγ2λ
>λ − 1

γ
‖x2‖‖λ‖

≥ βx>2 x2 + 1
βγ2λ

>λ − (β4‖x2‖
2 + 1

βγ2 ‖λ‖
2)

≥
3β
4 ‖x2‖

2

≥ 0,

where the first inequality is obtained by the Cauchy-Schwartz inequality, the second inequality follows
from the fact that a2 + b2 ≥ 2ab,∀a, b ∈ R+, and the desired result follows.

(ii) For the matrix H1. By a direct computation, it yields that

H1 = 2Q − γM =


(2 − γ)R1 0 0

0 (2 − γ)(βIn + R2) − 1
γ
In

0 − 1
γ
In

2−γ2

βγ2 In


= (2 − γ)


R1 0 0
0 R2 0
0 0 0

 +


0 0 0
0 (2 − γ)βIn − 1

γ
In

0 − 1
γ
In

2−γ2

βγ2 In
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:= (2 − γ)Q1 + Q3.

Obviously, by 0 < γ ≤ 1, the first part is positive semi-definite, and

w>Q3w = (2 − γ)βx>2 x2 +
2−γ2

βγ2 λ
>λ − 2

γ
x>2 λ

≥ (2 − γ)βx>2 x2 +
2−γ2

βγ2 λ
>λ − 2

γ
‖x2‖‖λ‖

≥ (2 − γ)βx>2 x2 +
2−γ2

βγ2 λ
>λ − ( β

2−γ2 ‖x2‖
2 +

2−γ2

βγ2 ‖λ‖
2)

≥ (2 − γ) 1
2−γ2β‖x2‖

2

≥ 0,

and thus the desired result follows.
(iii) For the matrix H2. By a direct computation, it yields that

H2 = 2γQ − M =


(2γ − 1)R1 0 0

0 (2γ − 1)(βIn + R2) −In

0 −In
1
βγ

In


= (2γ − 1)


R1 0 0
0 R2 0
0 0 0

 +


0 0 0
0 (2γ − 1)βIn −In

0 −In
1
βγ

In


:= (2γ − 1)Q1 + Q4.

Similar to discussion above, using γ > 1, we obtain

w>Q4w = (2γ − 1)βx>2 x2 + 1
βγ
λ>λ − 2x>2 λ

≥ (2γ − 1)βx>2 x2 + 1
βγ
λ>λ − 2|x2‖‖λ‖

≥ (2γ − 1)βx>2 x2 + 1
βγ
λ>λ − (βγ‖x2‖

2 + 1
βγ
‖λ‖2)

≥ (γ − 1)β‖x2‖
2

≥ 0.

Combining this with the positive semi-definite of Q1, and the desired result follows. �

Lemma 3.3. Let {wk} and {ŵk} be two sequences generated by Algorithm 3.1. Then we have

(wk − w∗)>M(wk − ŵk) ≥ ‖wk − ŵk‖2Q, ∀w∗ ∈ W∗. (3.10)

Proof. From the definitions of M in (3.9) and G in (3.7), one has

G = M + M̃,
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where M̃ =


0 βIn −

1−γ
γ

In

0 −βIn
1−γ
γ

In

0 0 0

 . By a direct computation, it yields that

0 ≤ θ(x̂k) − θ(x∗) + (ŵk − w∗)>F(ŵk)
≤ (ŵk − w∗)>G(wk − ŵk)
= (ŵk − w∗)>M(wk − ŵk) + (ŵk − w∗)>M̃(wk − ŵk)
= (ŵk − w∗)>M(wk − ŵk) + β[(x̂k

1 − x∗1) − (x̂k
2 − x∗2)]>(xk

2 − x̂k
2)

−
1−γ
γ

[(x̂k
1 − x∗1) − (x̂k

2 − x∗2)]>(λk − λ̂k)
= (ŵk − w∗)>M(wk − ŵk) + β(x̂k

1 − x̂k
2)>(xk

2 − x̂k
2)

−
1−γ
γ

(x̂k
1 − x̂k

2)>(λk − λ̂k)
= (ŵk − w∗)>M(wk − ŵk) + 1

γ
(λk − λ̂k)>(xk

2 − x̂k
2)

−
1−γ
γ

[ 1
βγ

(λk − λ̂k)>](λk − λ̂k)
= (ŵk − w∗)>M(wk − ŵk) + 1

γ
(λk − λ̂k)>(xk

2 − x̂k
2) − 1−γ

βγ2 ‖λ
k − λ̂k‖2,

(3.11)

where the first inequality is by (2.4) with w∗ ∈ W∗, wk ∈ W, since w∗ ∈ W∗ ⊆ W, using (3.6) with
x = x∗ and w = w∗, we have that the second inequality holds, the third equality follows from x∗1 = x∗2,
and the four equality comes from the fact (x̂k

1 − x̂k
2) = 1

γβ
(λk − λ̂k). Applying (3.11), we get

(ŵk − w∗)>M(wk − ŵk) ≥ −
1
γ

(λk − λ̂k)>(xk
2 − x̂k

2) +
1 − γ
βγ2 ‖λ

k − λ̂k‖2,

and one has
(wk − w∗)>M(wk − ŵk)
= (wk − ŵk)>M(wk − ŵk) + (ŵk − w∗)>M(wk − ŵk)
≥ (wk − ŵk)>M(wk − ŵk) − 1

γ
(λk − λ̂k)>(xk

2 − x̂k
2) +

1−γ
βγ2 ‖λ

k − λ̂k‖2

= ‖wk − ŵk‖2Q,

where the second equality follows from the definition of matrix Q in (3.9), and the desired result
follows. �

Lemma 3.4. For any solution w∗ = (x∗1; x∗2; λ∗) of (2.4), the sequence {wk} generated by Algorithm 3.1
satisfies

‖ρŵk + (1 − ρ)wk − w∗‖2M ≤ ‖w
k − w∗‖2M − ρ‖ŵ

k − wk‖2H, (3.12)

where the matrix H is defined by
H = (η − ρ)M, (3.13)

and η is defined in (3.1).

AIMS Mathematics Volume 7, Issue 6, 10513–10533.
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Proof. From (3.1), if 0 < γ ≤ 1, then η = γ. A direct computation yields that

‖ρ(ŵk − wk) + (wk − w∗)‖2M
= ‖wk − w∗‖2M + 2ρ(wk − w∗)>M(ŵk − wk) + ρ2‖ŵk − wk‖2M
≤ ‖wk − w∗‖2M − 2ρ‖ŵk − wk‖2Q + ρ2‖ŵk − wk‖2M
= ‖wk − w∗‖2M − 2ρ‖ŵk − wk‖2

( 1
2 H1+

γ
2 M)

+ ρ2‖ŵk − wk‖2M

= ‖wk − w∗‖2M − (ŵk − wk)>(ρH1 + (ργ − ρ2)M)(ŵk − wk)
= ‖wk − w∗‖2M − (ŵk − wk)>ρ(γ − ρ)M(ŵk − wk))
−(ŵk − wk)>ρH1(ŵk − wk)

≤ ‖wk − w∗‖2M − ρ‖ŵ
k − wk‖2(γ−ρ)M,

(3.14)

where the first inequality follows from (3.10), the second equality follows from H1 = 2Q − γM in
Lemma 3.2 (ii), and the second inequality follows from the fact that the matrix H1 is positive semi-
definite in Lemma 3.2.
If γ ≥ 1, then η = 1

γ
. Similar to discussion (3.14), we can also obtain

‖ρ(ŵk − wk) + (wk − w∗)‖2M
≤ ‖wk − w∗‖2M − 2ρ‖ŵk − wk‖2Q + ρ2‖ŵk − wk‖2M

= ‖wk − w∗‖2M − 2ρ‖ŵk − wk‖2
( 1

2γ H2+ 1
2γ M)

+ ρ2‖ŵk − wk‖2M

= ‖wk − w∗‖2M − (ŵk − wk)>( ρ
γ
H2 + ρ( 1

γ
− ρ)M(ŵk − wk)

= ‖wk − w∗‖2M − ρ‖ŵ
k − wk‖2

( 1
γ−ρ)M

−
ρ

γ
(ŵk − wk)>H2(ŵk − wk)

≤ ‖wk − w∗‖2M − ρ‖ŵ
k − wk‖2

( 1
γ−ρ)M

,

(3.15)

where the first equality comes from H2 = 2γQ − M in Lemma 3.2 (iii), and the second inequality
follows from the fact that the matrix H2 is positive semi-definite in Lemma 3.2.
The desired result follows by combining above. �

Remark 3.2. By the definition of η in (3.1), the matrix H in (3.13) is positive semi-definite.

Theorem 3.1. For any solution w∗ = (x∗1; x∗2; λ∗) of (2.4), the sequence {wk} generated by Algorithm 3.1
satisfies

‖wk+1 − w∗‖M ≤ ‖wk − w∗‖M + (1 − ρ)‖δ(wk)‖M. (3.16)

Proof. Since the matrix H in (3.13) is positive semi-definite, by (3.12), one has

‖wk+1 − w∗‖M = ‖ρŵk + (1 − ρ)ψ(wk) − w∗‖M

= ‖ρ(ŵk − wk) + (wk − w∗) + (ρ − 1)(wk − ψ(wk))‖M

≤ ‖ρ(ŵk − wk) + (wk − w∗)‖M + (1 − ρ)‖δ(wk)‖M

≤ ‖wk − w∗‖M + (1 − ρ)‖δ(wk)‖M.

(3.17)

Thus, the desired result follows. �
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Theorem 3.2. Assume that the matrix R1 is positive definite. Then the sequence {wk} generated by
Algorithm 3.1 converges to some w̄ ∈ W∗.
Proof. Using Definition 2.1, there exists a constant c1 > 0 such that ‖δ(wk)‖M ≤ c1

2k . Combining this
with (3.16), we obtain

‖wk+1 − w∗‖M ≤ ‖wk − w∗‖M + (1 − ρ)c1
1
2k

≤ ‖wk−1 − w∗‖M + (1 − ρ)c1

(
1
2k + 1

2k−1

)
≤ · · · · · · · · ·

≤ ‖w1 − w∗‖M + (1 − ρ)c1
∑k

m=1
1

2m

≤ ‖w1 − w∗‖M + (1 − ρ)c1
∑∞

m=1
1

2m ,

(3.18)

where w∗ ∈ W∗. Since that the matrix R1 is positive definite, it is easy to obtain that the matrix M is
positive definite. Combining this with (3.18), we have that {wk} is bounded.
Now, we break up the discussion into two cases.

Case 1. If there exists a subsequence {wk j} such that ‖wk j−w∗‖M ≤ (1−ρ)‖δ(wk j)‖M, i.e., ‖wk j−w∗‖ ≤
(1 − ρ)c1

1
2k j

, Then {wk j} converges to w∗. Since the series of positive terms
∑∞

k=1
1
2k is convergent, by

Cauchy convergence criterion, for any ε > 0, there exists a positive integer m such that
1
2k +

1
2k−1 + · · · +

1
2k j
≤

ε

2c1(1 − ρ)
(3.19)

as positive integer k, k j ≥ m (k ≥ k j). From lim j→∞ wk j = w∗, for ε > 0 above, there exists an integer j,
such that

‖wk j − w∗‖M <
ε

2
. (3.20)

Combining (3.19) with (3.20), for sufficiently large positive integer k, k j(k ≥ k j), similar to
discussion (3.18), we obtain

‖wk+1 − w∗‖M ≤ ‖wk − w∗‖M + (1 − ρ)c1
1
2k

≤ ‖wk−1 − w∗‖M + (1 − ρ)c1

(
1
2k + 1

2k−1

)
≤ · · · · · · · · ·

≤ ‖wk j − w∗‖M + (1 − ρ)c1

(
1
2k + 1

2k−1 + · · · + 1
2k j

)
< ε

2 + ε
2 = ε,

which indicates that the sequence {wk} converges globally to the point w∗.
Case 2. For any subsequence {wk j} such that ‖wk j − w∗‖M > (1 − ρ)‖δ(wk j)‖M, i.e., ‖wk+1 − w∗‖M >

(1 − ρ)‖δ(wk)‖M.
Since {wk} is bounded, there exists constant c2 > 0 such that ‖wk+1 − w∗‖ ≤ c2. By definition of wk+1 in
Step 3 of Algorithm 3.1, we have

‖ρ(ŵk − wk) + (wk − w∗)‖2M
= ‖wk+1 − w∗ + (1 − ρ)δ(wk)‖2M
≥ (‖wk+1 − w∗‖ − (1 − ρ)‖δ(wk)‖M)2

= ‖wk+1 − w∗‖2M + (1 − ρ)2‖δ(wk)‖2M − 2(1 − ρ)‖wk+1 − w∗‖‖δ(wk)‖
≥ ‖wk+1 − w∗‖2M + (1 − ρ)2‖δ(wk)‖2M − 2(1 − ρ)c2‖δ(wk)‖.

(3.21)
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Combining this with (3.12), one has∑∞
k=0 ‖w

k − ŵk‖2H

≤ ρ−1 ∑∞
k=0(‖wk − w∗‖2M − ‖ρŵk + (1 − ρ)wk − w∗)‖2M)

≤ 2ρ−1(1 − ρ)c2
∑∞

k=0 ‖δ(w
k)‖ − ρ−1(1 − ρ)2 ∑∞

k=0 ‖δ(w
k)‖2M

+ρ−1 ∑∞
k=0(‖wk − w∗‖2M − ‖w

k+1 − w∗‖M)

≤ 2ρ−1(1 − ρ)c1c2
∑∞

k=0
1
2k + ρ−1‖w0 − w∗‖2M,

(3.22)

which together with the positive definiteness of H yields

lim
k→∞
‖wk − ŵk‖ = 0, (3.23)

and one has
lim
k→∞
‖xk

1 − x̂k
1‖ = 0, (3.24)

lim
k→∞
‖xk

2 − x̂k
2‖ = 0, (3.25)

lim
k→∞
‖λk − λ̂k‖ = 0. (3.26)

By (3.23), we know that the sequence {ŵk} is also bounded since {wk} is bounded. Thus, it has at least
a cluster point, saying w∞ := (x∞1 ; x∞2 ; λ∞), and suppose that the subsequence {ŵki} converges to w∞.
By (3.26), one has limki→∞ ‖λ

ki − λ̂ki‖ = 0. Taking limits on both sides of

x̂ki
1 − x̂ki

2 =
1
γβ

(λki − λ̂ki),

we have
x∞1 − x∞2 = 0.

Furthermore, taking limits on both sides of (3.3) and (3.4), and using (3.24)–(3.26), we obtain

θ1(x1) − θ1(x∞1 ) + (x1 − x∞1 )>(−λ∞) ≥ 0, ∀x1 ∈ Rn,

and
θ2(x2) − θ2(x∞2 ) + (x2 − x∞2 )>λ∞ ≥ 0, ∀x2 ∈ Rn.

Therefore, (x∞1 , x
∞
2 , λ

∞) ∈ W∗.
Since the series of positive terms

∑∞
k=1

1
2k is convergent, by Cauchy convergence criterion, for any ε > 0,

there exists a positive integer m such that

1
2k +

1
2k−1 + · · · +

1
2kl
≤

ε

3c1(1 − ρ)
(3.27)

as positive integer k, kl ≥ m(k ≥ kl). By (3.23) and lim j→∞ ŵk j = w∞, for ε > 0 above, there exists an
integer l, such that

‖wkl − ŵkl‖M <
ε

3
, ‖ŵkl − w∞‖M <

ε

3
. (3.28)
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Combining (3.27) with (3.28), for sufficiently large positive integer k, kl(k ≥ kl), similar to discussion
(3.18), we obtain

‖wk+1 − w∞‖M ≤ ‖wk − w∞‖M + (1 − ρ)c1
1
2k

≤ ‖wk−1 − w∞‖M + (1 − ρ)c1

(
1
2k + 1

2k−1

)
≤ · · · · · · · · ·

≤ ‖wkl − w∞‖M + (1 − ρ)c1

(
1
2k + 1

2k−1 + · · · + 1
2kl

)
≤ ‖wkl − ŵkl‖M + ‖ŵkl − w∞‖M + (1 − ρ)c1

(
1
2k + 1

2k−1 + · · · + 1
2kl

)
< ε

3 + ε
3 + ε

3 = ε,

which indicates that the sequence {wk} converges globally to the point w∞. The proof is completed. �

In the end of this section, we discuss the convergence rate of Algorithm 3.1. To this end, the
following assumptions is needed.
Assumption 3.1. For two sequences {wk} and {ŵk}, assume that there exist a positive constant σ such
that, for wk, there exists w∗ ∈ W∗ such that

‖wk − w∗‖ ≤ σ‖∇Lk(wk)‖,

where
Lk(w) := θ1(x1) + µ∂(‖x̂k

2‖1)>x2 − 〈λ
k, x1 − x2〉 +

β

2‖x1 − xk
2‖

2 +
β

2‖x̂
k
1 − x2‖

2

+1
2‖x1 − xk

1‖
2
R1

+ 1
2‖x2 − xk

2‖
2
R2

+ 1
2λ
>λ − 〈λ, λk − γβ(x̂k

1 − x̂k
2)〉,

(3.29)

and ∂(‖x̂k
2‖1) denotes the subdifferential of the function ‖x2‖1 at the point x̂k

2.
Lemma 3.5. Suppose that Assumption 3.1 holds. Then there exists a positive constant µ̂ such that

‖wk − w∗‖ ≤ µ̂‖wk − ŵk‖.

Proof. From (3.2), we have
x̂k

1 = (A>A + βI + R1)−1(A>b + λk + βxk
2 + R1xk

1)

x̂k
2 = (βI + R2)−1(−µ∂(‖x̂k

2‖1) − λk + βx̂k
1 + R2xk

2)

λ̂k = λk − γβ(x̂k
1 − x̂k

2),

(3.30)

By (3.29) and (3.30), a direct computation yields that

∇Lk(w) =
(
∂L
∂x1

; ∂L
∂x2

; ∂L
∂λ

)
=


A>(Ax1 − b) − λk + β(x1 − xk

2) + R1(x1 − xk
1)

µ∂(‖x̂k
2‖1) + λk − β(x̂k

1 − x2) + R2(x2 − xk
2)

λ − [λk − γβ(x̂k
1 − x̂k

2)]


=


(A>A + βI + R1)[x1 − (A>A + βI + R1)−1(A>b + λk + βxk

2 + R1xk
1)]

(βI + R2)[x2 − (βI + R2)−1(−µ∂(‖x̂k
2‖1) − λk + βx̂k

1 + R2xk
2)]

λ − [λk − γβ(x̂k
1 − x̂k

2)]
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=


A>A + βI + R1 0 0

0 βI + R2 0
0 0 I




x1 − x̂k
1

x2 − x̂k
2

λ − λ̂k


= Q̄(w − ŵk),

where Q̄ =


A>A + βI + R1 0 0

0 βI + R2 0
0 0 I

. Combining this with Assumption 3.1, we obtain

‖wk − w∗‖ ≤ σ‖∇Lk(wk)‖ = σ‖Q̄(wk − ŵk)‖ ≤ σ‖Q̄‖‖wk − ŵk‖.

Let µ̂ = σ‖Q̄‖. Then the desired result follows. �

Theorem 3.3 Suppose that the hypothesis of Theorem 3.2 and Assumption 3.1 hold, and
3
4 µ̂

2 < (η − ρ)ρ < 5
4 µ̂

2. Then the sequence {wk} generated by Algorithm 3.1 converges to a solution of
(2.4) R−linearly.

Proof. From Theorem 3.2. Without loss of generality, we assume that the sequence {wk} converges to
w∗ ∈ W∗. A direct computation yields that

‖wk+1 − w∗‖2M = ‖ρŵk + (1 − ρ)ψ(wk) − w∗‖2M
= ‖ρ(ŵk − wk) + (wk − w∗) + (ρ − 1)(wk − ψ(wk))‖2M
≤ (‖ρ(ŵk − wk) + (wk − w∗)‖M + (1 − ρ)‖δ(wk)‖M)2

≤ 2‖ρ(ŵk − wk) + (wk − w∗)‖2M + 2(1 − ρ)2‖δ(wk)‖2M
≤ 2‖wk − w∗‖2M − 2ρ‖ŵk − wk‖2H + 2(1 − ρ)2‖δ(wk)‖2M
≤ 2‖wk − w∗‖2M −

2ρ
µ̂2 ‖wk − w∗‖2H + 2(1 − ρ)2‖δ(wk)‖2M

≤ 2(1 − (η−ρ)ρ
µ̂2 )‖wk − w∗‖2M + 2(1 − ρ)2‖δ(wk)‖2M.

(3.31)

where the second inequality follows from the fact that a2 + b2 ≥ 2ab,∀a, b ∈ R, the third inequality is
obtained by (3.12), the fourth inequality follows by Lemma 3.5, and the fifth inequality is by (3.13).
Since the sequence {wk} converges to w∗, it follows that there exists a positive integer k0, for all k ≥ k0,
we obtain the following conclusions.
If ‖wk − w∗‖M ≤ 2(1 − ρ)‖δ(wk)‖M. By Definition 2.1, the following holds

‖wk − w∗‖ ≤ 2(1 − ρ)c1
1
2k . (3.32)

If ‖wk − w∗‖M > 2(1 − ρ)‖δ(wk)‖M. Combining this with (3.31), we obtain

‖wk+1−w∗‖2M
‖wk−w∗‖2M

≤

[
2(1− (η−ρ)ρ

µ̂2 )‖wk−w∗‖2M
‖wk−w∗‖2M

+
2(1−ρ)2‖δ(wk)‖2M
‖wk−w∗‖2M

]
≤ 2(1 − (η−ρ)ρ

µ̂2 ) + 1
2 .
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Let τ̂ = 2(1 − (η−ρ)ρ
µ̂2 ) + 1

2 . Then 0 < τ̂ < 1 by 3
4 µ̂

2 < (η − ρ)ρ < 5
4 µ̂

2. Therefore, we have

‖wk+1 − w∗‖M ≤
√
τ̂‖wk − w∗‖M

≤
√
τ̂2‖wk−1 − w∗‖M

· · · · · · · · ·

≤
√
τ̂k−k0+1‖wk0 − w∗‖M

≤ c2
√
τ̂k.

where c2 is positive constant, i.e., ‖wk − w∗‖M ≤ c2
√
τ̂−1
√
τ̂k. Combining this with (3.32), one has

‖wk − w∗‖M ≤ c3 max{
1
2k ,
√
τ̂k}.

where c3 is positive constant, and thus the desired result follows. �

4. Numerical results

In this section, we provide some numerical tests about BPDN problem to show the efficiency of
method proposed in this paper. All codes are written by MATLAB 9.2.0.538062 and performed on a
Windows 10 PC with an AMD FX-7500 Radeon R7,10 Computer Cores 4C+6G CPU, 2.10GHz CPU
and 8GB of memory. In experiment, we set µ = 0.001, and the measurement matrix A is generated by
MATLAB scripts:

[Q,R] = qr(A′, 0); A = Q′.

The original signal x̄ is generated by p = randperm(n); x(p(1 : k)) = randn(k, 1).
To simplify calculations of (3.2), we set R1 = τIn − A>A, where τ > 0 is a constant. Combining this

with the first equality in (3.30), one has

x̂k
1 =

1
β + τ

(λk + τxk
1 + βxk

2 − gk), (4.1)

where gk = A>(Axk
1 − b).

For the second equality in (3.30), we set R2 = 0, then

x̂k
2 = x̂k

1 −
1
β
λk −

µ

β
∂(‖x̂k

2‖1). (4.2)

The subdifferential of the absolute value function |t| is given as follows

∂(|t|) =


−1 if t < 0,

[−1, 1] if t = 0,
1 if t > 0.

Combining this with (4.2), for i = 1, 2, · · · , n, we obtain

(x̂k
2)i =


(x̂k

1 −
1
β
λk)i +

µ

β
if (x̂k

1 −
1
β
λk)i < −

µ

β

0 if |x̂k
1 −

1
β
λk)i| <

µ

β

(x̂k
1 −

1
β
λk)i −

µ

β
if (x̂k

1 −
1
β
λk)i >

µ

β

=
(
shrink µ

β
(x̂k

1 −
1
β
λk)

)
i
,
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where shrinkc(∗) is the soft-thresholding operator defined as

shrinkc(k) := k −min{c, |k|}
k
|k|
, ∀k ∈ R,

and c > 0 is a constant. In addition, when k = 0, k/|k| should be taken 0. Therefore, we have the
following formula to calculate x̂k

2, i.e.,

x̂k
2 = shrink µ

β
(x̂k

1 −
1
β
λk). (4.3)

Applying (4.1) and (4.3), then (3.2) in Algorithm 3.1 can be written as follow
x̂k

1 = 1
β+τ

(λk + τxk
1 + βxk

2 − gk),
x̂k

2 = shrink µ
β
(x̂k

1 −
1
β
λk),

λ̂k = λk − γβ
(
x̂k

1 − x̂k
2

)
.

(4.4)

For any methods, the stop criterion is

‖ fk − fk−1‖

‖ fk−1‖
< 10−6,

where fk denotes the objective value of (1.1) at iteration xk.
In each test, we calculate the relative error

RelErr =
‖xk+1 − x̄‖
‖x̄‖

,

where x̄ denotes the recovery signal.

4.1. Test on additive Gaussian white noise

In this subsection, we apply Algorithm 2.3 in [11] (DFCGPM), Algorithm 2 in [12] (IMFPPA) and
Algorithms 3.1 in this paper to recover a simulated sparse signal of which observation data is corrupted
by additive Gaussian white noise, respectively. We set n = 212,m = 210, k = 27, and some parameters
about tested algorithms are listed as follows:
Algorithms 3.1: β = 0.2, µ = 0.01, γ = 1.9, τ = 0.5;
IMFPPA: ρ = 0.01, γ = 0.01, τ = 0.2;
DFCGPM: C = 1, r = 0, η = 1, ρ = 0.4, σ = 0.01, γ = 1.9.

The original signal, the measurement and the reconstructed signal(marked by red point) by
Algorithm 3.1, DFCGPM and IMPPA are given in Figure 1. Obviously, from the first, third, fourth
and the last subplots in Figure 1, all elements in the original signal are circled by the red points, which
indicates that the three methods can recover the original signal quite well. Furthermore, we record the
number of iterations (abbreviated as Iter), the CPU time in seconds (abbreviated as CPU Time), the
relative error (abbreviated as RelErr) of the three methods. Figure 1 indicates that Algorithm 3.1 have
higher accuracy than IMPPA method, and Algorithm 3.1 is also always faster than DFCGPM and
IMPPA methods. Thus, Algorithm 3.1 is an efficient method for sparse signal recovery.
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Figure 1. Signal recovery result.

4.2. Compared from different k-Sparse signal (n = 212,m = 210)

In this subsection, Algorithm 3.1 proposed in this paper is compared with IMFPPA [12],
DFCGPM [11], Algorithm 3.1 in [8] (PPRSM) and Algorithm 3.1 in [13] (LAPM) from the CPU
Time and the RelErr, where some parameters about PPRSM and LAPM are listed as follows:
PPRSM: γ = 0.2, σ = 0.1;
LAPM: β = 0.25, τ = 0.6.

All algorithms have run 5 times, respectively, and the average of the the CPU Time and the RelErr
are obtained. The numerical results are listed in Table 1. From the Table1, It is obvious that the CPU
time of Algorithm 3.1 is less than other algorithms in different k-Sparse signal whether it is Free noise
or Gaussian noise, which shows that Algorithm 3.1 is faster. In addition, we find that the accuracy of
algorithm 3.1 are also better than other algorithms. So, Algorithm 3.1 is a more efficient method for
different k-Sparse signal recovery.
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Table 1. Compared Free noise with Gaussian noise from different k-Sparse signal
(Subsection 4.2).

No noise Gaussian noise
k-Sparse signal Methods CPU Time RelErr CPU Time RelErr
80 Algorithm 3.1 1.0937 3.3782 1.1250 3.4187

IMFPPA 4.6253 4.1837 4.7031 4.7528
DFCGPM 4.9585 3.8375 5.2744 3.8501
PPRSM 7.2164 4.6751 7.5363 4.6751
LAPM 12.8906 4.5521 13.4894 4.5095

120 Algorithm 3.1 1.4531 3.0063 1.4688 3.1883
IMFPPA 6.8872 4.9351 7.2431 5.2315
DFCGPM 7.1964 3.5026 7.2173 3.8449
PPRSM 8.3361 4.3693 8.5913 4.3559
LAPM 13.2656 4.1577 14.7813 4.4311

140 Algorithm 3.1 1.6719 3.8609 1.7813 3.7207
IMFPPA 7.1722 5.1312 8.8313 4.8873
DFCGPM 7.6563 3.9326 8.3519 4.4939
PPRSM 8.9961 4.5807 9.1320 4.5431
LAPM 14.1875 4.8401 15.6406 4.9417

160 Algorithm 3.1 1.9844 4.4808 2.1875 4.3251
IMFPPA 8.2192 4.9317 9.2268 4.9718
DFCGPM 8.3548 3.7487 8.8897 4.4939
PPRSM 9.4201 4.6442 9.8942 4.4337
LAPM 16.3594 4.9220 17.6375 4.9417

4.3. Compared with DFCGPM and IMFPPA in Different Dimensions

In this subsection, Algorithm 3.1 proposed in this paper is compared with DFCGPM [11] and
IMFPPA [12] from aspects of the CPU Time and the RelErr in different dimension, where some
parameters about DFCGPM and IMFPPA are given in Subsection 4.1. We set m = n

4 , k = n
32 and no

additive Gaussian white noise. All algorithms have run 5 times, respectively. The average of the CPU
Time and the RelErr are obtained. Some numerical results are listed in Table 2, where the IMFPPA
and DFCGPM are difficult to solve the problem in our computer when n ≥ 10, 000 since our computer
configuration constraints, and it is also drawn in Figure 2. The numerical results in Table 2 and
Figure 2 indicates that: The CPU Time and RelErr of Algorithm 3.1 are less than that of the other two
tested methods, which shows that Algorithm 3.1 is more effective for large scale problem. Thus,
Algorithm 3.1 is very suitable for solving large-scale problems.
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Table 2. Compared with DFCGPM method and IMFPPA method from results (Subsection
4.3).

Dimension (n) Algorithm 3.1 IMFPPA DFCGPM
CPU Time RelErr(%) CPU Time RelErr(%) CPU Time RelErr(%)

1024 0.0625 2.6592 0.6250 4.2036 1.1205 2.9219
2048 0.2813 3.6120 2.3281 4.0544 2.1701 3.6048
3072 0.7188 3.2769 3.7188 4.2890 5.2639 3.1776
4096 1.5313 3.2059 7.6563 4.8450 9.7066 3.6737
5120 2.4688 3.3400 12.6094 4.7120 13.0390 4.2521
6144 3.6094 3.5239 16.8594 4.8617 16.3323 4.7696
7168 4.3594 3.4662 22.7031 5.0325 24.6479 3.3939
8192 6.1153 3.2848 29.1563 4.8082 32.3971 3.5910
9216 7.7188 3.4343 39.4844 4.9214 41.6752 3.8263
10238 9.5469 3.6712 - - - -
11262 10.4688 3.4449 - - - -
12286 12.6875 3.2772 - - - -
13310 14.2969 3.3361 - - - -
14334 17.5313 3.2459 - - - -

Figure 2. Compared with DFCGPM and IMFPPA in CPU Time and RelErr (Subsection 4.3).
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5. Discussion

The method proposed in this work has several possible extensions. Firstly, it could be numerically
beneficial to tune the parameter, and thus it is meaningful to investigate the global convergence of the
proposed method with adaptively adjusted parameter. Secondly, we may establish global error bound
for (1.1) just as was done for generalized linear complementarity problem in [16–18], and may use the
error bound estimation to establish quick convergence rate of the new Algorithm 3.1 for solving (1.1).
This is a topic for future research.

Since the RNNM model is a convex program, we explore the possibility of the proposed algorithm
developed for BPDN model to solve the RNNM model from theoretical results and numerical
experiments. This will be our further research direction.

The Regularized Nuclear Norm Minimization (RNNM) model is defined as follows [19, 20]:

minX
1
2‖A(X) − b‖2 + µ‖X‖∗,

where µ > 0 is a parameter, b ∈ Rm is an observed vector, A : Rn1×n2 −→ Rm is a known linear
measurement map defined as

A(X) = [tr(X>A(1)), tr(X>A(2)), · · · , tr(X>A(m))]>.

Here, A(i) for i = 1, 2, · · · ,m is denoted as a matrix with size n1 × n2, and tr(·) is the trace function,
the norm ‖ · ‖∗ denote the Euclidean nuclear norm.

6. Conclusions

In this paper, by choosing a special iterative format, we have developed a new iterative format
of proximal ADMM, which has closed-form solutions. Thus, it has fast solving speed and pinpoint
accuracy when the dimension increases. It makes new algorithm very attractive for solving large-scale
problems. The global convergence of new method is discussed in detail. Furthermore, the linear rate
convergence result for new algorithm is established. Some numerical experiments on sparse signal
recovery are given, and compared with the state-of-the-art of algorithms in [8, 11–13], the method
proposed in this paper is more accurate and efficient.
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