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Abstract: Interval type-2 fuzzy logic systems (IT2 FLSs) already become an emerging technology in
recent years. As the most popular type-reduction (TR) algorithms, Karnik-Mendel (KM) algorithms
own the advantage of maintaining the uncertainties flow in systems. This paper analyzes the
initialization for KM types of algorithms. Furthermore, the weighting approaches of them are also
given by means of the Newton-Cotes quadrature formulas. Importantly, the reasonable initialization
weighted enhanced Karnik-Mendel (RIWEKM) algorithms are provided to complete the centroid
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RIWEKM algorithms own both smaller absolute errors and faster convergence speeds in contrast to
the EKM and RIEKM algorithms.
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1. Introduction

In the past few years, researching on 1T2 FLSs [1-3] has attracted more attentions. The process
of financial systems [4], power systems [5,6], permanent magnetic drive [8,9], intelligent controllers [7],
plant monitoring and diagnostics [10], database and information systems [11] and so on are all with high
uncertainty and nonlinearity [12]. The IT2 FSs have the potential to exceed T1 FSs as the former
own the additional third mathematical dimension in the footprint of uncertainty (FOU). Therefore,
IT2 FLSs based on IT2 FSs own the capability to reduce the influence of uncertainty better compared
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with their T1 counterparts. Recent study report shows that IT2 FLSs [13] even have superior
approximation ability to the nonparametric network networks.

An IT2 FLS is made up of five modules as: Fuzzifier, inference, rules, type-reduction (TR) and
defuzzification (see Figure 1). Among which, the most important module is the TR, which has the
function of mapping the IT2 FS to the T1 FS. While the T1 FLSs only use T1 FSs. The TR can be
viewed as the extended of T1 defuzzification. And the defuzzification changes the T1 FS into the
output. In addition, the systems can be defined as IT2 FLSs if an antecedent or consequent in fuzzy
rules were IT2 FS. The operations in IT2 FLSs are more complicated than in T1 FLSs as the former
involves the TR. In this paper, we only focus on the TR.

Type-2 FLS

| Crisp

Fuzzifier

! inputs v ' Type-reductc
. 1Set (Ty pe-1)
!

Figure 1. An IT2 FLS [1,5,14].

To date, the centroid TR [15,16] is still one of the most popular approaches in theory studies.
Karnik and Mendel developed the KM algorithms to complete the centroid type-reduction of 1T2
FLSs. For better understand the KM algorithms, Mendel and Wu put forward the continuous of KM
(CKM) algorithms. Furthermore, the monotonic and super exponential convergence [17] of
continuous KM algorithms were proved, which provided a major impulse for investigating T2 FLSs.
Wu and Mendel [12,18] applied the KM algorithms to calculate the uncertainties measure in IT2 FSs
and merged the language weighted average of 1T2 FSs into intuition calculations. For the sake of
reducing the computation time, Wu and Mendel [19] put forward the enhanced type of KM (EKM)
algorithms. The theoretical explanations for the initializing of EKM algorithms are provided by Liu
et al. [20], in addition, the EKM algorithms are extended to weighted EKM (WEKM) algorithms to
compute the centroids of IT2 fuzzy sets. All the above works have laid abundant theory for applying
the TR algorithms.

On the basis of analyzing the sum operation in discrete EKM algorithms and the integration
operation in CEKM algorithms, this paper first gives the explanations for the initialization of EKM
algorithms. In terms of the Newton-Cotes quadrature formulas, three different forms of weighted
EKM (WEKM) algorithms are also explained. Then the reasonable initialization weighted enhanced
Karnik-Mendel (RIWEKM) algorithms are proposed to complete the centroid type-reduction of 1T2
FLSs. While calculating the centroid type-reduced sets, the provided RIWEKM algorithms get
smaller absolute errors and faster convergence speeds in contrast to both the EKM and RIEKM
algorithms.

The rest of this paper is arranged as follows. Section 2 gives the background of 1T2 FSs and IT2
FLSs. Section 3 shows the Newton-Cotes formulas, the EKM and CEKM algorithms, and how to
calculate the centroid type-reduction of IT2 FLSs by means of RICEKM and RIWEKM algorithms.
Three simulation instances are given in Section 4 to show the performances of the RIWEKM
algorithms. Finally the last section gives the conclusions.

AIMS Mathematics \Volume 7, Issue 6, 9846-9870.
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2. Background

2.1.1T2 FSs

Definition 1. An IT2 fuzzy set A can be described by the corresponding type-2 membership
function (MF) x;(x,u), that is to say, [1,3,21]

A ={(x,u), ; (x,u)| Vx € X, Vu €[0,1]} 1)

in which xe X, and ue[0,1], Eq (1) is called as the point-value expression, while the compact
form is as:

A= Lex LE[M] TREADYCANE )

Definition 2. A secondary MF can be viewed as the vertical slice of . (x,u), that is to say, [1]

prx=xu) = () = [ fu)/u ©)

0]

where Vu €[0J]], for an IT2 FS, the secondary MF grade f, (u) =1.
Definition 3. The two dimensional support of . (x,u) is called as the footprint of uncertainty

(FOU) of ;\, that is to say, [1]
FOU(A) ={(x,u) € X x[0,1]| 4 (x,u) > O} (4)

in which FOU(,Z\) is limited between the upper MF (UMF) and the lower MF (LMF), i.e.,

UMF(A) = ;(x) = FOU(A), (5)
LMF(A) = 11, (x) = FOU(A). (6)
Definition 4. An embedded T1 fuzzy set is decided by 1, (x,u), that is to say, [1]

A ={(x,u(x))| vxe X,ue[01]}. @)

As the secondary MF grades of IT2 fuzzy sets are equal to one, IT2 FSs can be entirely
described by the LMF and UMF. Here an example of IT2 FS is provided in Figure 2.

UMF(A)

\ Embedded T1 FS
\ \

\

L FOU(A) \Q

Figure 2. An IT2 FS and its corresponding quantities [24].
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2.2.1T2 FLSs

From the aspect of structure, T2 FLSs can be usually divided into Mamdani type [5,21,22] and
Takagi-Sugeno-Kang type [8,23]. Here we concentrate on the Mamdani type. Without loss of
generality, consider a Mamdani type I1T2 FLS with n inputs x, € X,,X, € X,,---X, € X, and one

output yeY . The system can be characterized by M fuzzy rules, where the sth fuzzy rule is of
the form:

R:If x is F° and x, is F; and--and x, is F°, then y is G*(s=1--,M) (6)
in which IEiS(i =1,---,n;s=1---,M) represents the antecedent IT2 fuzzy set, and G*(s=1---,M)

represents the consequent 1T2 fuzzy set.
For simplicity, the singleton fuzzifier is adopted, that is to say, we model the input
measurements as crisp sets. For each fuzzy rule, as x = x’, the firing interval can be calculated as:

Fo(x) =[£°(x), T (x)],
Fooq 200 =Th e (X), (7
00 =T pg (X))

in which T represents the product or minimum t-norm, is(x’) and f°(x') denote the left

endpoint and right end point of firing interval, respectively.
For the centroid type-reduction, combine the firing interval with the corresponding consequent

IT2 fuzzy set to get the fired-rule output fuzzy set §S :
FOU(B®) = [ (Y| X), 1z (¥ | X)),
B :{u. (YIX) = £5(X)* e (), (8)
ws (Y1 X) =T (<) * g (y)

in which * represents the product or minimum t-norm.
Then the aggregated IT2 fuzzy set B can be got by unioning all the B°® as:

FOU(B) =[x, (y | X), 15 (y | X)],
By us (YIX) = g (YIX)V g (YIX)Voov gy, (Y] X), 9)
ws(Y1X) = 1 (Y1 X)V g (Y I X))V ooy pgu (Y| X)

in which v represents the maximum operation.

~

Finally the centroid of B can be computed to get the type-reduced set Y.(x'), i.e.,
Ye (X) =U[I5(X), r5(x)] (10)

inwhich 15(x") and r;(x") can be computed by the TR algorithms, i.e.,

AIMS Mathematics \Volume 7, Issue 6, 9846-9870.
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N
D Yoz (y;)
|~ N\ = 1 =t
500 = o o & (1)
T us (%)
i=1
and
N
Z ynug (yl
r-(x) = max N (12)

N
ug (Videlpg (vi), 15 (vl
> us(yy)

i=1

in which N represents the number of sampling of primary variable, and the defuzzified output is
the average of two end points.

3. RIWEKM algorithms

Before giving the proposed RIWEKM algorithms, the theoretical interpretations of KM
algorithms and EKM algorithms are provided. Then the Newton-Cotes quadrature formulas [25] are
introduced.

3.1. The initialization explanations of KM and EKM algorithms

Let the primary variable of output IT2 fuzzy set B be as: a= y, <---<y, =b, then the
continuous KM and EKM (CKM and CEKM) algorithms for computing 15 and r; are as (see

Tables 1 and 2):

~

Table 1. CKM algorithms [16-19,25-27] for calculating the centroid of B.

Step For I3,
[ yory)ady
vo(y)eluz (y)#B(Y)] J' o(y)dy
1
yo(y)dy
Let O(y) =[5 (y)+ua(y)]/2, and compute & —I—
L o(y)dy
2 Set O(y)=us(y) when y<& and 6(y) = p5(y) when y>¢&' and
b
[ yo(y)ay
calculate &, ==p———.
[ o(y)dy
3 Check if | &’ —& [ €. ifyes, stopandset |5 =g, if no, return to Step 4.
4 Set &'=¢ and return to Step 2.

Continued on next page
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Step For 1z,
b
[ yo(y)dy
B max_
vO(y)elug (V).u5(¥)] '[ o(y)dy
1
yo(y)dy
Let 4(y) = [,u (y)+,uB(y)]/2 and calculate &’ _‘[—
[ ocy)dy
2 Set O(y)=p;(y) when y<&' and 6(y)= 15(y) when y>¢&' and
B yo(ydy
compute § e E—
[omdy
3 Check if | &’ — &, [< &, ifyes, stopand set Iy = &+ ifno, return to Step 4.
4 Set &'= &, and return to Step 2.

Table 2. CEKM algorithms [16-19,25-27] for calculating the centroid of B.

Step For |5
1 Set c=a+(b—a)/2.4, and compute a:j: y;g(y)dy+J'cb yus(y)dy,
c— b
B=[ usdy+[ us(ydy, c'=alp.
2 Check if |C'~C|< ¢, ifyes, stopandset ¢' =15, if no, return to Step 4.
3 Calculate s =sign(c’'—c), « —az+sjmn(C )y[yB(y) Hs()ldy,
maX(C 14 ! !
p=pes[ s -z (VIdy, ' =a'l B
4 SetC—C,C—C,a—a,,B—,B and return to Step 2.
Step For ry
1 Set c=a+(b—a)/1.7, and compute a=_|.cy£§(y)dy+.[by;§(y)dy,
c b—
B=[ usdy+[ us(y)dy, c'=alp.
2 Check if |C'—C|< ¢, ifyes, stopand set ¢’ =ry, if no, go to Step 4.
? Compute $=sign(c'~0), &’ =ar=s[" """ Ylus(¥) - 15 (VI
max(c,c) -— " ' '
B=p=s .. s -u(ldy, =o'l f
4 SetC—C,C—C,a—a,,B—,B and return to Step 2.

AIMS Mathematics
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[ vs 0y + [ yus (dy

a

r; = max Fré (&) = max

celab] celab] (¢ b— (14)
/ [ s dy+ [ (y)dy

As the continuous version of TR algorithms are always considered as the benchmark, here the
calculational steps of CKM algorithms and CEKM algorithms are provided in Tablel and Table 2,
respectively. In terms of the notations F in (13) and F. in (14), and see the Steps 2 and 4 in

Table 1, so that,
& =F (&),and & =& (15)
£ =F (&) and & =¢&. (16)

When the iterations terminate, |3 =¢_ and ry =¢,_, so that,

where 1 and r; are the fixed points of F. (&) and F. (), respectively. In a similar way, the

relations of (17) are also true for the CEKM algorithms as in Table 2.
In the aim of initializing the algorithms, we set u.(y)=u5(y) =6(y) for yel[a,b], so that,

o(y) =[u;(y) +;§ (Y)]/2, and the Eqgs (13) and (14) become the same, therefore,

I _r - Lb yo(y)dy Lb YL (y) + 5 (y)]/ 2dy

S T = (18)
[[ondy  [Tus(+us(y)rady

here (18) is the initialization method of CKM algorithms as shown in the Table 1, represented as &%,
that is to say,

o _ " yo(y)dy

. (19)
[ o(y)dy
where 0(y) =[x (y)+uz(y)]/2.

The calculational steps of discrete KM algorithms and EKM algorithms are given in the
following Tables 3 and 4. For the Eq (19), the discrete form of &% is as in Steps 1 and 2 in the
Table 3, that is to say,

N _
Yile g (y:) + pg ()]
=1

k@ ={k|y, <- <Y l<k<N-1} (20)

M=

[, (V) + 125 (¥:)]

'L

for the KM initialization method, the results can be good as 45 (Y) and ﬁg(y) are very close due

to the exact optimal solution of (11) or (12) as uz(y)= ;g(y) .

AIMS Mathematics \Volume 7, Issue 6, 9846-9870.
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~

Table 3. KM algorithms [16-19,25-27] for calculating the centroid of B.

Step For I, l.=  min_ (Zy )/(ia)
BT B voeug(y)ua(y)] ' !
1 Set 4(i) = [Eg(yi)+,u§(yi )1/2,i=1,---,N and calculate
N N
c'= (Z yiei)/(zgi) :
i=1 i=1
2 Find k'(1<k’<N-1) which satisfies Yy, <C'<Y,.;.
3 Set 6 = uz(y;) when i<k’ and 6 =u_(y;) when i>k’,
N N
and caleulate 15(k")=(>_y,6)/10.6,).
i=1 i=1
4 Check if Ié(k') =c', if yes, stop and set Ig(k’) = I|§ and k'=L,ifno,
return to Step 5.
5 Set ¢'=15(k’) and return to Step 2.
Step
For ry, r- = 6.)I(> 6
B B ol (y.)ya(y.)](Z %0 (z )
1 Set O(i) =[x (yi)+,uB~(yi)]/2,| =1,---,N and calculate
N N
=Xy 0).
i=1 i=1
2 Find kK'(1<k’<N-1) which satisfies Yy, <C'<Y,.;.
3 Set 6 = (y;) when i<k’ and 6 = uz(y;) when i>k’,
N N
and caleulate rz(k")=(>_v,6)/00.6,).
i=1 i=1
4 Check if r;(k’)=c’, ifyes, stopandset r(k')=r; and k'=R,ifno,
return to Step 5.
5 Set ¢'=rz(k") and return to Step 2.

Table 4. EKM algorithms [16-19,25-27] for calculating the centroid of B.

Step For |5
1 Set k —[N 12.4] (the nearest integer to N /2.4) and calculate

a= Zy.us(y)+ ZY.,U (v,

i=k+1
p= Zus(y)+ Zu (v)), ¢'=alpB.
i=k+1

2 Find k'(L1<k’<N-1) which satisfies y,, <C'<V,.,.
3

Check if k'=k, if yes, stopandset ¢'=I- and k =L, if no, return to Step ¢

AIMS Mathematics
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Step For |5
4 . max(k,k’)
Compute s=sign(k' k), a'=a+s .y, [us(y)— 5 (%)].
i=min(k k’)+1
max(k,k") __
B=p+s > lus(y)-p;(y)l c"=a'l .
i=min(k k’)+1
5 Set ¢'=c"a=a',f = k=k' andgoto Step 2.
Step For ry
1 k N o
Set k=[N/17] andcompute o=y, u:(y)+ Zk: v, 15 (Y;),
i=1 i=k+1
k N
B=2 us(y)+ Zk:ﬂg(yi), C=alp.
i=1 i=k+1
2 Find k'(L1<k’<N-1) which satisfies y, <C'<VY,.,.
3 Check if k' =k, if yes, stop and set ¢’ = r; and k=R, ifno, return to Step
4 . max(k,k’)
Compute s=sign(k'~k), a'=a-s >y, [us(y,)—p;(¥)],
i=min(k,k")+1
max(k,k’) __
B=p-s 3 [us(y)-p;(y)l c"=a'lp.
i=min(k k)+1
5 Set ¢'=c",a=a',f=pk=k" and return to Step 2.

While for the initializations of EKM algorithms, the method is on account of the difference
between Eg(y) and ;g(y).Assume that,

[ a(nay

p b . (21)
[ 5 (y)dy

As ﬁg(y)zﬁg(y) for yel[a,b], therefore, p>1.

For the sake of initializing the EKM algorithms, here we let Eg(y) and ;,g(y) be constants

for ye[a,b], that is to say, suppose that 5(y) = pn >0, see the Eq (11), it can be obtained that,

[yaspay+Lymg oy [Conydy+[rydy per oy o7 - e

I:I~ (é:) - — b - b (22)
B [ (y)dy + J 15 (0dly [ pndy + [ay  2Ap(c-a)+(b-E)]
Compute the derivative of F. (£) with respect to & to obtain that,
S C I Gl Gt il e 0 | 23

2Ap(&-a)+(b-3)

While letting F.(£)=0,s0 that,

AIMS Mathematics
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(b-&)°* _ b-¢&
(g_a)z_p,and f—a_\/;' (24)

Then solve the Eq (24) to getthe &, i.e,,

G, =a+ b2

g 1+\/;'
Here & denotes the minimum value of F (&) . As F.(5)<0 for Selad), and

Fi(§)>0 for Se(§ ,b],sothat, 1;=F (5 )=¢_ .
Similar process can be done for finding the maximum value of F. (&) as follows:

(25)

[y [yl (22 gty s ot - ey

I:r~ (":) - b— (26)
; Eﬁé(y)dy+.[§ﬂ§(y)dy 2(&-a)+pb-&)]
Then calculate the derivative of F_(&) with respectto & to obtain that,
: (p-DI(E-a)" -~ p(b—&)°]
F =— . 27
<O e p0-or @
While letting F/' (£) =0, so that,
(-8 1 g b=¢_
(& a)’ p,and - 1/ p. (28)
Solve the Eq (28) to get the &, i.e.,
b-a
> 1+l p’ *)

Here & represents the maximum value of F_(&). As F (§)>0 for ela & ), and
F. (£)>0 for Se(& ,b],sothat, r;=F (5.)=¢. .

By considering the Egs (25) and (29) simultaneously, the new initialization method for S can
be represented as £, i.e.,

forlé,

£ = (30)

for rs.

where p >1, so that, §(Z’Sa+%(b—a) for I3, and 5(2)2a+%(b—a) for r;.

By comparing the initializations of discrete form of EKM algorithms as shown in Table 4 and
CEKM algorithms as shown in Table 2, we can obtain the discrete form of Eq (30) as:

AIMS Mathematics \Volume 7, Issue 6, 9846-9870.
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31)

(@ [N/@+yp)] forl,
[N /(@L+4/1/ p)] forrs.

t I

I‘t

N
inwhich N is the number of sampling of primary variable, and p=-3——

As p=2, 1+./p=1+42~24,and 1+,1/ p =1+/1/2 z1.7 , S0 that, the Eq (31) turns out
to be:

. ={[N 12.4] forly, (32)

[N/1.7] forrs.

here the Eq (32) provides the initialization method of EKM algorithms, which comes from empirical
large amount of simulations. For the proposed RIEKM algorithms, each specific

N _ N
p =02 us(NIID_ 15 (¥)] should be defined for the corresponding simulation experiments. In this
i=! i=1

section, we provide the computation steps of discrete RIEKM algorithms and RICEKM algorithms
as in Tables 5 and 6, respectively.

Table 5. RIEKM algorithms [16-19,25-27,32] for calculating the centroid of B.

Step For |5

! Set k=[N /(1+\/_)] and calculate « = Zy,,u (y,)+ Zy,,uB(y)

i=k+1

B= Zﬂ (y.)+ZﬂB(Y.) C'=alp

i=k+1

Find k (1<k'<N-1) which satisfies Yy, <C'<V,.,.

3 Check if k' =Kk, if yes, stop and set ¢’ = Ig and k =L, if no, return to Step ¢
4 . max(k,k")

Compute s=sign(k'=K), a'=a+s Dy, [us(y)—u;(¥)],

i=min(k k’)+1
max(k,k') __
B=p+s D [us(y)-u;(y)], c"=a'l g
i=min(k k’)+1

5 Set ¢'=c",a=a',f=pk=k" and return to Step 2.
Step For ry
1

Set k=[N /(1+4/1/p)] and calculate ¢ = Zy,,u (y,)+ Z:y“uB(yI

i=k+1

B= Zﬂ (Y.)+ZﬂB(Y.) C'=alp

i=k+1

2 Find k (I<k'<N-1) which satisfies Yy, <C'<V,.,.

Continued on next page

AIMS Mathematics \Volume 7, Issue 6, 9846-9870.
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Step For ry
3 Check if k'=k, if yes, stopandset ¢'=r; and k=R, if no, return to Step
4 . max(k,k’)

Calculate s=sign(k'=k), a'=a-s >y [us(y))— a5 (¥,

i=min(k k")+1
max(k,k’) __
B=p-s Y [us(y)-p;(y)l c"=a'lp.
i=min(k k")+1

5 Set ¢'=c",a=a',f=pk=k" andgoto Step 2.

Table 6. RICEKM algorithms [16-19,25-27] for calculating the centroid of B.

Step For |5
b— b
' set. p=([, s (NI, 15 (), c=a+(b-a)/(L+p),
c — b
and compute & = [ yug(y)dy+ [ yu5 (y)dy,

c— b ,
B=| usdy+| us(dy, ¢'=alp.
2 Check if |C'~C|< ¢, ifyes, stopandset ¢' =15, if no, return to Step 4.

. max(c,c")
Compute S=sign(c'—c), a'=a+ SI

min(c,c")

ylus(y) - ps (y)ldy

' max(c,c’) — " ' '
B=p+s| s - (NIdy, ¢ =a'l B,
4 Set c=c',c'=c",a=a',f=/p" and return to Step 2.
Step For ry
b— b
' set. p=([, s (NI, 15 (Ndy). c=a+b-a) I(L+17p),

c b —
and compute & = [ yu (Y)dy+ [ yug(y)dy,

c b— ,
B= us(dy+[ us(y)dy, c'=alp.
2 Checkif |C'—C|< &, ifyes, stop and set ¢’ =T, if no, return to Step 4.

max(c,c’)

Compute s=sign(c'—c), a'=«a —sJ'

min(c,c’)
B =p-s|

min(c,c")

Ylus (y) - 25 ()1dy,

max(c,c’

) — " ' '
[ug(y)—ps(V)dy, c"=a'l .
4 Set c=c',c'=c",a=a',f=/p" and return to Step 2.

3.2. Newton-Cotes quadrature formulas

b
The numerical integration approximates the j f (x)dx as the linear combination of functional
a

values f(x,) on discrete points. So that the computation of definite integral can be changed to

calculate the functional values.
Definition 5 (quadrature formula). Let a=x, <x, <---<x, =b, the following equation

AIMS Mathematics \Volume 7, Issue 6, 9846-9870.
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QU =2 W (6) =W ()41 £ () 4wy () (39)
which has the property
[0 f(0dx=Q(f)+E(f) (34)

here (33) is referred to as the quadrature formula, {w}", is referred to as the weight coefficient,
{x}", isreferred to as the integration node, and the E(f) is called as the remainder.

Then the following composite trapezoidal rule, composite Simpson rule, and composite Simpson
3/8 rule are used to approximate the function f(x) as the straight line, quadratic polynomial, and

cubic polynomial, respectively. Note that this section is adapted from the references [14,20,25].
Theorem 1 (Composite trapezoidal rule). Let the function f(x) be defined on the interval [a,b].

Decompose the [a,b] into n subintervals {x,_,,x}., with the equal distance h=b—a, where
n

the uniformly-spaced node is as: X, =X, +ih(i=0.1,2,---,n). Then the numerical approximation of

.[: f (x)dx with the composite trapezoidal rule can be as:

J':f(x)dx:g[f(a)Jrf(b) +2§f(xi)]+ET(f,h) (35)

if f were second-order continuous derivable on the[a,b], then E,(f,h)=

which ¢ €(a,b).
Theorem 2 (Composite Simpson rule). Let f(x) be defined on the interval [a,b]. Decompose

_(b—a)f”(é)hz in
12 ’

the [a,b] into 2n subintervals {x ,,x}" with the equal distance h=b2_—a, in which the
n

uniformly-spaced node is as: X, =x,+ih(i=0,,2,---,2n). Then the numerical approximation of

J:: f (x)dx with the composite Simpson rule can be as:

b _1 n-1
j f (x)dx =g[f @)+ f(b)+2nz f(Xy) +2) f (Xp0) + Es () (36)
a 1=1 i=0

AV f®
if f were fourth-order continuous derivable on [a,b], then Es(f,h):—%h“, in

which a< ¢ <b.

Theorem 3 (Composite Simpson 3/8 rule). Let f(x) be defined on the interval [a,b].

Decompose the [a,b] into 3n subintervals {x._,,x}" with the equal distance h=b3_—a, where
n

the uniformly-spaced node is as: x; = x, +ih(i=0,12,---,3n). Then the numerical approximation of

J:: f (x)dx with the composite Simpson rule can be as:
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[ 100ax= 211 @)+ F0)+ 221 06)+ 31060+ L3F (6 DI+ Ec(FR) (37

_aVf®
if f were fourth-order continuous derivable on [a,b], then ESC(f,h)=—Wh4, in
which a< ¢ <b.

3.3. RIWEKM algorithms

According to the former two subsections, this section proposes the RIWEKM algorithms to
complete the centroid type-reduction of IT2 FLSs. Here the reasonable initialization continuous
EKM (RICEKM) algorithms are considered as the benchmark, then the computation results of
RIWEKM algorithms are used for comparing with both the EKM algorithms and RIEKM algorithms.
The RIWEKM algorithms can be viewed as the numerical implementation of RICEKM algorithms.
To compare the Tables 5 and 6, we can find that the operations in discrete RIEKM and RICEKM are
similar, because the sum operations in discrete algorithms are changed to the integral operations in
continuous algorithms, i.e., the sum operations of sampling points in RIEKM algorithms act as
integration operations of related function in RICEKM algorithms. By means of the Newton-Cotes
quadrature formulas, we can assign the corresponding coefficient w, for each node x., then the

more accurate computation results may be obtained. Table 7 provides the steps for calculating the
centroid of an 1T2 FS according to the RIWEKM algorithms. The RIEKM algorithms are just a
particular case of the RIWEKM algorithms as the coefficients of the latter are selected as
w, =1(i=12,---,N). Although many coefficients assignment methods can be used, here we only
adopt the numerical integration approaches on the basis of the Newton-Cotes quadrature formulas in
Section 3.2, which are referred to as the composite trapezoidal rule, composite Simpson rule, and
composite Simpson 3/8 rule. Here the Table 8 provides the weight assignment approaches of
RIWEKM algorithms, in which all the sampling points are equally distributed on [a,b], that is to
i—-1
N -1
represented by the x.

say, X, =a+ (b—a) (i=1,---,N). Here the letter of primary variable of output IT2 fuzzy set is

~

Table 7. RIWEKM algorithms for calculating the centroid of B.

Step For |5

K N —
Set k=[N /(1+\/;)] and compute a:ZWiyiﬁé(yi)+ Zwiyi,ug(yi)
i=1

i=k+1

ﬂ:ZWiEE(Yi)+ zWi;§(yi)l c=alp.

i=k+1
Find k'(1<k’<N-1) which satisfies y,, <C'<Y,.;.

Check if k' =Kk, if yes, stop and set ¢’ = |§ and k =L, if no, return to Step 4.

Continued on next page
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Step For |5
4 . max(k,k") _
Calculate s=sign(k'—K), a'=a+s Y wy[us(y,)—; (¥)],
i=min(k k’)+1
max(k,k") _
B=p+s D wilug(y)-p;(y)l, c"=a'lp.
i=min(k k')+1
5 Set ¢'=c",a=a',f=pk=k" and return to Step 2.
Step For ry
1 k N o
Set k=[N /(1++1/p)] and calculate o =) Wy, s (y;)+ Zk:Wi Y 15 (Y,
i=1 i=k+1
K N
B :Zwiﬁg(Yi)"‘ Zwiﬂﬁ(yi)n C'=alp
i=1 i=k+1
2 Find k'(L1<k’<N-1) which satisfies y,, <C'<V,.,.
3 Check if k' =k, if yes, stop and set ¢’ = r; and k =R, if no, return to Step 4.
4 max(k,k") _
Calculate s=sign(k’'—k), a'=a-s ZWi yi[ﬂé(yi)_ﬂg(yi)] :
i=min(k,k")+1 -
max(k,k") _
p'=p-s Z Wi[lulg(yi)_ﬁg(yi)]’ c'=a'lp.
i=min(k,k")+1
5 Set ¢'=c",a=a',f=pk=k" and return to Step 2.
Table 8. Weight assignment approaches of RIWEKM algorithms.
Algorithms Integration Rule Weight coefficient
RIEKM W =1(i=1--,N)
_ _ W= 1/2, i=1N,
RITWEKM Composite Trapezoidal Rule P = 1 i %1 N,
o 1/2, i=1N,
RISWEKM CRlo:npOSIte Simpson w, =41, i=1mod(2),andi=1N,
ue 2, i=0mod(2),andi# N.
1/3, i=1N,
RIS3/BWEKN  COMPOsite Simpsond/g W= 2/3, i=1mod(3),andi=1N,
Rule " |4, i=2mod(3),andi= N,
1, i=0mod(2),andi = N.

In order to perform the centroid type-reduction of IT2 FLSs, we give the detail steps as:
1) According to the fuzzy reasoning [28,29], merging the fired fuzzy rules of 1T2 FLSs to obtain

the centroid output IT2FS B.
2) Adopt the RICEKM and RIWEKM algorithms to compute the centroid defuzzified values of

IT2 FLSs.

3) Compare and analyze the calculation results of RIWEKM algorithms, EKM algorithms and
RIEKM algorithms by viewing the CEKM algorithms as a baseline.
4) Compare and analyze the calculaltional times of RIWEKM algorithms, EKM algorithms and

AIMS Mathematics
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RIEKM algorithms.

In Table 8, except for the RIEKM algorithms, the coefficients for other three types of RIWEKM
algorithms are assigned by means of the following steps:

1) Substitute x,=a , xy=b , x(@{i=01---,N) in Eq (35), X,=a , X,=b,
X,(i=012,---,2N) in Eq (36), and x,=a, Xy, =b, x(i=0,---3N) in Eq (37) all by x =a,
Xy =b, x({=L2,---,N).

2) Coefficients h/2, h/3 and 3h/8 in Eqgs (35)-(37) can all be balanced out by the quotient
of two integrals as in Table 6.

3) Observing from the Table 8, the coefficients of RITWEKM algorithms and RISWEKM
algorithms are assigned as a half of brackets in Egs (35) and (36).

4) The number of sampling points of RISWEKM algorithms and RIS3/8WEKM algorithms are
not only restrict to N=2n+1 and N =3n+1(here n is an arbitrary integer), but as the
requirements N =1mod (2) and N =1mod (3) in Egs (36) and (37) (in which mod represents the
modulus operator).

Finally we can make the following conclusions for the relations between RICEKM algorithms
and RIWEKM algorithms as for completing the centroid type-reduction and defuzzification of IT2
FLSs:

1) The RIWEKM algorithms are based on the sum operations of sampling points y,(i=1,---,N)

to complete centroid type-reduction of 1T2 FLSs. When it stops, the optimal switching points are
used to approximate the centroids. While the RICEKM algorithms adopt the integration operations to
complete the centroid type-reduction and defuzzification, which may obtain the comparatively
accurate type-reduced sets and defuzzified values. Theoretically, as the number of sampled points
approaches infinity, the solutions of RIWEKM algorithms will approach to RICEKM algorithms.

2) As for the RIWEKM algorithms, we can increase the number of sampled points to get the
more accurate computation results. But for the RICEKM algorithms, the calculation accuracy can be
improved by setting the boundary error & to control the two adjacent iteration steps.

3) The RIWEKM algorithms complete the numerical computations in terms of the sum
operations, which the RICEKM algorithms finish the computations according to the integration
operations. In a word, the RIWEKM algorithms can be considered as the numerical realization of
RICEKM algorithms by the numerical integration methods.

4. Simulation experiments

This section provides three numerical simulation examples. Here we make the assumption that,
under the guidance the fuzzy inference (reasoning) block, the centroid output IT2 fuzzy set has been
got by merging fuzzy rules before the type-reduction and defuzzification.

In the first instance, the FOU is composed of piecewise linear functions [19-21,27,29]. In the
second instance, the FOU is made up of piecewise linear functions and Gaussian functions [14-17,30,31].
In the third instance, the FOU is composed of Gaussian functions [19-21,27,29]. The Figure 3 and
Table 9 show the defined FOUs for three instances.

AIMS Mathematics \Volume 7, Issue 6, 9846-9870.
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Figure 3. Graphs of FOUs for three instances; (a) instance 1, (b) instance 2, and (c) instance 3.

Table 9. FOUs for membership function expressions of three examples.

Num | FOUs for membership function expressions
1 — o ~ -
X72 1<x<4 X—_?’, 3<x<5
6 6
7—X 8—X
~(X)=max{] —, 4<x<7 |,|—, 5<x<8 [},
7, () =max] 5 }
0, otherwise | | O, otherwise
X—_l, 1<x<3 X;Z, 2<x<6
2 5
;,;l(x):max{%rx,3<xg7 , 16_2X,6<x38}
0, otherwise | | 0, otherwise
2 0.6(x+5) 1,x-2,,
T,—SSXSZ.G . eXp[—E(?) ] -5<x<7.185
My (X) = Mg (X) =
—A _ 2
%‘;X),z.eqsm ex p[—l(x—g) 1,7.185< x <14
3 6
Ez\g(x):max{O.Sexp[— (X 3’ 1,0.4exp[— (x= > ) 1},
;;s(x)zmax{exp[—OS(X Ok 1,0.8exp[- _05= 6) 1}, xe[010]

Here the error accuracy is chosen as &=10"°. Because the computations of I and r; are

very similar, we only calculate I in the simulation experiments. Firstly, the RICEKM algorithms
are viewed as the benchmark to calculate the left centroid end points for three instances, and they are
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8. Yricekm, = 3-660534 ,  Yocpn, =0.445924 , and  ygcp, =3.155741, respectively. As for

studying the proposed RIWEKM algorithms, the number of sampling points of primary variable of
output IT2 FS is chosen as N =50:50:9000. Then we compare the performances between the EKM
algorithms, RIEKM algorithms and RIWEKM algorithms. The graphs of left centroid end points for
the above mentioned algorithms are shown in Figure 4. In addition, the graphs of absolute errors
between EKM algorithms, RIEKM algorithms, RIWEKM algorithms and RICEKM algorithms
(benchmark) are given Figure 5.
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Figure 4. The left centroid end points calculated by EKM, RIEKM and RIWEKM algorithms; (a)
instance 1, (b) instance 2, and (c) instance 3.
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Figure 5. The absolute errors of left centroid end points between EKM algorithms, RIEKM
algorithms, RIWEKM algorithms and RICEKM algorithms; (a) instance 1, (b) instance 2, and (c)
instance 3.

For the sake of measuring the performances of RIWEKM algorithms qualitatively, here we
define the relative errors as | Yeou riexw, = Yricekm, |/ | Yricerm, 1 (1=1,-++,3) . Table 10 provides the

mean relative errors of EKM algorithms, RIEKM algorithms and RIWEKM algorithms for the above
three examples, where the last column represents the total average of mean relative errors.

For the above three examples, we can obtain the following conclusions by observing the Figures 4
and 5 and the Table 10:

1) The absolute errors of left centroid end points between the EKM algorithms, RIEKM
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algorithms and RIWEKM algorithms almost all converge as the number of sampled points of
primary variable of centroid output 1T2 FSs increases. For the first example, the smallest absolute
error (also the smallest error amplitude of variation) can be obtained by the RIEKM algorithms and
RITWEKM algorithms, in which the EKM algorithms obtain the comparatively largest absolute error.
For both the second and the third instances, the proposed RIWEKM algorithms can get the absolute
errors (error amplitude of variations) that are obviously much less than both the EKM algorithms and
RIEKM algorithm.

2) See from the Table 10, we can find the largest absolute errors of EKM algorithms and
RIEKM algorithms are 1.359220% and 0.502985%, respectively, while the largest absolute error of
RIWEKM algorithms is only 0.002404%, that is to say, the latter is less than two hundredths of two
formers. In addition, the total average relative error of EKM algorithms and RIEKM algorithms are
0.460223%, and 0.177165%,respectively, whereas the smallest total average relative errors of
RIWEKM algorithms is only 0.00065%, i.e., the latter is less than 0.04% of two formers.

3) By analyzing both the items 1) and 2) comprehensively, compared the EKM algorithms and
RIEKM algorithms, we can get the conclusion that it is reasonable to adopt the appropriate
RIWEKM algorithms for pursuing better error accuracy and stability.

Next, we investigate the computational time of these types of algorithms for applying them. The
unrepeatable computation time of algorithms relies on the software and hardware environment,
which is completely different from calculating the defuzzified values. Here the simulation
experiments are completed by a dual-core CPU dell desktop with E5300@2.60GHz and 2.00GB
memory. Then the comparisons of computation time of three examples are provided in Figures 6-8.

Table 10. Mean relative errors | ey riexw — Yricekw: |/ | Yricexw: | TOF three examples.

Algorithms EKM RIEKM RITWEKM RISWEKM RIS3/8WEKM
Case 1 0.00000389 0.00000127 0.00000127 0.00000349 0.00000330
Case 2 0.01359220 0.00502985 0.00001328 0.00002162 0.00002404
Case 3 0.00021060 0.00027383 0.00000485 0.00000581 0.00000489
Total average 0.00460223 0.00177165 0.00000065 0.00001031 0.00001074
x 107
45 ; : ;
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Figure 6. Comparsion of computation time for instance 1.
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Figure 7. Comparsion of computation time for instance 2.
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Figure 8. Comparsion of computation time for instance 3.

If the fluctuation influence of number of sampled points N were not considered, the above
EKM algorithms, RIEKM algorithms and RIWEKM algorithms vary linearly with respectto N in
general. Therefore, the least square regression model can be selected as t=a+bN for all types of
algorithms, in which t denotes the computational time, and the coefficients are provided in the
following Table 11. Furthermore, the computational time difference rate is defined as:

(max{t;} - min{t;})/ max{t;} . (38)
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Table 11. Regression model coefficients of type-reduction algorithms.

o EKM RIEKM RITWEKM RISWEKM RIS3/SWEKM
Coefficient a/10°b/10° a/10°b/10° a/10°b/10° a/10°b/10° a/10°b/10°
Case 1 0.000163 -0.134676 0.000142 -0.027860 0.000138 0.125481 0.000269 0.024937 0.000385 -0.214929
Case 2 0.000087 0.085536 0.000093 0.070055 0.000093 0.215750 0.000244 0.377291 0.000286 0.435158
Case 3 0.000069 0.087296 0.000052 0.202952 0.000059 0.370410 0.000158 0.389515 0.000294 0.097664
Total mean 0.000106 0.012719 0.000096 0.081716 0.000096 0.237213 0.000223 0.263915 0.000321 0.105964

According to the Table 11 and the Figures 6-8, we can see that the computation times of EKM algorithms, RIEKM algorithms and
RITWEKM algorithms are slightly better than that of RISWEKM algorithms and RIS3/8WEKM algorithms. Here we may ascribe the former
three types of algorithms as the first type, and the former two types of algorithms as the second type. The computation times of the first type are
better than the second type as the former has comparatively simpler weights than the latter. Generally speaking, the proposed RIWEKM
algorithms have faster convergence speeds than that of EKM algorithms and RIEKM algorithms, i.e., for the RIWEKM algorithms, we can use
the fewer number of sampled points to get the same computation time as the EKM algorithms and RIEKM algorithms. The overall specific
computational time size relations are as: EKM<RIEKM<RITWEKM<RISEKM<RIS3/8WEKM. Furthermore, the defined computational time
difference rate of three examples is between 26.47%-89.89%.

According to the above analysis, it is obviously to find that the initialization and weighting have influence for EKM algorithms to
complete the centroid type-reduction of IT2 FLSs, i.e., the Newton-Cotes quadrature formulas based RIWEKM algorithms can be used for
investigating the centroid TR of IT2 FLSs. If only the calculation accuracy were considered, the RITWEKM algorithms are the best option (see
the Table 10). However, if the calculation accuracy and the computational time were taken in account comprehensively (see Table 10 and
Figures 6-8), we suggest one use the RIEKM or RITWEKM algorithms to complete the centroid type-reduction of IT2 FLSs with piecewise
linear functions as in instance 1, and adopt the RITWEKM algorithms to complete the centroid type-reduction of 1T2 FLSs with both piecewise
linear functions and Gaussian functions as in instance 2 and Gaussian functions as in instance 3.

Finally we should point out that the paper only focuses the performances of RIWEKM algorithms from the viewpoint theory. Four
simulation examples show that, on a considerable amount of sampling points, the RIWEKM algorithms can enhance the calculation accuracy in
contrast to both the EKM algorithms and RIEKM algorithms. Despite so, if the accuracy requirement is not high, the simpler EKM algorithms
can get good effects, and then the RIWEKM algorithms will not show their advantages.
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5. Conclusions

This paper first provides the reasonable initialization explanations for EKM algorithms, then the
RIEKM algorithms are extended to different types of RIWEKM algorithms resort to the
Newton-Cotes quadrature formulas. By considering the RICEKM algorithms as the baseline, five
types of discrete TR algorithms are used to complete the centroid type-reduction of 1T2 FLSs. Three
simulation instances are given to analyze and verify that the proposed RIWEKM algorithms can get
smaller absolute errors and faster convergence speeds in contrast to both the EKM algorithms and
RIEKM algorithms.

There exist many important works lie ahead, including adopting the RIWEKM algorithms [32]
to study the centroid type-reduction of general T2 FLSs, studying the non-iterative algorithms
[21,27,29-30,33,54-57] for centroid and center-of-sets type-reduction [34,35,51] of IT2 FLSs and
GT2 FLSs, the colony intelligence based algorithms [36—40] for optimizing T2 FLSs, and the
forecasting, identification and control problems [22,41-50,52-56] based on T2 FLSs and so on.
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