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1. Introduction 

In the past few years, researching on IT2 FLSs [1–3] has attracted more attentions. The process 
of financial systems [4], power systems [5,6], permanent magnetic drive [8,9], intelligent controllers [7], 
plant monitoring and diagnostics [10], database and information systems [11] and so on are all with high 
uncertainty and nonlinearity [12]. The IT2 FSs have the potential to exceed T1 FSs as the former 
own the additional third mathematical dimension in the footprint of uncertainty (FOU). Therefore, 
IT2 FLSs based on IT2 FSs own the capability to reduce the influence of uncertainty better compared 
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with their T1 counterparts. Recent study report shows that IT2 FLSs [13] even have superior 
approximation ability to the nonparametric network networks. 

An IT2 FLS is made up of five modules as: Fuzzifier, inference, rules, type-reduction (TR) and 
defuzzification (see Figure 1). Among which, the most important module is the TR, which has the 
function of mapping the IT2 FS to the T1 FS. While the T1 FLSs only use T1 FSs. The TR can be 
viewed as the extended of T1 defuzzification. And the defuzzification changes the T1 FS into the 
output. In addition, the systems can be defined as IT2 FLSs if an antecedent or consequent in fuzzy 
rules were IT2 FS. The operations in IT2 FLSs are more complicated than in T1 FLSs as the former 
involves the TR. In this paper, we only focus on the TR. 

 

Figure 1. An IT2 FLS [1,5,14]. 

To date, the centroid TR [15,16] is still one of the most popular approaches in theory studies. 
Karnik and Mendel developed the KM algorithms to complete the centroid type-reduction of IT2 
FLSs. For better understand the KM algorithms, Mendel and Wu put forward the continuous of KM 
(CKM) algorithms. Furthermore, the monotonic and super exponential convergence [17] of 
continuous KM algorithms were proved, which provided a major impulse for investigating IT2 FLSs. 
Wu and Mendel [12,18] applied the KM algorithms to calculate the uncertainties measure in IT2 FSs 
and merged the language weighted average of IT2 FSs into intuition calculations. For the sake of 
reducing the computation time, Wu and Mendel [19] put forward the enhanced type of KM (EKM) 
algorithms. The theoretical explanations for the initializing of EKM algorithms are provided by Liu 
et al. [20], in addition, the EKM algorithms are extended to weighted EKM (WEKM) algorithms to 
compute the centroids of IT2 fuzzy sets. All the above works have laid abundant theory for applying 
the TR algorithms. 

On the basis of analyzing the sum operation in discrete EKM algorithms and the integration 
operation in CEKM algorithms, this paper first gives the explanations for the initialization of EKM 
algorithms. In terms of the Newton-Cotes quadrature formulas, three different forms of weighted 
EKM (WEKM) algorithms are also explained. Then the reasonable initialization weighted enhanced 
Karnik-Mendel (RIWEKM) algorithms are proposed to complete the centroid type-reduction of IT2 
FLSs. While calculating the centroid type-reduced sets, the provided RIWEKM algorithms get 
smaller absolute errors and faster convergence speeds in contrast to both the EKM and RIEKM 
algorithms.  

The rest of this paper is arranged as follows. Section 2 gives the background of IT2 FSs and IT2 
FLSs. Section 3 shows the Newton-Cotes formulas, the EKM and CEKM algorithms, and how to 
calculate the centroid type-reduction of IT2 FLSs by means of RICEKM and RIWEKM algorithms. 
Three simulation instances are given in Section 4 to show the performances of the RIWEKM 
algorithms. Finally the last section gives the conclusions. 
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2. Background 

2.1. IT2 FSs 

Definition 1. An IT2 fuzzy set A~  can be described by the corresponding type-2 membership 
function (MF) ),(~ uxAµ , that is to say, [1,3,21] 

]}1 ,0[,|),(),,{(~
~ ∈∀∈∀= uXxuxuxA Aµ       (1) 

in which Xx∈ , and ]1,0[∈u , Eq (1) is called as the point-value expression, while the compact 
form is as: 

),/(),(~
]1,0[

~ uxuxA
Xx u A∫ ∫∈ ∈

= µ .         (2) 

Definition 2. A secondary MF can be viewed as the vertical slice of ),(~ uxAµ , that is to say, [1] 

∫ ∈ ′=′≡′=
]1,0[

~~ /)()(),(
u xAA uufxuxx µµ        (3) 

where ]1,0[∈∀u , for an IT2 FS, the secondary MF grade 1)( ≡′ ufx . 
Definition 3. The two dimensional support of ),(~ uxAµ  is called as the footprint of uncertainty 

(FOU) of A~ , that is to say, [1] 

}0),(|]1,0[),{()~(FOU ~ >×∈= uxXuxA Aµ       (4) 

in which )~(FOU A  is limited between the upper MF (UMF) and the lower MF (LMF), i.e., 

)~(FOU)()~UMF( ~ AxA A == µ ,        (5)  

)~(FOU)()~(LMF ~ AxA
A

== µ .        (6) 

Definition 4. An embedded T1 fuzzy set is decided by ( , )A x uµ


, that is to say, [1] 

]}1,0[,|))(,{( ∈∈∀= uXxxuxAe .       (7) 

As the secondary MF grades of IT2 fuzzy sets are equal to one, IT2 FSs can be entirely 
described by the LMF and UMF. Here an example of IT2 FS is provided in Figure 2. 

 

Figure 2. An IT2 FS and its corresponding quantities [24]. 
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2.2. IT2 FLSs 

From the aspect of structure, IT2 FLSs can be usually divided into Mamdani type [5,21,22] and 
Takagi-Sugeno-Kang type [8,23]. Here we concentrate on the Mamdani type. Without loss of 
generality, consider a Mamdani type IT2 FLS with n  inputs nn XxXxXx ∈∈∈ ,, 2211  and one 
output Yy∈ . The system can be characterized by M  fuzzy rules, where the sth  fuzzy rule is of 
the form: 

sR : If 1x  is sF1
~  and 2x  is sF2

~  and…and nx  is s
nF~ , then y  is ),,1(~ MsGs

=  (6) 

in which ),,1;,,1(~ MsniF s
i  ==  represents the antecedent IT2 fuzzy set, and ),,1(~ MsGs

=  
represents the consequent IT2 fuzzy set.  

For simplicity, the singleton fuzzifier is adopted, that is to say, we model the input 
measurements as crisp sets. For each fuzzy rule, as xx ′= , the firing interval can be calculated as: 
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in which T  represents the product or minimum t-norm, )(xf s ′  and )(xf s ′  denote the left 
endpoint and right end point of firing interval, respectively.  

For the centroid type-reduction, combine the firing interval with the corresponding consequent 
IT2 fuzzy set to get the fired-rule output fuzzy set sB~ : 

sB~ :
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in which ∗  represents the product or minimum t-norm. 
Then the aggregated IT2 fuzzy set B~  can be got by unioning all the sB~  as: 

B~ :
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    (9) 

in which ∨  represents the maximum operation. 
Finally the centroid of B~  can be computed to get the type-reduced set )(xYC ′ , i.e., 

)](),(/[1)( ~~ xrxlxY BBC ′′=′         (10) 

in which )(~ xlB
′  and )(~ xrB

′  can be computed by the TR algorithms, i.e., 
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in which N  represents the number of sampling of primary variable, and the defuzzified output is 
the average of two end points. 

3. RIWEKM algorithms 

Before giving the proposed RIWEKM algorithms, the theoretical interpretations of KM 
algorithms and EKM algorithms are provided. Then the Newton-Cotes quadrature formulas [25] are 
introduced. 

3.1. The initialization explanations of KM and EKM algorithms 

Let the primary variable of output IT2 fuzzy set B~  be as: byya N =<<= 1 , then the 
continuous KM and EKM (CKM and CEKM) algorithms for computing Bl~  and Br~  are as (see 
Tables 1 and 2): 

Table 1. CKM algorithms [16–19,25–27] for calculating the centroid of B~ . 

Step For Bl~ , 

∫
∫

∈∀
= b

a

b

a

yyyB
dyy

dyyy
l

BB )(

)(
min

)](),([)(
~

~~ θ

θ
µµθ

 

1 
Let 2/)]()([)( ~~ yyy BB

µµθ += , and compute .
)(

)(

∫
∫=′ b

a

b

a

dyy

dyyy

θ

θ
ξ  

2 Set )()( ~ yy Bµθ =  when ξ ′≤y , and )()( ~ yy
B

µθ =  when ξ ′>y , and 

calculate .
)(

)(
~

∫
∫= b

a

b

a
l

dyy

dyyy
B θ

θ
ξ  

3 Check if εξξ ≤−′ || ~Bl
, if yes, stop and set 

BlBl ~~ ξ= , if no, return to Step 4. 

4 Set lξξ =′  and return to Step 2. 

 
 

Continued on next page 
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Step For Br~ , 

∫
∫

∈∀
= b
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1 
Let 2/)]()([)( ~~ yyy BB

µµθ += , and calculate .
)(

)(

∫
∫=′ b

a

b

a

dyy

dyyy

θ

θ
ξ  

2 Set )()( ~ yy
B

µθ =  when ξ ′≤y , and )()( ~ yy Bµθ =  when ξ ′>y , and 

compute .
)(

)(
~

∫
∫= b

a

b

a
r

dyy

dyyy
B θ

θ
ξ  

3 Check if εξξ ≤−′ || ~Br
, if yes, stop and set 

BrBr ~~ ξ= , if no, return to Step 4. 

4 Set 
Br~ξξ =′  and return to Step 2. 

Table 2. CEKM algorithms [16–19,25–27] for calculating the centroid of B~ . 

Step For Bl~  

1 Set 4.2/)( abac −+= , and compute dyyydyyy
b

c B

c

a B )()( ~~ ∫∫ += µµa , 

dyydyy
b

c B

c

a B )()( ~~ ∫∫ += µµb , ba /=′c . 

2 Check if ε≤−′ || cc , if yes, stop and set Blc ~=′ , if no, return to Step 4. 

3 Calculate )( ccsigns −′= , ∫
′

′
−+=′

),max(

),min(
~~ )]()([

cc

cc BB dyyyys µµaa , 

∫
′

′
−+=′

),max(

),min(
~~ )]()([

cc

cc BB dyyys µµbb , ba ′′=′′ /c . 

4 Set bbaa ′=′=′′=′′= ,,, cccc  and return to Step 2. 

Step For Br~  

1 Set 7.1/)( abac −+= , and compute dyyydyyy
b

c B

c

a B
)()( ~~ ∫∫ += µµa , 

dyydyy
b

c B

c

a B
)()( ~~ ∫∫ += µµb , ba /=′c . 

2 Check if ε≤−′ || cc , if yes, stop and set Brc ~=′ , if no, go to Step 4. 

3 Compute )( ccsigns −′= , ∫
′

′
−−=′

),max(

),min(
~~ )]()([

cc

cc BB dyyyys µµaa , 

∫
′

′
−−=′

),max(

),min(
~~ )]()([

cc

cc BB dyyys µµbb , ba ′′=′′ /c . 

4 Set bbaa ′=′=′′=′′= ,,, cccc  and return to Step 2. 

∫ ∫
∫ ∫

+

+
==

∈∈ ξ

ξ

ξ

ξ

ξξ µµ

µµ
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b

BB
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b

BB
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dyydyy

dyyydyyy
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B )()(
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min)(min
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],[],[
~ ~ ,      (13) 
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∫ ∫
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+
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As the continuous version of TR algorithms are always considered as the benchmark, here the 
calculational steps of CKM algorithms and CEKM algorithms are provided in Table1 and Table 2, 
respectively. In terms of the notations 

Bl
F ~  in (13) and 

Br
F ~  in (14), and see the Steps 2 and 4 in 

Table 1, so that, 

)(~~ ξξ ′=
BB ll F , and ξξ ′=

Bl ~         (15) 

)(~~ ξξ ′=
BB rr F , and ξξ ′=

Br~ .        (16) 

When the iterations terminate, 
BlBl ~~ ξ=  and 

BrBr ~~ ξ= , so that, 

)( ~~ ~ BlB lFl
B

= , )( ~~ ~ BrB rFr
B

=         (17) 

where Bl~  and Br~  are the fixed points of )(~ ξ
Bl

F  and )(~ ξ
Br

F , respectively. In a similar way, the 

relations of (17) are also true for the CEKM algorithms as in Table 2. 
In the aim of initializing the algorithms, we set )()()( ~~ yyy BB

θµµ ==  for ],[ bay∈ , so that, 

2/)]()([)( ~~ yyy BB
µµθ += , and the Eqs (13) and (14) become the same, therefore, 

∫
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here (18) is the initialization method of CKM algorithms as shown in the Table 1, represented as )1(ξ , 
that is to say, 

∫
∫= b

a

b

a

dyy

dyyy

)(

)(
)1(

θ

θ
ξ         (19) 

where 2/)]()([)( ~~ yyy BB
µµθ += .  

The calculational steps of discrete KM algorithms and EKM algorithms are given in the 
following Tables 3 and 4. For the Eq (19), the discrete form of )1(ξ  is as in Steps 1 and 2 in the 
Table 3, that is to say, 

}11,
)]()([

)]()([
|{ 1

1

1)1( −≤≤<
+

+
≤= +

=

=

∑

∑
Nky

yy

yyy
ykk kN

i
iBiB

N

i
iBiBi

k

µµ

µµ
   (20) 

for the KM initialization method, the results can be good as )(~ y
B

µ  and )(~ yBµ  are very close due 

to the exact optimal solution of (11) or (12) as )()( ~~ yy BB
µµ = . 
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Table 3. KM algorithms [16–19,25–27] for calculating the centroid of B~ . 

Step 
For Bl~ , )/()(min

11)](),([
~

~~
∑∑
==∈∀

=
N

i
i

N

i
iiyyB yl

iBiBi

θθ
µµθ

 

1 Set Niyyi iBiB
,,1,2/)]()([)( ~~ =+= µµθ  and calculate 

)/()(
11
∑∑
==

=′
N

i
ii

N

i
iyc θθ . 

2 Find )11( −≤′≤′ Nkk  which satisfies 1+′′ <′≤ kk ycy . 

3 Set )(~ iBi yµθ =  when ki ′≤ , and )(~ iBi yµθ =  when ki ′> ,  

and calculate )/()()(
11

~ ∑∑
==

=′
N

i
ii

N

i
iB ykl θθ . 

4 Check if cklB
′=′)(~ , if yes, stop and set BB lkl ~~ )( =′  and Lk =′ , if no, 

return to Step 5. 
5 Set )(~ klc B

′=′  and return to Step 2. 

Step 
For Br~ , )/()(max

11)](),([
~

~~
∑∑
==∈∀

=
N

i
i

N

i
iiyyB yr

iBiBi

θθ
µµθa

 

1 Set Niyyi iBiB
,,1,2/)]()([)( ~~ =+= µµθ  and calculate 

)/()(
11
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==

=′
N

i
ii

N

i
iyc θθ . 

2 Find )11( −≤′≤′ Nkk  which satisfies 1+′′ <′≤ kk ycy . 

3 Set )(~ iBi yµθ =  when ki ′≤ , and )(~ iBi yµθ =  when ki ′> ,  

and calculate )/()()(
11

~ ∑∑
==

=′
N

i
ii

N

i
iB ykr θθ . 

4 Check if ckrB
′=′)(~ , if yes, stop and set BB rkr ~~ )( =′  and Rk =′ , if no, 

return to Step 5. 
5 Set )(~ krc B

′=′  and return to Step 2. 

Table 4. EKM algorithms [16–19,25–27] for calculating the centroid of B~ . 

Step For Bl~  

1 Set ]4.2/[Nk =  (the nearest integer to 4.2/N ) and calculate 

)()( ~
1

~

1
iB

N

ki
iiB

k

i
i yyyy µµa ∑∑

+==

+= , 

∑∑
+==

+=
N
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iB

k

i
iB yy

1
~

1

~ )()( µµb , ba /=′c . 

2 
Find )11( −<′≤′ Nkk  which satisfies 1+′′ <′≤ kk ycy . 

3 Check if kk =′ , if yes, stop and set Blc ~=′  and Lk = , if no, return to Step 4  

 Continued on next page 
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Step For Bl~  

4 
Compute )( kksigns −′= , )]()([ ~~

),max(

1),min(
iBiB
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kki
i yyys µµaa −+=′ ∑

′
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Step For Br~  

1 
Set ]7.1/[Nk =  and compute )()( ~

1
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1
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i
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2 Find )11( −<′≤′ Nkk  which satisfies 1+′′ <′≤ kk ycy . 

3 Check if kk =′ , if yes, stop and set Brc ~=′  and Rk = , if no, return to Step  

4 
Compute )( kksigns −′= , )]()([ ~~
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iBiB
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5 Set kkcc ′=′=′=′′=′ ,,, bbaa  and return to Step 2. 

While for the initializations of EKM algorithms, the method is on account of the difference 
between )(~ y

B
µ  and )(~ yBµ . Assume that, 

.
)(

)(

~

~

∫
∫= b

a B

b

a B

dyy

dyy

µ

µ
ρ           (21) 

As )()( ~~ yy
BB µµ ≥  for ],[ bay∈ , therefore, 1≥ρ . 

For the sake of initializing the EKM algorithms, here we let )(~ y
B

µ  and )(~ yBµ  be constants 

for ],[ bay∈ , that is to say, suppose that 0)(~ >= nyB ρµ , see the Eq (11), it can be obtained that, 
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Compute the derivative of )(~ ξ
Bl

F  with respect to ξ  to obtain that, 

2

22

)]()([2
])()()[1()(~ ξξρ

ξξρρξ
a −+−
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=′
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Bl
.       (23) 

While letting 0)(~ =′ ξ
Bl

F , so that, 
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Then solve the Eq (24) to get the ξ , i.e., 
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Then calculate the derivative of )(~ ξ
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F  with respect to ξ  to obtain that, 
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While letting 0)(~ =′ ξ
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F , so that, 

ρξ
ξ 1

)(
)(

2

2

=
−
−

a
b , and ρ

ξ
ξ /1=

−
−

a
b .       (28) 

Solve the Eq (28) to get the ξ , i.e., 

.
/11~ ρ

ξ
+
−

+=
aba

Br
        (29) 

Here 
Br~ξ  represents the maximum value of )(~ ξ

Br
F . As 0)(~ >′ ξ

Br
F  for ),[ ~Br

a ξξ ∈ , and 
0)(~ >′ ξ

Br
F  for ],( ~ b

Br
ξξ ∈ , so that, 

BBB rrrB Fr ~~~ )(~ ξξ == .  

By considering the Eqs (25) and (29) simultaneously, the new initialization method for ξ  can 
be represented as )2(ξ , i.e., 











+
−

+

+
−

+

=
.for   

/11

,for      
1

~

~

)2(

B

B

raba

laba

ρ

ρ
ξ          (30) 

where 1≥ρ , so that, )(
2
1)2( aba −+≤ξ  for Bl~ , and )(

2
1)2( aba −+≥ξ  for Br~ . 

By comparing the initializations of discrete form of EKM algorithms as shown in Table 4 and 
CEKM algorithms as shown in Table 2, we can obtain the discrete form of Eq (30) as: 
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+

+
=

.for   ])/11/([

,for      ])1/([

~

~
)2(

B

B

rN

lN
k

ρ

ρ
        (31) 

in which N  is the number of sampling of primary variable, and .
)(

)(

1
~

1

~

∑

∑

=

== N

i
B

N

i
B

y

y

µ

µ
ρ  

As 2=ρ , 4.2211 ≈+=+ ρ , and 7.12/11/11 ≈+=+ ρ , so that, the Eq (31) turns out 
to be: 





=
.for      ]7.1/[
,for      ]4.2/[

~

~
)2(

B

B

rN
lN

k         (32) 

here the Eq (32) provides the initialization method of EKM algorithms, which comes from empirical 
large amount of simulations. For the proposed RIEKM algorithms, each specific 

∑ ∑
= =

=
N

i

N

i
BB yy

1 1
~~ )](/[)]([ µµρ  should be defined for the corresponding simulation experiments. In this 

section, we provide the computation steps of discrete RIEKM algorithms and RICEKM algorithms 
as in Tables 5 and 6, respectively. 

Table 5. RIEKM algorithms [16–19,25–27,32] for calculating the centroid of B~ . 

Step For Bl~  

1 
Set )]1/([ ρ+= Nk  and calculate )()( ~

1
~

1
iB

N

ki
iiB

k

i
i yyyy µµa ∑∑

+==

+= , 

∑∑
+==

+=
N

ki
iB

k

i
iB

yy
1

~

1
~ )()( µµb , ba /=′c  

2 Find )11( −<′≤′ Nkk  which satisfies 1+′′ <′≤ kk ycy . 

3 Check if kk =′ , if yes, stop and set Blc ~=′  and Lk = , if no, return to Step 4  

4 
Compute )( kksigns −′= , )]()([ ~~

),max(

1),min(
iBiB

kk

kki
i yyys µµaa −+=′ ∑

′

+′=

, 

∑
′

+′=

−+=′
),max(

1),min(
~~ )]()([

kk

kki
iBiB yys µµbb , ba ′′=′′ /c . 

5 Set kkcc ′=′=′=′′=′ ,,, bbaa  and return to Step 2. 

Step For Br~  

1 
Set )]/11/([ ρ+= Nk  and calculate )()( ~

1
~

1
iB

N

ki
iiB

k

i
i yyyy µµa ∑∑

+==

+= , 

∑∑
+==

+=
N

ki
iB

k

i
iB

yy
1

~

1
~ )()( µµb , ba /=′c  

2 Find )11( −<′≤′ Nkk  which satisfies 1+′′ <′≤ kk ycy . 

 
 

Continued on next page 
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Step For Br~  

3 Check if kk =′ , if yes, stop and set Brc ~=′  and Rk = , if no, return to Step  

4 
Calculate )( kksigns −′= , )]()([ ~~

),max(

1),min(
iBiB

kk

kki
i yyys µµaa −−=′ ∑

′

+′=

, 

∑
′

+′=

−−=′
),max(

1),min(
~~ )]()([

kk

kki
iBiB yys µµbb , ba ′′=′′ /c . 

5 Set kkcc ′=′=′=′′=′ ,,, bbaa  and go to Step 2. 

Table 6. RICEKM algorithms [16–19,25–27] for calculating the centroid of B~ . 

Step For Bl~  

1 Set ))(/())(( ~~ ∫∫=
b

a B

b

a B dyydyy µµρ , )1/()( ρ+−+= abac , 

and compute dyyydyyy
b

c B

c

a B )()( ~~ ∫∫ += µµa , 

dyydyy
b

c B

c

a B )()( ~~ ∫∫ += µµb , ba /=′c . 

2 Check if ε≤−′ || cc , if yes, stop and set Blc ~=′ , if no, return to Step 4. 

3 Compute )( ccsigns −′= , ∫
′

′
−+=′

),max(

),min(
~~ )]()([

cc

cc BB dyyyys µµaa , 

∫
′

′
−+=′

),max(

),min(
~~ )]()([

cc

cc BB dyyys µµbb , ba ′′=′′ /c . 

4 Set bbaa ′=′=′′=′′= ,,, cccc  and return to Step 2. 

Step For Br~  

1 Set ))(/())(( ~~ ∫∫=
b

a B

b

a B dyydyy µµρ , )/11/()( ρ+−+= abac , 

and compute dyyydyyy
b

c B

c

a B
)()( ~~ ∫∫ += µµa , 

dyydyy
b

c B

c

a B
)()( ~~ ∫∫ += µµb , ba /=′c . 

2 Check if ε≤−′ || cc , if yes, stop and set Brc ~=′ , if no, return to Step 4. 

3 Compute )( ccsigns −′= , ∫
′

′
−−=′

),max(

),min(
~~ )]()([

cc

cc BB dyyyys µµaa , 

∫
′

′
−−=′

),max(

),min(
~~ )]()([

cc

cc BB dyyys µµbb , ba ′′=′′ /c . 

4 Set bbaa ′=′=′′=′′= ,,, cccc  and return to Step 2. 

3.2. Newton-Cotes quadrature formulas 

The numerical integration approximates the ∫
b

a
dxxf )(  as the linear combination of functional 

values )( ixf  on discrete points. So that the computation of definite integral can be changed to 
calculate the functional values. 
Definition 5 (quadrature formula). Let bxxxa n =<<<= 10 , the following equation 
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)()()()()( 1100
0

NNi

N

i
i xfwxfwxfwxfwfQ +++==∑

=

     (33) 

which has the property 

∫ +=
b

a
fEfQdxxf )()()(         (34) 

here (33) is referred to as the quadrature formula, N
iiw 0}{ =  is referred to as the weight coefficient, 

N
iix 0}{ =  is referred to as the integration node, and the )( fE  is called as the remainder. 
Then the following composite trapezoidal rule, composite Simpson rule, and composite Simpson 

3/8 rule are used to approximate the function )(xf  as the straight line, quadratic polynomial, and 
cubic polynomial, respectively. Note that this section is adapted from the references [14,20,25].  
Theorem 1 (Composite trapezoidal rule). Let the function )(xf  be defined on the interval ],[ ba . 

Decompose the ],[ ba  into n  subintervals n
iii xx 11 },{ =−  with the equal distance 

n
abh −

= , where 

the uniformly-spaced node is as: ),,2,1,0(0 niihxxi =+= . Then the numerical approximation of 

∫
b

a
dxxf )(  with the composite trapezoidal rule can be as: 

)()([
2

)( bfafhdxxf
b

a
+=∫ ),()](2

1

1
hfExf

n

i
Ti∑

−

=

++     (35) 

if f  were second-order continuous derivable on the ],[ ba , then 2

12
)()(),( hfabhfET

ζ′′−
−= , in 

which ),( ba∈ζ . 
Theorem 2 (Composite Simpson rule). Let )(xf  be defined on the interval ],[ ba . Decompose 

the ],[ ba  into n2  subintervals n
iii xx 2

11 },{ =−  with the equal distance 
n
abh

2
−

= , in which the 

uniformly-spaced node is as: )2,,2,1,0(0 niihxxi =+= . Then the numerical approximation of 

∫
b

a
dxxf )(  with the composite Simpson rule can be as: 

∑∫
−

=
++=

1

1
)(2)()([

3
)( 2

n

i
xfbfafhdxxf i

b

a
),()(2

1

0
12 hfExf S

n

i
i ++ ∑

−

=
+    (36) 

if f  were fourth-order continuous derivable on ],[ ba , then 4
)4(

180
)()(),( hfabhfES

ζ−
−= , in 

which ba << ζ . 
Theorem 3 (Composite Simpson 3/8 rule). Let )(xf  be defined on the interval ],[ ba . 

Decompose the ],[ ba  into n3  subintervals n
iii xx 3

11 },{ =−  with the equal distance 
n
abh

3
−

= , where 

the uniformly-spaced node is as: )3,,2,1,0(0 niihxxi =+= . Then the numerical approximation of 

∫
b

a
dxxf )(  with the composite Simpson rule can be as: 
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),()](3)(3)(2)()([
8
3)(

1
13

1
23

1
3 hfExfxfxfbfafhdxxf SC

n

i
i

n

i
i

b

a

n

i
i +++++= ∑∑∫ ∑

=
−

=
−

=

  (37) 

if f  were fourth-order continuous derivable on ],[ ba , then 4
)4(

80
)()(),( hfabhfESC

ζ−
−= , in 

which ba << ζ . 

3.3. RIWEKM algorithms 

According to the former two subsections, this section proposes the RIWEKM algorithms to 
complete the centroid type-reduction of IT2 FLSs. Here the reasonable initialization continuous 
EKM (RICEKM) algorithms are considered as the benchmark, then the computation results of 
RIWEKM algorithms are used for comparing with both the EKM algorithms and RIEKM algorithms. 
The RIWEKM algorithms can be viewed as the numerical implementation of RICEKM algorithms. 
To compare the Tables 5 and 6, we can find that the operations in discrete RIEKM and RICEKM are 
similar, because the sum operations in discrete algorithms are changed to the integral operations in 
continuous algorithms, i.e., the sum operations of sampling points in RIEKM algorithms act as 
integration operations of related function in RICEKM algorithms. By means of the Newton-Cotes 
quadrature formulas, we can assign the corresponding coefficient iw  for each node ix , then the 
more accurate computation results may be obtained. Table 7 provides the steps for calculating the 
centroid of an IT2 FS according to the RIWEKM algorithms. The RIEKM algorithms are just a 
particular case of the RIWEKM algorithms as the coefficients of the latter are selected as 

),,2,1(1 Niwi == . Although many coefficients assignment methods can be used, here we only 
adopt the numerical integration approaches on the basis of the Newton-Cotes quadrature formulas in 
Section 3.2, which are referred to as the composite trapezoidal rule, composite Simpson rule, and 
composite Simpson 3/8 rule. Here the Table 8 provides the weight assignment approaches of 
RIWEKM algorithms, in which all the sampling points are equally distributed on ],[ ba , that is to 

say, ),,1(  )(
1

1 Niab
N
iaxi =−
−
−

+= . Here the letter of primary variable of output IT2 fuzzy set is 

represented by the x . 

Table 7. RIWEKM algorithms for calculating the centroid of B~ . 

Step For Bl~  

1 
Set  )]1/([ ρ+= Nk  and compute )()( ~

1
~

1
iB

N

ki
iiiB

k

i
ii yywyyw µµa ∑∑

+==

+= , 

∑∑
+==

+=
N

ki
iBi

k

i
iBi ywyw

1

~

1
~ )()( µµb , ba /=′c . 

2 
Find )11( −<′≤′ Nkk  which satisfies 1+′′ <′≤ kk ycy . 

3 Check if kk =′ , if yes, stop and set Blc ~=′  and Lk = , if no, return to Step 4. 

 Continued on next page 
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Step For Bl~  

4 
Calculate )( kksigns −′= , )]()([ ~~

),max(

1),min(
iBiB

kk

kki
ii yyyws µµaa −+=′ ∑

′

+′=

, 

∑
′

+′=

−+=′
),max(

1),min(
~~ )]()([

kk

kki
iBiBi yyws µµbb , ba ′′=′′ /c . 

5 Set kkcc ′=′=′=′′=′ ,,, bbaa  and return to Step 2. 

Step For Br~  

1 
Set )]/11/([ ρ+= Nk  and calculate ()( ~

1
~

1
iB

N

ki
iiiB

k

i
ii yywyyw µµa ∑∑

+==

+=  

∑∑
+==

+=
N

ki
iBi

k

i
iBi ywyw

1

~

1
~ )()( µµb , ba /=′c  

2 Find )11( −<′≤′ Nkk  which satisfies 1+′′ <′≤ kk ycy . 

3 Check if kk =′ , if yes, stop and set Brc ~=′  and Rk = , if no, return to Step 4. 

4 
Calculate )( kksigns −′= , )]()([ ~~

),max(

1),min(
iBiB

kk

kki
ii yyyws µµaa −−=′ ∑

′

+′=

, 

∑
′

+′=

−−=′
),max(

1),min(
~~ )]()([

kk

kki
iBiBi yyws µµbb , ba ′′=′′ /c . 

5 Set kkcc ′=′=′=′′=′ ,,, bbaa  and return to Step 2. 

Table 8. Weight assignment approaches of RIWEKM algorithms. 

Algorithms Integration Rule Weight coefficient 
RIEKM ____________ ),,1(1 Niwi ==  

RITWEKM Composite Trapezoidal Rule 




≠
=

=
.,1       ,1
,,1   ,2/1

Ni
Ni

wi

 

RISWEKM 
Composite Simpson 
Rule 








≠=
≠=

=
=

 . nd ),2mod(0      ,2
,,1 nd ),2mod(1       ,1

,,1   ,2/1

Niai
Niai

Ni
wi

 

RIS3/8WEKM 
Composite Simpson3/8 
Rule 











≠=
≠=
≠=

=

=

. nd ),2mod(0      1,
 , and ),3mod(2      ,1

,,1 nd ),3mod(1  ,3/2
,,1   ,3/1

Niai
Nii

Niai
Ni

wi

 

In order to perform the centroid type-reduction of IT2 FLSs, we give the detail steps as: 
1) According to the fuzzy reasoning [28,29], merging the fired fuzzy rules of IT2 FLSs to obtain 

the centroid output IT2 FS B~ . 
2) Adopt the RICEKM and RIWEKM algorithms to compute the centroid defuzzified values of 

IT2 FLSs. 
3) Compare and analyze the calculation results of RIWEKM algorithms, EKM algorithms and 

RIEKM algorithms by viewing the CEKM algorithms as a baseline. 
4) Compare and analyze the calculaltional times of RIWEKM algorithms, EKM algorithms and 
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RIEKM algorithms. 
In Table 8, except for the RIEKM algorithms, the coefficients for other three types of RIWEKM 

algorithms are assigned by means of the following steps: 
1) Substitute ax =0 , bxN = , ),,1,0( Nixi =  in Eq (35), ax =0 , bx N =2 , 

)2,,2,1,0( Nixi =  in Eq (36), and ax =0 , bx N =3 , )3,,0( Nixi =  in Eq (37) all by ax =1 , 
bxN = , ),,2,1( Nixi = . 

2) Coefficients 2/h , 3/h  and 8/3h  in Eqs (35)–(37) can all be balanced out by the quotient 
of two integrals as in Table 6. 

3) Observing from the Table 8, the coefficients of RITWEKM algorithms and RISWEKM 
algorithms are assigned as a half of brackets in Eqs (35) and (36). 

4) The number of sampling points of RISWEKM algorithms and RIS3/8WEKM algorithms are 
not only restrict to 12 += nN  and 13 += nN (here n  is an arbitrary integer), but as the 
requirements (2) mod 1=N  and (3) mod 1=N  in Eqs (36) and (37) (in which mod represents the 
modulus operator).  

Finally we can make the following conclusions for the relations between RICEKM algorithms 
and RIWEKM algorithms as for completing the centroid type-reduction and defuzzification of IT2 
FLSs: 

1) The RIWEKM algorithms are based on the sum operations of sampling points ),,1( Niyi =  
to complete centroid type-reduction of IT2 FLSs. When it stops, the optimal switching points are 
used to approximate the centroids. While the RICEKM algorithms adopt the integration operations to 
complete the centroid type-reduction and defuzzification, which may obtain the comparatively 
accurate type-reduced sets and defuzzified values. Theoretically, as the number of sampled points 
approaches infinity, the solutions of RIWEKM algorithms will approach to RICEKM algorithms. 

2) As for the RIWEKM algorithms, we can increase the number of sampled points to get the 
more accurate computation results. But for the RICEKM algorithms, the calculation accuracy can be 
improved by setting the boundary error ε  to control the two adjacent iteration steps. 

3) The RIWEKM algorithms complete the numerical computations in terms of the sum 
operations, which the RICEKM algorithms finish the computations according to the integration 
operations. In a word, the RIWEKM algorithms can be considered as the numerical realization of 
RICEKM algorithms by the numerical integration methods. 

4. Simulation experiments 

This section provides three numerical simulation examples. Here we make the assumption that, 
under the guidance the fuzzy inference (reasoning) block, the centroid output IT2 fuzzy set has been 
got by merging fuzzy rules before the type-reduction and defuzzification.  

In the first instance, the FOU is composed of piecewise linear functions [19–21,27,29]. In the 
second instance, the FOU is made up of piecewise linear functions and Gaussian functions [14–17,30,31]. 
In the third instance, the FOU is composed of Gaussian functions [19–21,27,29]. The Figure 3 and 
Table 9 show the defined FOUs for three instances. 
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(a)                     (b)                     (c)   

Figure 3. Graphs of FOUs for three instances; (a) instance 1, (b) instance 2, and (c) instance 3. 

Table 9. FOUs for membership function expressions of three examples. 

Num FOUs for membership function expressions 
1 
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)3(5.0max{exp[)(
22

~
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xxxAµ , ]10,0[∈x  

Here the error accuracy is chosen as 610−=ε . Because the computations of Bl~  and Br~  are 
very similar, we only calculate Bl~  in the simulation experiments. Firstly, the RICEKM algorithms 
are viewed as the benchmark to calculate the left centroid end points for three instances, and they are 
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as: 660534.3*
1
=RICEKMy , 445924.0*

2
=RICEKMy , and 155741.3*

3
=RICEKMy , respectively. As for 

studying the proposed RIWEKM algorithms, the number of sampling points of primary variable of 
output IT2 FS is chosen as 9000:50:50=N . Then we compare the performances between the EKM 
algorithms, RIEKM algorithms and RIWEKM algorithms. The graphs of left centroid end points for 
the above mentioned algorithms are shown in Figure 4. In addition, the graphs of absolute errors 
between EKM algorithms, RIEKM algorithms, RIWEKM algorithms and RICEKM algorithms 
(benchmark) are given Figure 5. 

 

(a)                            (b)                            (c) 

Figure 4. The left centroid end points calculated by EKM, RIEKM and RIWEKM algorithms; (a) 
instance 1, (b) instance 2, and (c) instance 3. 

 

(a)                           (b)                            (c) 

Figure 5. The absolute errors of left centroid end points between EKM algorithms, RIEKM 
algorithms, RIWEKM algorithms and RICEKM algorithms; (a) instance 1, (b) instance 2, and (c) 
instance 3. 

For the sake of measuring the performances of RIWEKM algorithms qualitatively, here we 
define the relative errors as )3,,1( ||/|| , =− ∗∗ iyyy

iiii RICEKMRICEKMRIEKMEKM . Table 10 provides the 
mean relative errors of EKM algorithms, RIEKM algorithms and RIWEKM algorithms for the above 
three examples, where the last column represents the total average of mean relative errors. 

For the above three examples, we can obtain the following conclusions by observing the Figures 4 
and 5 and the Table 10: 

1) The absolute errors of left centroid end points between the EKM algorithms, RIEKM 
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algorithms and RIWEKM algorithms almost all converge as the number of sampled points of 
primary variable of centroid output IT2 FSs increases. For the first example, the smallest absolute 
error (also the smallest error amplitude of variation) can be obtained by the RIEKM algorithms and 
RITWEKM algorithms, in which the EKM algorithms obtain the comparatively largest absolute error. 
For both the second and the third instances, the proposed RIWEKM algorithms can get the absolute 
errors (error amplitude of variations) that are obviously much less than both the EKM algorithms and 
RIEKM algorithm.  

2) See from the Table 10, we can find the largest absolute errors of EKM algorithms and 
RIEKM algorithms are 1.359220% and 0.502985%, respectively, while the largest absolute error of 
RIWEKM algorithms is only 0.002404%, that is to say, the latter is less than two hundredths of two 
formers. In addition, the total average relative error of EKM algorithms and RIEKM algorithms are 
0.460223%, and 0.177165%,respectively, whereas the smallest total average relative errors of 
RIWEKM algorithms is only 0.00065%, i.e., the latter is less than 0.04% of two formers. 

3) By analyzing both the items 1) and 2) comprehensively, compared the EKM algorithms and 
RIEKM algorithms, we can get the conclusion that it is reasonable to adopt the appropriate 
RIWEKM algorithms for pursuing better error accuracy and stability. 

Next, we investigate the computational time of these types of algorithms for applying them. The 
unrepeatable computation time of algorithms relies on the software and hardware environment, 
which is completely different from calculating the defuzzified values. Here the simulation 
experiments are completed by a dual-core CPU dell desktop with E5300@2.60GHz and 2.00GB 
memory. Then the comparisons of computation time of three examples are provided in Figures 6–8. 

Table 10. Mean relative errors  ||/|| ,
∗∗−

iiii RICEKMRICEKMRIEKMEKM yyy for three examples. 

Algorithms EKM RIEKM RITWEKM RISWEKM RIS3/8WEKM 
Case 1 0.00000389 0.00000127 0.00000127 0.00000349 0.00000330 
Case 2 0.01359220 0.00502985 0.00001328 0.00002162 0.00002404 
Case 3 0.00021060 0.00027383 0.00000485 0.00000581 0.00000489 

Total average 0.00460223 0.00177165 0.00000065 0.00001031 0.00001074 

 

Figure 6. Comparsion of computation time for instance 1. 
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Figure 7. Comparsion of computation time for instance 2. 

 

Figure 8. Comparsion of computation time for instance 3. 

If the fluctuation influence of number of sampled points N  were not considered, the above 
EKM algorithms, RIEKM algorithms and RIWEKM algorithms vary linearly with respect to N  in 
general. Therefore, the least square regression model can be selected as bNat +=  for all types of 
algorithms, in which t  denotes the computational time, and the coefficients are provided in the 
following Table 11. Furthermore, the computational time difference rate is defined as: 

}{max/}){min}{max(
3,2,13,2,13,2,1 iiiiii

ttt
===

− .         (38) 
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Table 11. Regression model coefficients of type-reduction algorithms. 

Coefficient 
EKM 

310/ −a 310/ −b  

RIEKM 
310/ −a 310/ −b  

RITWEKM 
310/ −a 310/ −b  

RISWEKM 
310/ −a 310/ −b  

RIS3/8WEKM 
310/ −a 310/ −b  

Case 1 0.000163  -0.134676 0.000142  -0.027860 0.000138  0.125481 0.000269  0.024937 0.000385  -0.214929 

Case 2 0.000087  0.085536 0.000093  0.070055 0.000093  0.215750 0.000244  0.377291 0.000286  0.435158 

Case 3 0.000069  0.087296 0.000052  0.202952 0.000059  0.370410 0.000158  0.389515 0.000294  0.097664 

Total mean 0.000106  0.012719 0.000096  0.081716 0.000096  0.237213 0.000223  0.263915 0.000321  0.105964 

According to the Table 11 and the Figures 6–8, we can see that the computation times of EKM algorithms, RIEKM algorithms and 
RITWEKM algorithms are slightly better than that of RISWEKM algorithms and RIS3/8WEKM algorithms. Here we may ascribe the former 
three types of algorithms as the first type, and the former two types of algorithms as the second type. The computation times of the first type are 
better than the second type as the former has comparatively simpler weights than the latter. Generally speaking, the proposed RIWEKM 
algorithms have faster convergence speeds than that of EKM algorithms and RIEKM algorithms, i.e., for the RIWEKM algorithms, we can use 
the fewer number of sampled points to get the same computation time as the EKM algorithms and RIEKM algorithms. The overall specific 
computational time size relations are as: EKM<RIEKM<RITWEKM<RISEKM<RIS3/8WEKM. Furthermore, the defined computational time 
difference rate of three examples is between 26.47%–89.89%. 

According to the above analysis, it is obviously to find that the initialization and weighting have influence for EKM algorithms to 
complete the centroid type-reduction of IT2 FLSs, i.e., the Newton-Cotes quadrature formulas based RIWEKM algorithms can be used for 
investigating the centroid TR of IT2 FLSs. If only the calculation accuracy were considered, the RITWEKM algorithms are the best option (see 
the Table 10). However, if the calculation accuracy and the computational time were taken in account comprehensively (see Table 10 and 
Figures 6–8), we suggest one use the RIEKM or RITWEKM algorithms to complete the centroid type-reduction of IT2 FLSs with piecewise 
linear functions as in instance 1, and adopt the RITWEKM algorithms to complete the centroid type-reduction of IT2 FLSs with both piecewise 
linear functions and Gaussian functions as in instance 2 and Gaussian functions as in instance 3.  

Finally we should point out that the paper only focuses the performances of RIWEKM algorithms from the viewpoint theory. Four 
simulation examples show that, on a considerable amount of sampling points, the RIWEKM algorithms can enhance the calculation accuracy in 
contrast to both the EKM algorithms and RIEKM algorithms. Despite so, if the accuracy requirement is not high, the simpler EKM algorithms 
can get good effects, and then the RIWEKM algorithms will not show their advantages. 
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5. Conclusions 

This paper first provides the reasonable initialization explanations for EKM algorithms, then the 
RIEKM algorithms are extended to different types of RIWEKM algorithms resort to the 
Newton-Cotes quadrature formulas. By considering the RICEKM algorithms as the baseline, five 
types of discrete TR algorithms are used to complete the centroid type-reduction of IT2 FLSs. Three 
simulation instances are given to analyze and verify that the proposed RIWEKM algorithms can get 
smaller absolute errors and faster convergence speeds in contrast to both the EKM algorithms and 
RIEKM algorithms.  

There exist many important works lie ahead, including adopting the RIWEKM algorithms [32] 
to study the centroid type-reduction of general T2 FLSs, studying the non-iterative algorithms 
[21,27,29–30,33,54–57] for centroid and center-of-sets type-reduction [34,35,51] of IT2 FLSs and 
GT2 FLSs, the colony intelligence based algorithms [36–40] for optimizing T2 FLSs, and the 
forecasting, identification and control problems [22,41–50,52–56] based on T2 FLSs and so on. 
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