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1. Introduction

Nowadays, fractional-order operators [1-3] are one of the effective tools to analyze real-world
problems. A number of scientific problems have been explored by using fractional operators. Nabi et
al. in [4] used the Caputo operator to find the solution of a Covid-19 (a deathly epidemic) model. In [5],
authors have analyzed a Caputo-type fractional-order HIV model. In [6], authors have derived a novel,
four-dimensional memristor-based chaotic circuit model, by using the Atangana-Baleanu derivative.
Vellappandi et al. in [7] have derived an optimal control problem for the mosaic epidemic in the
sense of the Caputo operator. Virus transmission in the butterfly population was studied in ref. [8] by
using a generalized Caputo derivative. A fruitful application of fractional order operators to do the
mathematical modeling of plankton-oxygen dynamics can be seen from a ref. [9]. Recently, Erturk et
al. in [10] have defined a new lagrangian in the fractional sense to define the motion of a beam on the
nanowire. In [11], a generalized Caputo derivative was used to solve a psychological problem. Also, a
number of numerical schemes have come to the literature to solve the fractional initial value problems
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(FIVP). In [12], authors have defined a generalized form of the Predictor-Corrector (P-C) method to
simulate fractional-order systems. Kumar et al. in [13] have explored a very short and effective method
to solve FIVP.

Delayed fractional differential equations (DFDEs) have gotten a lot of interest recently because of
their applicability in mathematical modeling of real-world issues where the fractional rate of change
is influenced by genetic factors. A recent study on a delay-type mathematical model for defining
the oncolytic virotherapy can be seen from a ref. [14]. Odibat et al. in [15] have modified the P-C
method to solve generalized Caputo type delay problems. Proving the existence of a unique solution
for the DFDEs is always a challenging task because of their complexity. A number of studies have
been given by the researchers to fulfill this research gap. In [16], Abbas was derived the existence of
a solution for the DFDEs but had not mentioned the uniqueness part. Similarly, without discussing
uniqueness, authors in [17] had derived the global solution existence on a finite time interval. Authors
in [18] have explored and derived the uniqueness of the global solution to the DFDEs with the help of
generalized Gronwall inequality. However, their results contain a flaw that has been specified in the
study [19]. Authors in [19] had given some theorems on the existence and uniqueness of solution for
initial values problems for DFDE by using Caputo derivative without requiring the Lipschitz property
of the considered function with respect to the delay variable, but for the non-delay variable (see e.g.
[20-23] and references therein). Some other significant mathematical studies in the sense of fractional
derivatives can be done from the ref. [24-28].

In this paper, we will derive a theorem for the DFDE in the sense of generalized Caputo derivative
by using the previously published results of ref. [29]. The main motivation behind the proposal of
this study is to extend the Caputo-type results of existence and uniqueness of initial value problems
with delay, for the generalized Caputo-type fractional derivative sense. The main difference between
the Caputo and generalized Caputo fractional derivatives is the presence of an extra parameter (say
p) along with the fractional order (say y) which makes the generalized Caputo derivative an advanced
version of the Caputo derivative. Nowadays, the generalized Caputo derivative is being used to model a
number of real-world problems (see ref. [8,11,13,30]). To date, there are no significant results to prove
the existence of a unique solution for the DFDEs in the generalized Caputo sense. Because of it, many
fractional-order systems have been numerically simulated without proving the solution’s existence (see
ref. [15]). This research paper will definitely fill the research gap of the DFDE:s literature.

The given study is formulated in a number of sections. In section 2 we recall some preliminaries.
In section 3, we derive our main results by proving the existence of a unique solution in the sense of
a considered fractional operator with the help of some important lemma and results. In the end, we
conclude the novelty of our findings.

2. Preliminaries

Firstly, we remind some necessary definitions and results.

Definition 1. [29] Consider [b,c](—oc0 < b < ¢ < ) be a finite or infinite interval on the real axis
R = (—00,00),k € NUOand 1 < p < co. We express the usual Lebesgue space Ly[b,c](1 < p < o)
and continuous space C*[b, c] by

L,[b,c] := {y 1 [b,c] = R; A is measurable in [b,c] and f [y(0)|Pdt < oo},
b
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Lolb,c] = {y:[b,c] = R; A is measurable in [b,c] and bounded essentially in [b,c]},
C¥[b,c] = {y:[b,c] = R; A has a continuous kth derivative in [b,c] },
Clb,c] := C°b,cl.

Also, Ly[b,c](1 < p < o0) denotes the set of Lebesgue real-valued measurable functions y on £ those
Sollow |lyll, < oo, where

C 1/p
vll, = (f Iy(t)l”dt) (1<p<oo)
b

and

¥l = sup [y(®)].

b<t<c

Definition 2. [29] For n € N, AC"[b,c] denotes the space of real-valued functions y(t) having
continuous derivatives up to the order n — 1 in [b,c](—c0 < b < ¢ < ), i.e. the functions y for
which a function u € L,[b, c] exists almost everywhere such that

AC"[b,c] = {y:[b,c]ﬁR;y("_l)(t): Yy D(b) + f u(ﬂ)dﬁ},
b

where u = y™.

Definition 3. [2] Gamma function is defined by

(o)

I'(z) = f e ldr, 2.1)

0
where 7 be any complex number s.t Re(z) > 0.

Definition 4. [2] The one-parametrized Mittag-Leffler function is defined by
Ey (@)= X0 foaerys ¥ >0, weC

Definition 5. [2] The Riemann-Liouville (RL) fractional integral of a function f : R* — R is given by
Jf(t) = ﬁy) fot (t =N FHdY, y >0,
Jf @ = f@.

Definition 6. [2] The Caputo fractional derivative of f € AC™[0, c] (c € R") is defined by

a"f@)

SDYf (1) = { Lo y=mell (2.2)

T o =" () a9, m—1<y<m,meN.

Definition 7. [31] The generalized fractional integral, RI'*, of order y > 0 is defined by
*ne e = % t(tp -9y 197 f(9)d, t > c, 2.3)

wherec >0, p>0,andm—1 <y <m.

AIMS Mathematics Volume 7, Issue 6, 10483—-10494.



10486

Definition 8. [31] The generalized R-L fractional derivative, {D)”, of ordery > 0 is defined by
py7m+1 m

.  _ - t -1 _ m—y—1
TGn = ) di" f P - 9" f(Hdd, t>c, (2.4)

DY () =

wherec >0, p>0,andm—1<vy <m.
Definition 9. [32] The generalized Caputo fractional derivative, th%P , of order y > 0 is defined by

-m+1 t
€D = L f 9@ )" D9, 1> e, (2.5)
F(m - 7) c

where p >0, c>0,andm—-1 <7y <m.
3. Existence and uniqueness analysis

After getting the direction from the aforementioned works [16-19,29], we consider the initial value
problem (IVP) of DFDEs in the space of continuous and measurable functions, and establish some
sufficient cases for the existence of a unique solution in the sense of generalized Caputo derivative for
the following form

ANIOERNCYAL (3.1)
with the initial conditions
dk

Df(t) = g™ () on [-1,0,k=0,1,---m—1,D" := e (3.2)
where ¢ € [0,c],p > 0,7 > 0,m = [y] + 1, and [y] denotes the integer part of y. “D?* is the generalized
Caputo derivative operator, A : [0,c] X B — R is a continuous function following necessary assumed
conditions that will be mentioned later. f; € B where B is a phase space. For the function f given
on [-r,c] and f;, t € [0,c], the element of B defined by f,(6) = f(t + 0),6 € [—r,0]. Particularly,
Jo=¢@) € B.
Lemma 1. [29]If f € C((—o0,c],R") then f, is a continuous function of t in [0, c].

Proof. Because f is continuous in (—oo, ¢] then for any large 0 < r < oo, it is uniformly continuous in
[-7, c]. Then for every € > 0, there exists p > 0 such that |f(¢) — f(})| < € if |t — ¥ < p. Hence, for ¢, ¥
in [0, c] and |t — J| < p, we have [f(¢t + 0) — f(¥ + )| < € for any 8 € [-r,0]. O

Lemma 2. Let us define k : [0, c] X [0,c] = R by

P = geyr! ifo<9<t<e,

k(t’ﬂ):{ 0 ifo<t<d<c. (3.3)

and let y € R*. There exist numbers 0 = cy <c; <cy <---<c¢, =csuchthatVie{0,1,---n—1}and
t € [c;, civ1] we have

Lpl—y min{z,c;+ }
r()’) Ci

|k(t, D)|dP < 1,
where L € R is some constant.
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Proof. Here we consider the three different cases: y = 1,y > 1 and 0 < y < 1. In the case y = 1, the
result of the Lemma is clearly correct. When y > 1, k is continuous and then bounded on the compact
set {(1,7) : 0 < &# <t < c}. Assume ¢; := ic/n, i.e. the interval [0, c] is splitted into n equal sections,
we can find that

Lpl—y min{7,cy 1} Lpl—y Cit1 Lpl Lpl—y”kllooc
|k(2, M)|dP < |k(2, P)|dP < llklloo(Civt — i) = ——,
ray) J. I(y) T(y) . T(y)n

here the Chebyshev norm of k is utilized over the above given set. Choosing
_rﬂnww]l
I'(y) ’

we get the required results easily. Now for 0 < y < 1, we go throw a little different way. Let ¢; := ic/n,
for t < c¢;41, we have

Lp'™r (minthcini) f | Lp™
k(t,MHldd = P =-9°) " dY = =)
I'ty) Ji, K. 0) F()’) « ) 'ty + 1)( 2
Lp Y _ Y — L LY
= To+ 1)(4)+l ) = T(y + 1)(0/”) '
By choosing

1
Lo~ \#»
c L +1,
I'ty+1)

the required result is received. Therewith, for ¢ > ¢;,;, we may compute

Ci+1

9L — 9Py dY

min{z,ciy1} Lo'™
qmszjﬁ Ip(t, P\ = 2

I'(y)
Lp™
- # Y = (=),
e GTN Gt
Noticing that
ol
W) = H) YT =@ - )T <0,
since y < 1, we can find that (1) < W(c;41) < 1 for ¢t > ¢;41. So, by collecting the above given outputs,
our proof is finished. O

Remark 1. In the form of above mentioned parameters, we may take

n ;= max [w]+ 1, c( Lp™ )py +1
['(y) I'ty+1)

Lo |kl|oo Lo™
o= max{ P Ikl c, P (c/n)"y} <1
I(yyn Ty+1)

this implies the explored result of Lemma 2.

accordingly
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Lemma 3. Let f(t) € AC"[0, c] and the function A : [0,c] X B — R is a continuous function. Then
f € [—r,c] becomes the solution to the IVP (3.1)-(3.2) if and only if it becomes the solution of delay
Volterra integral equation

r( ) fo (= 9°) 19~ A, fp)d, VYt € [0,c]
(1) = ¢@), te[-1,0].

Theorem 1. Choose y € R*,m = [y] + 1, and f(t) € AC™|0, c]. Consider the set G : [0, c] X B and
the continuous function A : G — R which satisfies the Lipschitz constraint for the second variable

with a Lipschitz constant L € R* which is free from t, f|, and f>. Then there exists a unique solution
f(t) € C[—r,c] of the IVP (3.1) and (3.2).

{ £ = 5 g0 )L + 2 3.4)

Proof. Firstly, we split the interval [0, c] into distinct sub-interval by using a row of real numbers
O=cy<cy <cy <---<c, =c. Now first we will derive the results for the interval [cy, ¢;]. In this
regard, we take the following sequence of functions:

m—1 k
_ ._ ®em.L
o0 = Q) = % #V0);
and

@ =

0 )f(tp YN, fodY, a=1,2,- - (3.5)

Now to prove the continuity of the functions f7(¢) those satisfy the Eq (3.5) on [co, ¢;], we may apply
the mathematical induction. Let us take the case a = 1, that is

'@ = Q@) + —\f(t‘O 9V L9 A, fy)do. (3.6)

By Lemma (1) and hypothesis, this is straight to observe that A(¢, f;) is a continuous function in [0, c],
and then A(t, f,) € L]0, c] with respect to ¢. Firstly, we check the continuity of f!(¢) on [cy, ¢1].
We begin by noting that, for ¢y <1, <t, < ¢y,

) = ()] = ﬁ)' f 97— 9N, fy)d f 98— 97 A, fy)dd)
1—y 1| 12
ﬁ( i (& —9°) ™" = (& —9°) " 19 A, fy)dd + f 9@ - 9°) 7 AW, fy)dd|
< Mp™™

B _ y-1 _ _ Y—1|.qp-1 E -1 _ y-1
< r(y)(fo @ =90y = (- 97y o dﬂ+ftl 971 - o) ),

The right-side second integral of the last equation gives the value %(tg — 9¥°)”. Now for the first integral,
we take two cases y < 1, y = 1, respectively. For y = 1, the integral gives zero value. In the case
y < 1, we have (¢ = 9°)" "' > (#; — 9*)’"". Thus,

f A=y 0y = f 1@ 07— (= 9y 0 a9
0 0
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< —( -1
py !
Combining these results, we have
2M
1 1 Y
|f (1) — f ()] < m(f; - lf) (3.7)

if y < 1. In either case, the right-side portion of (3.7) converges to 0 as t, — t;, which justifies the
continuity of f!, since Q(¢) itself is continuous.

Now for the induction step a—1 — a, following the similar way as in the case a = 1, we can investigate
the continuity of f“(¢) on [cy, c;]. Moreover, if we define

) = fUO- N, a=1,2,---

and ¢°(r) := Q(t) = f°(¢), then functions ¢“(¢) are all continuous on [cy,c;]. Fora = 0,1,---, it is
explicit that

Fi0 =) ¢o.
1=0

Moreover, fora = 2,3, --- , we have

¢(1) f (" =Y AW, 57 — AW, f3H1dD. (3.8)

F()

Using the Lipschitz constraint on A and the condition f“(t) = ¢(¢) for [-r,0]. If r € [c + 0,¢], then
from (3.8), Lemma 2 and Remark 1, we can explore a fixed number o € (0, 1) such that

ol < i f (1 — 0P 1IN, 1) - A, SN
Lpl yf —1,qp-1] pa—1 -2
< =097 f — fy T |dY
o J 7" S
Lpl—y t
< (zp—ﬂp)y‘lﬁ” max f“ L@ +6) — f72(9 + 0)|dd
F()/) I+0e[—r,t
< b e 1(19+0) - 2(ﬂ+0)|f(tp 90y 977
I'(y) 19+9€[ rt]
— a—1 y—1 1 a—1 a—2
= max O [ - an <o ma 1 0) - 50)
— a—1 0
01931§§1]|¢ (@]
fora = 2,3,---, which implies that maxXc(¢, ¢, |[¢?()| < o MaXe[cy.c ] l¢'(#)]. So, we explored a

convergent majorant of the series }."  ¢“ on [co, ¢1], and hence the series converges uniformly. As f*
is the a — th partial sum of the series, it satisfies the uniform convergence of the sequence {f“}>, in
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[co, c1], and the limits concur. We specify the limit of that sequence by f. As we explored above that
f¢ is continuous in [cy, ¢;] VY a. Hence, form the definition of uniform convergence, f € C|cy, c1].

Now we target to prove that the function f solves the Voltera equation (3.4), and thus the IVP (3.1)
and (3.2). In this regard, we identify that the uniformly convergence of the sequence {f“}>”, and the
Lipschitz constraint of A imply |A(z, f(t + 0)) — A(t, f4(t + 0))] < LIf(t) — f4(0)] = O umformly for
t € [co, c1]. Another way, the sequence {A(-, f*)};” | uniformly converges against A(-, f). So we may
interchange the fractional integration and limit operations. Which gives

1 !
f@ = lim f() = lim (Q(t)+§(—y) (# = 9°) 9N, £ HdY
= Q(t)+mf(z” 90y~ 119’”11mA(z9f Ndo
m—1
_ ® ’_ 1gp-1
= 20+ B [ -y A, g,

k=0

which is the demanded relation (3.4).
Next, for the interval [co, ¢1], it is pending to prove the uniqueness of the solution. We may suppose
that f is another solution of (3.4), then it gives that

o - Fol < r( ) f & — Y9 A, fi) — AW, F)ldd
_ 1 1
- & )f(ﬂ’ 9y max (£ +6) = Fo + Ol
< o glc?)c(| £ - f(9)

for some o € (0, 1) by Lemma (2) and Remark (1). Since the above given condition uniformly holds
for all ¢ € [cg, ¢;], we deduce

max |f(0) - fol < o max |f0) - f0,

which implies the necessary uniqueness narration f = f

Now our demand is to prove the same results from the first sub-interval [cy, c;] to rest off the sub-
intervals [c;_1,¢;](i = 2,3,---n). We will perform it by using the results which are derived for the
interval [cy, c;]. So by assuming that the claim exists on [c;_1, ¢;] for some i, we will show its existence
on [c;i_1,¢;], if i < n. It means we have to show that in this interval, the Eq (3.4) exists a unique
continuous solution. For this, we rewrite the (3.4) in the form

(&) = Q(t)+ A f (= 9°Y 9, fy)dd,

L)
with
Q1) = mzl (0 ) P (rp — 9V 97N, fy)dd.
s ! F( )
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Here the main point is that the €, is a known function because its definition contains only proposed data
and the values of the solution f on [0, ¢;] which has previously been estimated. Also, as investigated
that €; is continuous on [c;, ¢;+1]. Reminding the descriptions of the functions f“ and ¢, we derive

O = Qu),
p'

0 = Q0+ s | @ =T AG f d, a= 120

¢u(i)(t) = f“(i)(t) _fa 1(1)(,;)’ a=1,2,---,

and

"0 = Qi) = fOO0).

Based on the previous investigations, all these functions f“?(¢) and ¢“?(f) are also continuous on
[ci,civ1] fora = 0,1, -+, and this is straightforward that

Fom = )¢,
=0

As given above, a convergent majorant for Y2, ¢'” can be investigated which gives the existence of
uniform limit £ := lim,_,, f*? on [c;, cis1]. As, f(f) has been presented in a piecewise form on [0, ¢;]
and [c;, ci41]. So, at the point ¢;, we may get the limit of f(#). From

—(* -9y =y
lim (tp 90190719 = lim [g] = im 229
t—¢;+0 t—c;+0 Py ’ t—c¢;+0 pY
which implies O

t
lim (tp 9V 1IN, f)dd = A, ) lir_m0 f (* — 919 Y

t—¢;+0
o e @Y
=A({, f) Ilm —— =0
t—¢;+0 p’)/

for some t* € [¢;, t]. Thus

m—1
lim f(®) lim [Z ¢<k>(0)£ o f @ — 97y "9 A, fg)dﬁ)

t—ci— t—c;i—0

m—1

- Zﬁ®<)!lw)fkf Y9I, f)d8 = Qe = fle)

and

lim f(t) - tlicnlo( '

t—ci+

1 go-1
e )f(tp YT A(Y, fﬂ)dﬂ) Qi(c)).

Therefore, f(f) is continuous at the point c;, this gives that there exists a unique function f(¢) € C[—r, c]
which solves the Eqn. 3.4. Hence our proof is finished.
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Remark 2. The above-given results of the proposed theorem can be easily applied to the various
delay-type fractional-order systems in the form of generalized-Caputo type initial value problems to
Jjustify their existence of a unique solution. For example, the authors in ref. [15] had solved some
important delay-type problems in the sense of generalized-Caputo fractional derivatives by proposing
a modified form of the Predictor-Corrector method. In their study, they did not discuss anything about
the existence of a unique solution to the proposed problems. Now by using Theorem I of the proposed
study, the existence and uniqueness results for the examples 6.1, 6.2, 6.3, and 6.4 of ref. [15] can easily
be derived (because all examples satisfy the statement of the proposed Theorem 1). Moreover, there are
a number of delay-type epidemics and ecological models available in the literature which can be easily
derived in the generalized Caputo-type fractional-order sense by using the above-mentioned results.

4. Conclusions

In this article, we have proposed a novel theorem for the existence of a unique solution for the
generalized Caputo-type initial value problems with delay by using fixed point results. The proposed
theorem fills the research gap of existence and uniqueness for the considered fractional derivative with
delay. The given results provide a novel mathematical foundation for the research on the asymptotic
nature of solutions to DFDEs. In the future, the given results can be applied to various kinds of delay-
type dynamical systems to check their solution existence in the generalized Caputo sense.
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