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Abstract: Recently, topological structures have emerged as one of the most popular rough sets (RS)
research topics. It can be stated that it is a fundamental and significant subject in the theory of RS.
This study introduces a debate about the structure of rough topological space based on the reflexive
relation. To create the rough topological space, we use the representation of RS. We also look at the
relationships between approximation operators, closure operators, and interior operators. Also, the
relationship between topological space in the universe that is not limited or restricted to be ended, and
RS induced by reflexive relations is investigated. Furthermore, we define the relationships between
the set of all topologies that satisfy the requirement of compactness C2 and the set of all reflexive
relations. Finally, we present a medical application that addresses the issue of dengue fever. The
proposed structures are used to determine the impact factors for identifying dengue fever.
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1. Introduction

Pawlak [34, 35] introduced the notion of the theory of RS. The equivalence relation is the
establishment of its object identification. Where, the upper and lower approximation operations are
the heartier center concepts of RS, which the operations are caused by an equivalent relation on a field.
They may additionally stay seen as like closure and interior operators of the topology caused by an
equivalence relation on a field. The theory of RS based on an equivalence relation has been extended
to general binary relations [10, 13–15, 19, 20, 31, 39, 44, 47, 51], tolerance relations [1], dominance
relations [29, 44], similarity relations [6, 8], topological structures [9, 16, 18, 23, 32, 36, 47], soft rough
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sets [11, 21, 22, 24] and coverings [27, 33, 43, 49, 50].
There exist near connections between RS and topology. Topological forms concerning RS were

examined by many authors [6,8] and coverings [12,30,33,36]. Pawlak RS was extended to generalized
rough sets by Lin [31] using neighborhood systems and topology to base a model for granular
computing. Furthermore, the links between rough sets and digital topology were studied by Abo
Tabl [5]. The “hit-or-miss” topology on RS was defined and the mathematical morphology within the
general paradigm of soft computing was approximated by Polkowski [37,38]. Kondo introduced some
properties of topology and rough sets for a kind of relation [28]. Qin et al. [42] and Zhang et al. [47]
presented a further examination of the pair of relation-based operators of approximation studied
in [28]. Pomykala studied some properties of topology for two pairs of covering RS approximation
operators [39]. Furthermore, the connections between topology over multiset and rough multiset theory
were also investigated (see [2–4, 7, 25, 26]).

The main contributions and innovations of the article are to introduce an integrate about the structure
of rough topological space based on the reflexive relation and RS. First, we use the representation of
RS to produce the rough topological space and thus the relationships among approximation operators,
closure operators, and interior operators are investigated. Additionally, we explain the relationships
between the set of all topologies that satisfy the requirement of compactness C2 and the set of all
reflexive relations. Therefore, the present paper is organized as follows:

In Section 2, we explore a review of some essential ideas of RS and topological space. Moreover,
we use the representation of RS to construct the rough topological space. Also, we investigate the
relationships among approximation operators, closure operators, and interior operators in Section 3.
Furthermore, in Section 4, the relationship between topological space on the universe which is not
limited restricted to be ended and RS induced by reflexive relations is investigated. Moreover, we
explain the relationships between the set of all topologies which satisfy the requirement of compactness
C2 and the set of all reflexive relations. At last, in Section 5 we present a medical application of dengue
fever for illustrating the suggested techniques.

2. Preliminaries

Some essential concepts of Pawlak RS and topological space are introduced in this section.
The class τ of subset of U is called topology on U if the conditions below are satisfied :
(1) φ,U ∈ τ.
(2) Q1 ∩ Q2 ∈ τ ∀ Q1,Q2 ∈ τ.
(3) ∪i(Qi) ∈ τ ∀ Qi ∈ τ, i ∈ I, (I is an index set).
The pair (U, τ) is called a topological space, every element belonging to τ is called open, and their

complement is called closed [45].
Moreover, in this space

κ(Q) = ∩{C ⊆ U |Q ⊆ C,C is closed}

called τ-closure of Q,

µ(Q) = ∪{O ⊆ U |O ⊆ Q,O is open}

called τ-interior of Q.
Definition 2.1. [45] In the topological space (U, τ) the closure (resp. interior) operator κ : U → τc (resp.
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µ : U → τ) satisfies the Kuratowski axioms if the following conditions hold for every Q1,Q2 ∈ U :
(i) κ(φ) = φ (resp. µ(U) = U),
(ii) κ(Q1 ∪ Q2) = κ(Q1) ∪ κ(Q2) (resp. µ(Q1 ∩ Q2) = µ(Q1) ∩ µ(Q2)),
(iii) Q1 ⊆ κ(Q1) (resp. µ(Q1) ⊆ Q1),
(iv) κ(κ(Q1)) = κ(Q1) (resp. µ(Q1) = µ(µ(Q1))).
Definition 2.2. [35] Assume that R is an equivalence relation on a non-empty set U. We can use the
equivalence class [a]R of a ∈ U to define the lower and upper approximations of a subset Q of U as
follows:

R(Q) = {a ∈ U : [a]R ⊆ Q}

R(Q) = {a ∈ U : [a]R ∩ Q , φ}

Also, the boundary region of the set Q is BND(Q) = R(Q) − R(Q).

3. Novel generalization of rough sets on reflexive relations

Suppose that U is a universal set and R is a binary reflexive relation on U, we call (U,R) as the
(GAS). Also, Rs(a) = {b ∈ U : (a, b) ∈ R} is called the right set of a and Rp(a) = {b ∈ U : (b, a) ∈ R} is
called the left set of a for all a ∈ U.
Definition 3.1. [8] For a universal set U and a reflexive relation R on U, the intersection of all right set
containing a is called the minimal right neighborhood of a and denoted by 〈a〉R, i.e.,

〈a〉R =
⋂

a∈Rs(b)

(Rs(b))

Also, the intersection of all left set containing a is called the minimal left neighborhood of a and
denoted by R〈a〉, i.e.,

R〈a〉 =
⋂

a∈Rp(b)

(Rp(b))

Definition 3.2. [6] For a universal set U and a reflexive relation R on U, we define two neighborhoods
of a subset Q as follows:
The first is the minimal right neighborhood of Q

〈Q〉R =
⋃
a∈Q

〈a〉R

and the second is the minimal left neighborhood of Q

R〈Q〉 =
⋃
a∈Q

R〈a〉

for any Q ⊆ U.
Definition 3.3. [8] For a universal set U and a reflexive relation R on U, the lower and upper
approximations of Q was defined as follows:

R(Q) = {a ∈ U : 〈a〉R ⊆ Q}
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R(Q) = {a ∈ U : 〈a〉R ∩ Q , φ}

For any Q ⊆ U. The accuracy of the approximations is given by:

f(Q) =

∣∣∣R(Q)
∣∣∣∣∣∣R(Q)
∣∣∣

Theorem 3.4. [8] For a (GAS) (U,R), the conditions below are equivalent:
(1) the operator of lower approximation R : P(U)→ P(U) is the operator of interior;
(2) the operator of upper approximation R : P(U)→ P(U) is the operator of closure.

We can select a representative element from every 〈a〉R for all a ∈ U and it is not repeat, where R is
a reflexive relation on U.
Note that: S 0 is the set of representative element of the minimal neighborhood of each element in the
universal set U.
Example 3.5. Assume that U = {h1, h2, h3, h4} is a universal set and R is a reflexive relation on U
such that R = {(h1, h1), (h2, h2), (h3, h3), (h4, h4), (h1, h2), (h2, h4), (h3, h4)}, then Rs(h1) = {h1, h2},
Rs(h2) = {h2, h4}, Rs(h3) = {h3, h4}, Rs(h4) = {h4}, and 〈h1〉R = {h1, h2}, 〈h2〉R = {h2}, 〈h3〉R = {h3, h4} ,
〈h4〉R = {h4}. Then S 0 = {h1, h2, h3, h4}.
Definition 3.6. For a (GAS) (U,R) and Q ⊆ U.
(1) The set Q is called right-composed set if Q = 〈Q〉R.
(2) The set Q is called left-composed set if Q = R〈Q〉.
(3) τR = {Q ⊆ U : 〈Q〉R = Q} is the family of all right-composed sets in U.
(4) τL = {Q ⊆ U : R〈Q〉 = Q} is the family of all left-composed sets in U.
Proposition 3.7. For a (GAS) (U,R), the class τR is a topology on U.
Proof. Firstly, since R is reflexive, then 〈φ〉R = φ and 〈U〉R = U, hence φ,U ∈ τR.
Secondly, if Q1,Q2 ∈ τR, then 〈Q1〉R = Q1, 〈Q2〉R = Q2. From Proposition 3.1 in [6] we have
〈Q1 ∩ Q2〉R ⊆ 〈Q1〉R ∩ 〈Q2〉R, i.e., 〈Q1 ∩ Q2〉R ⊆ Q1 ∩ Q2. Also, let a ∈ 〈Q1〉R ∩ 〈Q2〉R, then
a ∈ 〈Q1〉R = Q1 and a ∈ 〈Q2〉R = Q2, hence, a ∈ Q1 ∩ Q2, i.e., Q1 ∩ Q2 ⊆ 〈Q1 ∩ Q2〉R. That is
Q1 ∩ Q2 = 〈Q1 ∩ Q2〉R, thus Q1 ∩ Q2 ∈ τR. Thirdly, assume that Qi ∈ τR for all i ∈ I, then 〈Qi〉R = Qi.
We have ∪iQi = ∪i〈Qi〉 = 〈∪iQi〉, i.e., ∪iQi ∈ τR. Thus, τR is a topology on U.
Theorem 3.8. For a (GAS) (U,R), the topology τR is the complement of the topology τL.

We define the class of minimal right neighborhood of all subsets of U as follows τ∗ = {〈A〉R : A ⊆
U}.
Lemma 3.9. For a (GAS) (U,R). {〈Q〉R : Q ⊆ U} = {Q ⊆ U : 〈Q〉R = Q}.
Proof. Suppose that P ∈ {〈Q〉R : Q ⊆ U}, then ∃ Q ⊆ U such that P = 〈Q〉R = ∪a∈Q(〈a〉R). Since
R is reflexive, then Q ⊆ P. Also, P ⊆ Q, if P * Q, then ∃ b ∈ P and b ∈/Q, hence there is an
element a ∈ Q such that b ∈ 〈a〉R, thus not necessary P = Q. But, there exist a set Q ∪ {b}, such that
P = 〈Q ∪ {b}〉R = Q ∪ {b}, and so P ⊆ {Q ⊆ U : 〈Q〉R = Q}.
Conversely, if P ⊆ {Q ⊆ U : 〈Q〉R = Q}, then 〈P〉R = P, hence P ∈ {〈Q〉R : Q ⊆ U}.
Thus, {〈Q〉R : Q ⊆ U} = {Q ⊆ U : 〈Q〉R = Q}.

We can use Lemma 3.9 to prove the following theorem.
Theorem 3.10. For a (GAS) (U,R), the class τ∗ is a topology on U and τ∗ = τR.
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We introduce the following definition from [46], For any Q ∈ P(U),

Qg = R(Q) ∪ (BND(Q) ∩ S 0)

= R(Q) ∪ ((R(Q) − R(Q)) ∩ S 0)

= R(Q) ∩ (R(Q) ∪ S 0).

Also, we define S = {a ∈ U : |〈a〉R| = 1}.
Theorem 3.11. For a (GAS) (U,R), the right-composed set P and the left-composed set Q. The pair
(P,Q) is (RS) if and only if P ⊆ Q and (Q − P) ∩ S = φ.
Proof. Assume that (P,Q) is a generalized (RS), Then there exists D ⊆ U such that R(D) = P,
R(D) = Q, hence P = R(D) ⊆ D ⊆ R(D) = Q.
If s ∈ S , then 〈s〉R = {s}.
If s ∈ Q = R(D) = {s : 〈s〉R ∩ D , φ}, then {s} = 〈s〉R ⊆ D, hence s ∈ R(D) = P. That is,
(Q − P) ∩ S = φ.

Conversely, let P ⊆ Q, (Q − P) ∩ S = φ and D = P ∪ ((Q − P) ∩ S 0). Firstly, we want to prove that
R(D) = P. Since P is right-composed set, thus R(D) = R(P ∪ ((Q − P) ∩ S 0)) ⊇ R(P) = P.

Now, we want to show that R(D) ⊆ P. If s ∈ R(D), then 〈s〉R ⊆ D.
Now, there are two cases.

Case 1. If |〈s〉R| = 1, then s ∈ S . Since (Q − P) ∩ S = φ, hence s ∈/Q − P, so, s ∈/(Q − P) ∩ S 0, thus,
s ∈ P.
Case 2. If |〈s〉R| > 1, since (Q − P) ∩ S 0 contains only one element of 〈s〉R. If s is not representative
element, hence, s ∈ P. If s is representative element, provided s ∈ (Q − P) ∩ S 0, hence, at least exist
d ∈ P and d ∈ 〈s〉R, i.e., 〈d〉R ⊆ 〈s〉R, thus, | 〈d〉R |>| 〈a〉R |, which it is a contradiction to that s is a
representative element, that is s ∈ P.
Hence, by Case 1 and Case 2, it follows R(D) ⊆ P, and so R(D) = P.

Secondly, we want to show that R(D) = Q. Since B is a left- composed set, so, R(P∪((Q−P)∩S 0)) =

R(Q ∩ (P ∪ S 0)) ⊆ R(Q) = Q.
Now, we want to show that Q ⊆ R(D). Let s ∈ Q, then there are two cases.

Case 1. If s ∈ P, by s ∈ D, we have s ∈ R(D).
Case 2. If s ∈/P we have s ∈ (Q − P), since (Q − P) ∩ S = φ, so s ∈/S , i.e., there is d ∈ P such that
d ∈ 〈s〉R, hence 〈d〉R ⊆ 〈s〉R and 〈d〉R ⊆ D, thus 〈s〉R ∩ D , φ, we have s ∈ R(D).
According by Case 1 and Case 2, it follows Q ⊆ R(D), and so Q = R(D).

Thus (P,Q) is a generalized (RS).
Definition 3.12. For a (GAS) (U,R), someone can define the binary relation “ ≈ ” on P(U) as follows:
Q ≈ P if and only if R(Q) = R(P), R(Q) = R(P). Note that Q ≈ P is an equivalence relation on P(U).
Also, [Q]≈ = {P ∈ P(U); Q ≈ P} is an equivalence class of Q. Moreover, the set of all equivalence
classes denote by P(U)/ ≈= {[Q]≈; Q ∈ P(U)}.
Theorem 3.13. For a (GAS) (U,R), we have Qg ∈ [Q]≈.
Proof. Let Q ∈ P(U), then we get two definable sets R(Q) and R(Q), so R(Q) ⊆ R(Q) and (R(Q) −
R(Q))∩S = φ, this proof is similar to the proof of Theorem 3.11. Hence R(Qg) = R(Q),R(Qg) = R(Q).
That is Qg ∈ [Q]≈.
Theorem 3.14. For a (GAS) (U,R) and M = {Qg : Q ∈ P(U)}, we have
(1)For any Qg, Pg ∈ M, then Qg ∪ Pg ∈ M,
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(2)For any Qg, Pg ∈ M, then Qg ∩ Pg ∈ M.
Proof.
(1) Firstly, since Q ∪ P ∈ P(U), then (Q ∪ P)g ∈ M, hence
R(Q ∪ P)g = R(Q ∪ P) = R(Q) ∪ R(P), also
R(Qg ∪ Pg) = R(Qg) ∪ R(Pg) = R(Q) ∪ R(P) = R(Q ∪ P).
Secondly, R(Q ∪ P)g = R(Q ∪ P), also
R(Qg ∪ Pg) ⊇ R(Qg) ∪ R(Pg) = R(Q) ∪ R(P) ⊆ R(Q ∪ P).
Hence, R(Q ∪ P)g = R(Q ∪ P) and R(Qg ∪ Pg)R(Q ∪ P).
That is Qg ∪ Pg ∈ M.
(2) The proof is similar to (1).
Theorem 3.15. For a (GAS) (U,R). If Q is an element of τL, then Qg = Q.
Proof. Since, Q ∈ τL, then Q = R〈Q〉 and so R(Q) = Q, and so, Qg = R(Q) ∪ ((R(Q) − R(Q)) ∩ S 0) =

R(Q) ∪ ((Q − R(Q)) ∩ S 0) ⊆ Q.
If Q * Qg, then there exists a ∈ Qg and a ∈/Q, hence a ∈ (R(Q)∪((Q−R(Q))∩S 0)), that is a ∈ R(Q) ⊆ Q
or a ∈ (Q − R(Q)) ⊆ Q, which it is a contradiction, then Q ⊆ Qg thus, Qg = Q.
Theorem 3.16. For a (GAS) (U,R), the class M is a topological space on U.
Proof. Firstly, from Theorem 3.14, we have M is closed under intersection and union, also U, φ ∈ M.
Secondly, since U is finite set, then M is a topology on U.
Theorem 3.17. For a (GAS) (U,R), the topology τL is less than the topology M on U.
Proof. The proof immediately from Theorem 3.15.
Theorem 3.18. For any Q ⊆ U we have, κR(Q) = Q ∪ (R(Q) − S 0), and µR(Q) = R(Q) ∪ (Q ∩ S 0).
Where κR(µR) is a closure (interior) operator of the topological space M.
Proof. Firstly, since µR(Q) = ∪{Pg ∈ M : Pg ⊆ Q}, then
µR(Q) = ∪{R(P)∪((R(P)−R(P))∩S 0) : (R(P)∪((R(P)−R(P))∩S 0)) ⊆ Q}, then µR(Q) = R(Q)∪(Q∩S 0).
Secondly,

κR(Q) = (µR(Qc)c

= {R(Qc) ∪ (Qc ∩ S 0)}c

= (R(Qc))c ∪ (Qc ∩ S 0)c

= R(Q) ∩ (Q ∪ (S 0)c)

= {R(Q) ∩ Q} ∪ {R(Q) ∩ ((S 0)c)}

= Q ∪ (R(Q) − S 0).

By Theorem 3.18, any element contains in the topology M and its complement have the form
R(Q) ∪ (Q ∩ S 0) and Q ∪ (R(Q) − S 0) respectively; also R(Q) is the union of elements in τR, thus we
get the following corollary.
Corollary 3.19. The family {{a}g : a ∈ U} is a base of the topology M.
Example 3.20. Assume that U = {h1, h2, h3, h4, h5} is a universal set and R is a reflexive relation on U
such that
R = {(h1, h1), (h2, h2), (h3, h3), (h4, h4), (h5, h5), (h1, h4), (h1, h5), (h2, h1), (h2, h3), (h2, h4),
(h2, h5), (h3, h5), (h4, h1)}, then Rs(h1) = {h1, h4, h5}, Rs(h2) = U, Rs(h3) = {h3, h5}, Rs(h4) = {h1, h4},
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RS (h5) = {h5} and 〈h1〉R = {h1, h4}, 〈h2〉R = U, 〈h3〉R = {h3, h5} , 〈h4〉R = {h1, h4}, 〈h5〉R = {h5}. Then
S 0 = {h1, h2, h3, h5}. and τR = τ∗ = {φ,U, {h5}, {h3, h5}, {h1, h4}, {h1, h4, h5}, {h1, h3, h4, h5}}

If Q = {h1, h2, h4}, then R(Q) = {h1, h4}, R(Q) = {h1, h2, h4} and
Qg = R(Q) ∪ ((R(Q) − R(Q)) ∩ S 0) = {h1, h4} ∪ ({h2} ∩ {h1, h2, h3, h5}) = {h1, h2, h4} = Q.
If Q = {h1, h4}, then R(Q) = {h1, h4}, R(Q) = {h1, h2, h4} and
Qg = {h1, h4}∪({h2}∩{h1, h2, h3, h5}) = {h1, h2, h4}. Also R(Qg) = {h1, h4} = R(Q), R(Qg) = {h1, h2, h4} =

R(Q), that is Qg ∈ [Q]≈.
If Q = {h3, h5}, then R(Q) = {h3, h5}, R(Q) = {h2, h3, h5} and
Qg = {h3, h5}∪({h2}∩{h1, h2, h3, h5}) = {h2, h3, h5}. Also R(Qg) = {h3, h5} = R(Q), R(Qg) = {h2, h3, h5} =

R(Q), that is Qg ∈ [Q]≈.
If Q = {h2, h5}, then R(Q) = {h5}, R(Q) = {h2, h3, h5} and
Qg = {h5}∪({h2, h3}∩{h1, h2, h3, h5}) = {h2, h3, h5}. Also R(Qg) = {h3, h5} , R(Q), R(Qg) = {h2, h3, h5} =

R(Q), that is Qg ∈/[Q]≈.
The base of M is {{a}g : a ∈ U} = {{h2}, {h1, h2}, {h2, h3}, {h2, h4}, {h2, h3, h5}} also, the topology M is
M = {ϕ,U, {h2}, {h1, h2}, {h2, h3}, {h2, h4}, {h2, h3, h5}, {h1, h2, h3},

{h1, h2, h4}, {h2, h3, h4}, {h1, h2, h3, h4}, {h1, h2, h3, h5}, {h2, h3, h4, h5}}.
Theorem 3.21. M is a topological space on the universe which is not necessary to be finite.
Proof. This theorem can be proven in the same way as previously explained.

4. Topological structures of generalized rough sets by reflexive relations

We will study in this section, the relationship between topologies on the universe which is not
restricted to be finite and the generalized RS induced by reflexive relations. Moreover, the relationships
between the set of all topologies which satisfy the requirement C2 of compactness and the set of all
reflexive relations are studied.

For this study we define the famous class τ(R) = {Q ⊆ U : R(Q) = Q}.
Theorem 4.1. For a (GAS) (U,R), the class τ(R) is a topology on U.
Lemma 4.2. For a (GAS) (U,R), {Q ⊆ U : 〈Q〉R = Q} = {Q ⊆ U : R(Q) = Q}.
Proof. Suppose that P ∈ {Q ⊆ U : 〈Q〉R = Q}, then 〈P〉R = P, hence 〈p〉R ⊆ P for all p ∈ P, so
R(P) = P}, that is P ∈ {Q ⊆ U : R(Q) = Q}. (1)
Conversely, let P ∈ {Q ⊆ U : R(Q) = Q}, then R(Q) = Q}. Since R is reflexive, hence 〈p〉R ⊆ P for all
p ∈ P, so 〈P〉R = P, that is P ∈ {Q ⊆ U : 〈Q〉R = Q}. (2)
From (1) and (2), the proof is complete.

From Lemma 4.2 we can proof the next theorem.
Theorem 4.3. For a (GAS) (U,R), τR = τ(R).
Theorem 4.4. If a topological space (U, τ) satisfies the condition:
(C1) [8]: For all P ⊆ U and Qi ∈ τ; i ∈ I, if (∩Qi) ∩ P = φ, then there are a finite subset {Qi : i ≤ n} of
{Qi : i ∈ I} such that Q1 ∩ Q2 ∩ ... ∩ Qn ∩ P = φ, then there is a reflexive relation R(τ) on U such that
R(τ)(Q) = µ(P), R(τ)(P) = κ(P), for all P ⊆ U.

In the following example, note that the topological space (U, τ(R)) does not satisfy (C1) in general,
for any reflexive relation R.
Example 4.5. In fact the identity relation R = {(a, a) : a ∈ U} in an infinite set U is equivalence and
〈a〉R = {a}. Hence, τ(R) is a discrete topology on U. Also, note that
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⋂
a∈U

(U − {a}) ∩ U = φ

and for each finite set Q of U we have, ⋂
a∈Q

(U − {a}) ∩ U , φ

We define another class τ∗ = {R(A) : A ⊆ U}
Lemma 4.6. For a (GAS) (U,R), {R(Q) : Q ⊆ U} = {Q ⊆ U : R(Q) = Q}.
Proof. Assume that P ∈ {R(Q) : Q ⊆ U}, then ∃ Q ⊆ U such that R(Q) = P, hence R(R(Q)) = R(P).
Since R is reflexive, then R(R(Q)) = R(Q), that is R(P) = P, hence P ∈ {Q ⊆ U : R(Q) = Q}.
Conversely, let P ∈ {Q ⊆ U : R(Q) = Q}, then R(P) = P, thus P ∈ {R(Q) : Q ⊆ U}.

From Lemma 4.6 we can proof the next theorem.
Theorem 4.7. For a (GAS) (U,R), the class τ∗ is a topology on U and τ∗ = τ(R).

From Theorems 3.10, 4.3 and 4.7, we can proof the next theorem.
Theorem 4.8. For a (GAS) (U,R), τ∗ = τR = τ∗ = τ(R).

We introduce another condition (C2), which used to study the relationship between generalized (RS)
induced by reflexive relation and topologies which satisfy (C2).
Lemma 4.9. If (U, τ) satisfies (C1), then it is satisfies the condition:
(C2) [19]: For all a ∈ U and Q ⊆ U, if a ∈ κ(Q), then ∃ b ∈ Q such that a ∈ κ({b}).
Proof. ∀ a ∈ U and P ⊆ U, we assume that a ∈ κ(P). Then, a ∈/µ(Pc) by κ(P) = (µ(Pc))c. We take

Θ = {Q : a ∈ µ(Q)} ∪ {P}

Then we can conclude ∩Θ , φ. Otherwise, we suppose ∩Θ = φ. We get ∩{µ(Q) : a ∈ µ(Q)}∩P = φ by
µ(Q) ⊆ Q. We have from C1 that there are a finite subset {int(Qi : i ≤ n} of {µ(Q) : a ∈ µ(Q)} such that
µ(Q1)∩µ(Q2)∩ ...µ(Qn)∩P = φ, and hence µ(Q1)∩µ(Q2)∩ ...µ(Qn) ⊆ Pc. Since µ(Q1∩µ(Q2∩ ...µ(Qn)
is open, we have µ(Q1) ∩ µ(Q2) ∩ ...µ(Qn) ⊆ µ(Pc). Thus a ∈ µ(Pc). Which it is a contradiction. That
is ∩Θ , φ.

From the definition of Θ, we get b ∈ P such that for any Q ⊆ U, a ∈ µ(Q) this means that b ∈ Q.
That is a ∈/µ(U − {b}) = (κ({b}))c by b ∈/U − {b}, thus a ∈ κ({b}).
Example 4.10. Let τ be the topology on the set of natural numbers N = {0, 1, 2, ..., n, ...} defined by

τ = {N, φ,Qn = {n + 1, n + 2, ...} : n ∈ N}.

(1) In fact, τ satisfies C2. Assume that Q ⊆ N and a ∈ cl(Q). There are two cases, the first, when Q is
finite, we get b ∈ Q such that d ≤ b for any d ∈ Q. That is a ∈ κ(Q) = {0, 1, ..., b} = κ({b}). The second,
when X is infinite, we have b ∈ Q such that a ≤ b, thus a ∈ {0, 1, ..., b} = κ({b}).
(2) Someone can prove that

(
⋂
a∈N

(Qi)) ∩ N = φ

also for any finite set Q of N we get,
(
⋂
a∈Q

(Ai)) ∩ N , φ
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This means that, τ does not satisfy C1.
Theorem 4.11. Assume that (U, τ∗) is a topological space, then R and R are a closure operator and an
interior operator of τ∗, respectively.
Proof. Let κ and µ be a closure operator and an interior operator of τ∗ respectively. Since R(P) is open
and R(P) ⊆ P, we get R(P) ⊆ µ(P). Also, for all Q ⊆ P with R(Q) = Q, we get Q = R(Q) ⊆ R(P), that
is µ(P) = ∪{Q : R(Q) = Q,Q ⊆ P} ⊆ R(P). Also, we can prove that R is a closure operator of τ∗.
Theorem 4.12. For a (GAS) (U,R), τ(R) satisfies C2.
Proof. Suppose that q ∈ κ(Q). Then q ∈ R(Q), thus ∃ p ∈ Q such that p ∈ 〈q〉R, hence,
q ∈ R({p}) = κ({p}).
Assume that (U, τ) is a topological space, µ and κ its interior and closure operators respectively.
Someone can define the relation Rτ on U in the form (q, p) ∈ Rτ if and only if q ∈ κ({p}), ∀ q, p ∈ U.
And so, the relation Rτ is reflexive.
Theorem 4.13. (q, p) ∈ Rτ if and only if, for any Q ⊆ U, q ∈ µ(Q) implies p ∈ Q.
Proof. Assume that (q, p) ∈ Rτ. For each Q ⊆ U, if q ∈ int(Q), then q ∈/(µ(Q))c. Since q ∈ κ({p}),
hence p ∈ Qc and p ∈ Q.
Conversely, assume that for all Q ⊆ U, q ∈ µ(Q), then p ∈ Q. Since p ∈/U − {p}, that is q ∈/µ(U − {p})
and thus q ∈ (µ(U − {p}))c = κ(U − {p})c = κ({p}).
Theorem 4.14. If (U, τ) satisfies the condition C2, then Rτ(Q) = κ(Q) and Rτ(Q) = µ(Q) ∀ Q ⊆ U.
Proof. Suppose that Q ⊆ U and q ∈ U, if q ∈ Rτ(Q), then ∃ p ∈ Q such that (q, p) ∈ Rτ, this means
that, q ∈ κ({p}) ⊆ κ(Q) and Rτ(Q) ⊆ κ(Q).
Conversely, assume that q ∈ κ(Q). By C2, there is p ∈ Q such that q ∈ κ({p}), thus, (q, p) ∈ Rτ, so
q ∈ Rτ(Q). Consequently, κ(Q) ⊆ Rτ(Q). By the duality, Rτ(Q) = µ(Q) holds.
Theorem 4.15. (1) If the topological space (U, τ) satisfy C2, then τ(Rτ)) = τ.
(2) Rτ(R) = R, if the relation R on U is reflexive.
Proof. (1) Assume that µ is an interior operator of τ. Then R(τ) is reflexive. By Theorem 4.11, if
Q ∈ τ(Rτ), hence Rτ(Q) = Q, and then µ(Q) = Q. Thus, Q ∈ τ. Conversely, assume that Q ∈ τ. From
Theorem 4.14, Rτ(Q) = µ(Q) = Q, that is Q ∈ τ(Rτ).
(2) Assume that κ is a closure operator of the topology τ(R). For all q, p ∈ U, if (q, p) ∈ Rτ(R), then
according to Theorem 4.11, q ∈ κ({p}) = R({p}), and (q, p) ∈ R by the definition. Conversely, assume
that (q, p) ∈ R. This means that q ∈ R({p}) = κ({p}), then (q, p) ∈ Rτ(R).
Assume that Ω is the set of all topologies on U which satisfies C2 and Θ is the set of all reflexive
relations on U.
Corollary 4.16. There is a one-to-one correspondence between Θ and Ω.
Proof. One can define a function f : Θ → Ω by f (R) = τ(R) and by Theorem 4.15, can prove that it
is a one-to-one correspondence. Also, a function g from Ω to Θ defined by g(τ) = Rτ is a one-to-one
correspondence.

5. Medical applications

Recently, several medical applications of rough sets and its applications (for instance, [9,10,13,15,
17,19–23]. In this section, we are considering the problem of dengue fever. This disease is transmitted
to humans via virus-carrying Dengue mosquitoes [17, 40]. Symptoms of Dengue fever begin three to
four days after infection. Recovery usually takes between two and seven days [40]. It is common in

AIMS Mathematics Volume 7, Issue 6, 9911–9925.



9920

more than 120 countries around the world, mainly Asia and South America [52]. It causes about 60
million symptomatic infections worldwide and 13,600 deaths worldwide. Consequently, we deal with
this problem and have tried to analyze it through a minimal structure space, the reduction of condition
attributes, and the accuracy of decision attributes. The data discuss the problem of dengue fever.
Columns of the following Table 1 are the attributes (symptoms of Dengue fever), such that the set of
attributes is {J, F, S ,H} where J interpreted as (muscle and joint pains), F interpreted as (fever), S
interpreted as (characteristic skin rash) and H interpreted as (headache) [17, 40]. Attribute D is the
decision of problem and the rows of attributes P = {m1,m2,m3,m4,m5,m6,m7,m8} are the patients.
Note that: The present illustrative example shows the importance of the proposed approaches in
the reduction of attributes where Pawlak’s rough sets cannot be applied in the information system of
Table 1 since the used relation is not an equivalence relation.

Table 1. Dengue fever information system.

P J F S H Dengue fever
m1 X X X × X
m2 X × × × ×

m3 X × × × X
m4 × × × X ×

m5 × X X × ×

m6 X X × X X
m7 X X × × ×

m8 X X × X X

From Table 1, we obtain the symptoms of every patient are:
v(m1) = {J, F, S }, v(m2) = {J}, v(m3) = {J}, v(m4) = {H}, v(m5) = {F, S }, v(m6) = {J, F,H}, v(m7) =

{J, F}, and v(m8) = {J, F,H}.
Now, we construct the right neighborhoods via the following relation, that is related to the nature of

the studied problem:

miRm j ⇐⇒ v(mi) ⊆ v(m j)

Note that: The relation in each issue is defined according to the expert’s requirements. Thus, the
relation for all attributes is:
R = {(m1,m1), (m2,m2), (m2,m1), (m2,m3), (m2,m6), (m2,m7), (m2,m8), (m3,m3), (m3,m1), (m3,m2),
(m3,m6), (m3,m7), (m3,m8), (m4,m4), (m4,m6), (m4,m8), (m5,m5), (m5,m1), (m6,m6), (m6,m8),
(m7,m7), (m7,m1), (m7,m6), (m7,m8), (m8,m8), (m8,m6)}.

Therefore, from Table 1, the minimal right neighborhood of all elements in P are:
〈m1〉R = {m1}, 〈m2〉R = 〈m3〉R = {m1, m2, m3, m6, m7, m8}, 〈m4〉R = {m4, m6, m8}, 〈m5〉R = {m1, m5},

〈m6〉R = {m6, m8}, 〈m7〉R = {m1, m6, m7, m8}, and 〈m8〉R = {m6, m8}.
From Table 1, we have two cases are:

Case 1. (Patients infected with dengue fever) U1 = {m1, m3, m6, m8}.
Therefore, using Definition 3.3, we calculate the accuracy of U1, through lower and upper

approximations respectively as
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R(U1) = {m1, m6, m8} and R(U1) = P. Thus, the accuracy measure is f(U1) = 3/8.

Now, if we remove the attribute J, then the symptoms of every patient are:
v(m1) = {F, S }, v(m2) = φ, v(m3) = φ, v(m4) = {H}, v(m5) = {F, S }, v(m6) = {F,H}, v(m7) = {F},

and v(m8) = {F,H}.
Therefore, the minimal right neighborhood of all elements in P are:
〈m1〉R = 〈m5〉R = {m1,m5}, 〈m2〉R = 〈m3〉R = P, 〈m4〉R = {m4, m6, m8}, 〈m6〉R = 〈m8〉R = {m6, m8},

and 〈m7〉R = {m1, m5, m6, m7, m8}.
Accordingly, lower and upper approximations of U1 respectively are
R(U1) = {m6, m8} and R(U1) = P. Thus, the accuracy measure is f(U1) = 1/4 which differs than

the accuracy of the original information system in Table1. Hence, the attribute J is not dispensable.
Again, if we remove the attribute F, then the symptoms of every patient are:
v(m1) = {J, S }, v(m2) = {J}, v(m3) = {J}, v(m4) = {H}, v(m5) = {S }, v(m6) = {J,H}, v(m7) = {J}, and

v(m8) = {J,H}.
Therefore, the minimal right neighborhood of all elements in P are:
〈m1〉R = {m1}, 〈m2〉R = 〈m3〉R = 〈m7〉R = {m1, m2, m3, m6, m7, m8}, 〈m4〉R = {m4, m6, m8},

〈m5〉R = {m1,m5}, and 〈m6〉R = 〈m8〉R = {m6, m8}.
Accordingly, lower and upper approximations of U1 respectively are
R(U1) = {m1, m6, m8} and R(U1) = P. Thus, the accuracy measure isf(U1) = 3/8 which is the same

as the accuracy of the original information system in Table1. Hence, the attribute F is dispensable.
Another step, if we remove the attribute S , then the symptoms of every patient are:
v(m1) = {J, F}, v(m2) = {J}, v(m3) = {J}, v(m4) = {H}, v(m5) = {F}, v(m6) = {J, F,H}, v(m7) =

{J, F}, and v(m8) = {J, F,H}.
Therefore, the minimal right neighborhood of all elements in P are:
〈m1〉R = 〈m7〉R = {m1,m6,m7,m8}, 〈m2〉R = 〈m3〉R = {m1, m2, m3, m6, m7, m8}, 〈m4〉R = {m4, m6,

m8}, 〈m5〉R = {m1,m5,m7,m8}, and 〈m6〉R = 〈m8〉R = {m6, m8}.
Accordingly, lower and upper approximations of U1 respectively are
R(U1) = {m6, m8} and R(U1) = P. Thus, the accuracy measure is f(U1) = 1/4 which differs than

the accuracy of the original information system in Table1. Hence, the attribute S is not dispensable.
Finally, if we remove the attribute H, then the symptoms of every patient are:
v(m1) = {J, F, S }, v(m2) = {J}, v(m3) = {J}, v(m4) = φ, v(m5) = {F, S }, v(m6) = {J, F}, v(m7) =

{J, F}, and v(m8) = {J, F}.
Therefore, the minimal right neighborhood of all elements in P are:
〈m1〉R = {m1}, 〈m2〉R = 〈m3〉R = 〈m4〉R = P, {m4, m6, m8}, 〈m5〉R = {m1,m5}, and 〈m6〉R = 〈m7〉R =

〈m8〉R = {m1,m6,m7,m8}.
Accordingly, lower and upper approximations of U1 respectively are
R(U1) = {m1} and R(U1) = P. Thus, the accuracy measure is f(U1) = 1/8 which differs than the

accuracy of the original information system in Table1. Hence, the attribute H is not dispensable.
Case 2. (Patients are not infected with dengue fever) U2 = {m2, m4, m5, m7}.

By following the same steps like Case 1, we obtain that the attributes J, S , and H are not dispensable.
Concluding remark: From the above discussion, we notice that the attributes {J, S ,H} cannot be
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removed, and then they represent the core attributes of the original information system. Therefore,
{J, S ,H} represent the basic factors for identifying the dengue fever.

6. Conclusions

The debate of structure for rough topological space based on reflexive relation has been introduced
in this research. We used the representation of RS to construct the rough topological space. Moreover,
we have investigated the relationships among approximation operators, closure operators, and interior
operators. Besides, the relationships between topological spaces in the universe which are not limited
restricted to being ended, and RS induced by reflexive relations were investigated. Additionally, we
have established the relationships between the set of all topologies which satisfy the requirement of
compactness C2 and the set of all reflexive relations. Finally, a medical application for our proposals
was established. In future work, we will investigate the topological structure of the other models.

List of symbols and abbreviations

RS rough sets R Binary relation
GAS Generalized approximation space 〈a〉R Minimal right neighborhood of a
U Universal set R〈a〉 Minimal left neighborhood of a
τ Topology R(Q) Lower approximation of Q
τc Class of all closed sets R(Q) Upper approximation of Q
κ(Q) τ-closure of Q BND(Q) The boundary region of Q
µ(Q) τ-interior of Q f(Q) The accuracy of the approximations
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