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Abstract: We explore the existence and asymptotic stability of equilibrium point for a class
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Applying a contradictory method to study the equilibrium point and applying two Lyapunov functionals
to study stability of equilibrium point are completely new methods.

Keywords: quaternion-valued BAM neural networks; contradictory method; asymptotic stability;
Lyapunov functionals
Mathematics Subject Classification: 34K24

1. Introduction

Quaternion was found by the Irish mathematician W. R. Hamilton in 1843, which didn’t give rise
to much attention for a long time and not to mention the practical applications. The skew field of
quaternion is expressed with

Q = {z = z0 + iz1 + jz2 + k∗z3},

in which z0, z1, z2, z3 are real numbers. Quaternion-valued neural networks can be regarded as a
generic extension of complex-valued neural networks or real-valued neural networks and they have
much more complicated structure than complex-valued neural networks on their quaternion-valued
states, quaternion-valued connection weights and quaternion-valued activation functions. Because of
some practical applications, as a class of hypercomplex system, recently, the dynamical behaviors of
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quaternion-valued neural networks have attracted great interest from wide researchers and some good
results have been reported in some international journal of mathematics and engineering [1–23].
In [1], the existence and global exponential stability of anti-periodic solution for a quaternion-valued
high-order Hopfield neural networks were discussed. By separating the discussed quaternion-valued
neural networks into four real-valued systems and applying a novel continuation theorem of
coincidence degree theory, some novel sufficient conditions to guarantee the existence and global
exponential stability of anti-periodic solutions were acquired in [1]. In [2], the existence and global
exponential stability of anti-periodic solutions for a class of inertial quaternion-valued high-order
Hopfield neural networks were studied. Without decomposing the discussed neural networks into
real-valued systems, by applying wirtinger inequality and a continuation theorem of coincidence
degree theory, new sufficient conditions ensuring the existence and exponential stability of
anti-periodic solutions for discussed networks were obtained in [2]. In [3], the authors discussed the
multistability of a class of quaternion-valued neural networks with time delays by using inequality
craftsmanships. In [4,5], the authors discussed respectively the stability and robust stability for
respectively discussed quaternion-valued neural networks. In [6], the authors discussed a class of
quaternion-valued Cohen-Grossberg neural networks. By applying Homeomorphism theorem and
constructing Lyapunov functional, by decomposing and direct approaches, several new sufficient
conditions were acquired to assure the existence and global asymptotic stability and global
exponential stability for system (1) in [6]. In [11], the global µ-stability of a class of
quaternion-valued neural networks with mixed time-varying delays was explored. In [13], the
existence, uniqueness and stability of the equilibrium point of quaternion-valued neural networks with
both discrete and distributed delays were explored. On the basis of homeomorphic mapping theorem
and linear matrix inequality method, several sufficient conditions ascertaining the equilibrium point is
globally asymptotically stable were gained. In [14], the multistability of equilibrium point of a class
of quaternion-valued neural networks with nonmonotonic piecewise nonlinear activation functions
were discussed. In [15], under the fixed-time stability and some analytical skills, criterion of
fixed-tme synchronization for a class of quaternion-valued neural networks was gained. In [16], a
class of quaternion-valued fuzzy cellular neural networks with time-varying delays on time scales was
put forward. On the basis of inequality analysis techniques on time scales, the exponential stability of
anti-periodic solutions for the networks was attained.

Up to now, in the study of the existence and uniqueness of equilibrium point for almost real-valued
neural networks [24–27], almost complex-valued neural networks [28,29] and almost
quaternion-valued neural networks [6,7,9,13], the results of the existence of the equilibrium point of
the considered neural networks have been obtained mainly by applying the Homeomorphism
theorem. In the study of global asymptotic/exponential stability of equilibrium point for almost the
considered neural networks [15,24–26,28,29], by firstly constructing a Lyapunov functional V(t), then
by proving V ′(t) < 0, the global asymptotic/exponential stability of equilibrium point for discussed
neural networks was proved.

So far, the existence and global asymptotic/expoential stability of equilibrium point for quaternion-
valued neural networks have been investigated mainly by decomposing method (namely separating
quaternion-valued neural networks into four real-valued systems), see [1,3,5–11]. The shortage of
decomposing method is that the computation of the proof is too complicated, as a result, the obtained
results are also so complicated that they cannot be easily verified. However, the results on the global
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asymptotic/exponential stability obtained by applying the direct approach method are less [2,4].
Up to present, the stability results of quaternion-valued BAM neural networks have been also

discussed [20,23,30–38]. In [20], the existence and global asymptotic stability of periodic solutions
for a class of discrete quaternion-valued BAM neural networks were investigated. By applying
continuation theorem of coincidence degree theory and constructing Lyapunov discrete sequences, the
criteria to ensure the existence and global asymptotic stability of periodic solutions for the considered
neural networks were established. In [23], the global stability analysis for the fractional-order BAM
quaternion-valued neural networks was discussed. By using the principle of homeomorphism,
Lyapunov fractional-order method and linear matrix inequality approach, the result for the existence,
uniqueness and global asymptotic stability of the equilibrium point were obtained. In [34], the global
exponential stability in Lagrange sense of BAM quaternion-valued inertial neural networks was
considered by non-reduced order and un-decomposed approach. Several criteria for Lagrange
stability were acquired in the form of linear matrix inequalities. In [35], the global stability for BAM
quaternion-valued inertial neural networks with time delay was investigated. Based on nonlinear
measure approach and some inequality techniques, a new sufficient condition was obtained to ensure
the existence and uniqueness of the equilibrium point. Meanwhile, some new Lyapunov functionals
were constructed to directly propose the asymptotic stability for the discussed system and some
stability criteria in linear matrix inequality form were derived by means of Barbalat Lemma and
inequality techniques. Up to now, the stability results for quaternion-valued non-BAM neural
networks and quaternion-valued neural networks have been obtained mainly by using LMI approach,
matrix measure and non-reduced order approach. This make us to look for new approach to study the
stability of quaternion-valued BAM neural networks. This constitutes the motivation of this paper.

Based on above discussions, in this paper, we are concerned with the following quaternion-valued
BAM neural networks with time-varying delays for p = 1, 2, · · · , n, q = 1, 2, · · · ,m:

u′p(t) = −αpup(t) +
m∑

q=1

apqFq(vq(t)) +
m∑

q=1

cpqFq(vq(t − τ(t))) + Ip,

v′q(t) = −γqvq(t) +
n∑

p=1

bqpGp(up(t)) +
n∑

p=1

dqpGp(up(t − σ(t))) + Jq, (1.1)

where, up(t), vq(t) ∈ Q are the neuron states, αp > 0 and γq > 0 are constants which denote the rate
with which the ith neurons and the jth neurons will reset its potential to the resetting state in isolation
when disconnected from the networks and external inputs, the connection weights
apq, cpq, bqp, dqp ∈ Q are the strength of the neuron interconnections, Ip, Jq ∈ Q are the external inputs,
Fq(uq(t)), Fq(uq(t)),Gp(vp(t)),Gp(vp(t)) : Q → Q are the activation functions, τ(t) > 0 and σ(t) > 0
are time delays.

The initial values of system (1.1) are expressed as:

up(s) = φp(s), vq(s) = ψq(s), s ∈ [0, τ], (1.2)

where, τ = max{max
t∈[0,∞)

{τ(t)}, max
t∈[0,∞)

{σ(t)}}.

In the paper, our objective is to gain novel sufficient conditions ensuring the existence and
asymptotic stability of equilibrium point for system (1.1) by applying direct method of
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quaternion-valued neural networks and by applying the Homeomorphism theorem but with a
contradictory method of proving the existence of equilibrium point and constructing two Lyapunov
functionals to study stability of equilibrium point. In the study of the existence of equilibrium point
for system (1.1), we also construct a mapping H(u − û, v − v̂) as in the existing papers. But we use the
contradictory approach to obtain the results. In the study of the asymptotic stability of equilibrium
point, by constructing two functionals V1(t) = K1(t) +

∫ t

t−τ(t)
V1(s)ds,V2(t) = K2(t) +

∫ t

t−σ(t)
V2(s)ds,

then by proving respectively V ′1(t) < 0,V ′2(t) < 0, the proof of global asymptotic stability of
equilibrium point is accomplished. The novelty is that in the proof of the existence-uniqueness of
equilibrium point, a contradictory approach is introduced, in the proof of the global asymptotic
stability, two Lyapunov functionals are introduced. Consequently, the contribution of the paper is
embodied the following two points: (1) Novel study methods of proving the existence and stability of
equilibrium point of neural networks are introduced in our paper: using a contradictory method with
new analysis techniques proving the existence of equilibrium point and constructing two Lyapunov
functionals to discuss the stability of equilibrium point; (2) New concise sufficient conditions to
assure the existence and global asymptotic stability of equilibrium point for system (1.1) are gained
by applying direct method of quaternion-valued neural networks.

2. Preliminary

For each u ∈ Q, the conjugate of u is u∗ = uR − iuI − kuK − juJ and the norm of u is defined as

‖u‖Q =
√

uu∗ =
√

(uR)2 + (uI)2 + (uJ)2 + (uK)2.

For h = (h1, h2, · · · , hn) ∈ Qn, the norm of h is defined as

‖h‖Qn =

√√ n∑
p=1

h∗php, hp(p = 1, 2, · · · , n) ∈ Q.

Lemma 2.1. For c, d ∈ H, c∗d + d∗c ≤ c∗c + d∗d.
Lemma 2.2. (Chen et al [5]) Assume that H(x) : Qn → Qn is a continuous map and satisfies the
following conditions:
(a) H(x) is injective on Qn;
(b) lim

‖x‖Qn→∞
‖H(x)‖Qn = ∞,

Then, H(x) is a homeomorphism of Qn onto itself.
We make the following assumptions:

(D1) There exist positive constants Lq and Lp such that

‖Fq(u) − Fq(v)‖Q ≤ Lq‖u − v‖Q,

‖Gp(u) −Gp(v)‖Q ≤ Lp‖u − v‖Q;

p = 1, 2, · · · , n; q = 1, 2, · · · ,m; u, v ∈ Q;

(D2)
2α > 1 + 2mA + 2mA1, α , 1,
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(D3)
2γ > 1 + 2nB + 2nB1, γ , 1,

where

A = max
1≤q≤m

{

n∑
p=1

‖apq‖
2
QL2

q}, A1 = max
1≤q≤m

{

n∑
p=1

‖cpq‖
2
QL2

q},

B = max
1≤p≤n
{

m∑
q=1

‖bqp‖
2
QL2

p}, B1 = max
1≤p≤n
{

m∑
q=1

‖dqp‖
2
QL2

p},

α = min
1≤p≤n
{αp}, γ = min

1≤q≤m
{γq}.

Claim1. (D2) implies
(D4)

α2 > 2m(A + A1).

(D3) implies
(D5)

γ > 2n(B + B1).

Proof. Since α , 1, then (α − 1)2 > 0. Thus α2 > 2α − 1 > 2m(A + A1). So (D4) holds. Similarly, (D5)
can be proved.

We introduce the following notations:

U1 =

n∑
p=1

‖up − ûp‖
2
Q,U2 =

m∑
q=1

‖vq − v̂q‖
2
Q,

F1(t) =
n∑

p=1

‖up(t) − u∗p‖
2
Q, F2(t) =

m∑
q=1

‖vq(t) − v∗q‖
2
Q,

where ûp, v̂q are defined in Theorem 3.1, u∗p, v
∗
q are defined in Theorem 4.1.

3. Existence of equilibrium point

In this section, we prove that under some conditions, system (1.1) has a unique equilibrium point.
Theorem 3.1. Assume that (D1) − (D3) hold. Then system (1.1) with (1.2) has a unique equilibrium
point.
Proof. We employ Lemma 2.2 to prove that system (1.1) has a unique equilibrium point. Firstly,
we prove that (a) in Lemma 2.2 is satisfied. By system (1.1), it is clear that an equilibrium point
(ŭ, v̆) = (ŭ1, ŭ2, · · · , ŭn, v̆1, v̆2, · · · , v̆m) of system (1.1) satisfies :

αpup −

m∑
q=1

apqFq(vq) −
m∑

q=1

cpqFq(vq) − Ip = 0,

γqvq −

n∑
p=1

bqpGp(uq) −
n∑

p=1

dqpGp(up) − Jq = 0. (3.1)
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By (3.1), define a mapping as follows:

H(u, v) =

α1u1 −
m∑

q=1
a1qFq(vq) −

m∑
q=1

c1qFq(vq) − I1

α2u2 −
m∑

q=1
a2qFq(vq) −

m∑
q=1

c2qFq(vq) − I2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

αnun −
m∑

q=1
anqFq(vq) −

m∑
q=1

cnqFq(vq) − In

γ1v1 −
n∑

p=1
b1pGp(up) −

n∑
p=1

d1pGp(up) − J1

γ2v2 −
n∑

p=1
b2pGp(up) −

n∑
p=1

d2pGp(up) − J2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

γmvm −
n∑

p=1
bmpGp(up) −

m∑
p=1

dmpGp(up) − Jm



,

(3.2)

where
u = (u1, u2, · · · , un), v = (v1, v2, · · · , vm).

Set
(u, v) , (û, v̂), û = (û1, û2, · · · , ûn), v̂ = (v̂1, v̂2, · · · , v̂m).

In order to prove that H(u, v) is an injective, we only need prove that H(u, v) , H(û, v̂). If H(u, v) =
H(û, v̂), by (3.2), one has for p = 1, 2, · · · , n, q = 1, 2, · · · ,m,

n∑
p=1

{
(up − ûp)∗

(
αp(up − ûp) −

m∑
q=1

(apq + cpq)[Fq(vq) − Fq(v̂q)]
)
+

(
αp(up − ûp) −

m∑
q=1

(apq + cpq) ×

[Fq(vq) − Fq(v̂q)]
)∗

(up − ûp)
}
= 0 (3.3)

and

m∑
q=1

{
(vq − v̂q)∗

(
γq(vq − v̂q) −

n∑
p=1

(bqp + dqp)[Gp(up) −Gp(v̂p)]
)
+

(
γq(vq − v̂q) −

n∑
p=1

(bqp + dqp) ×

[Gp(uq) −Gp(ûp)]
)∗

(vq − v̂q)
}
= 0. (3.4)

By (D1) and Lemma 2.1, we have from (3.3) and (3.4),

n∑
p=1

2αp(up − ûp)∗(up − ûp)

≤

n∑
p=1

{( m∑
q=1

(apq + cpq)[Fq(vq) − Fq(v̂q)]
)∗

(up − ûp) + (up − ûp)∗
( m∑

q=1

(apq + cpq)[Fq(vq) − Fq(v̂q)]
)}
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≤

n∑
p=1

{( m∑
q=1

(apq + cpq)[Fq(vq) − Fq(v̂q)]
)∗( m∑

q=1

(apq + cpq)[Fq(vq) − Fq(v̂q)]
)
+ (up − ûp)∗(up − ûp)

}
≤

m∑
p=1

{∥∥∥∥ m∑
q=1

apq[Fq(vq) − Fq(v̂q)] +
m∑

q=1

cpq[Fq(vq) − Fq(v̂q)]
∥∥∥∥2

Q
+ ‖up − ûp‖

2
Q

}
≤

n∑
p=1

{
‖up − ûp‖

2
Q +

[ m∑
q=1

‖apq‖QLq‖vq − v̂q‖Q +

m∑
q=1

‖cpq‖QLq‖vq − v̂q‖Q

]2}
≤

n∑
p=1

{
‖up − ûp‖

2
Q + m

m∑
q=1

L2
q

(
‖apq‖Q‖vq − v̂q‖Q + ‖cpq‖Q‖vq − v̂q‖Q

)2}
≤

n∑
p=1

{
‖up − ûp‖

2
Q + 2m

m∑
q=1

L2
q

[
‖apq‖

2
Q‖vq − v̂q‖

2
Q + ‖cpq‖

2
Q‖vq − v̂q‖

2
Q

]}
(3.5)

and
m∑

q=1

2γq(vq − v̂q)∗(vq − v̂q)

≤

m∑
q=1

{( n∑
p=1

(bqp + dqp)[Gp(up) −Gp(ûp)]
)∗

(vq − v̂q) + (vq − v̂q)∗
( n∑

p=1

(bqp + dqp)[Gp(up) −Gp(ûp)]
)}

≤

m∑
q=1

{( n∑
p=1

(bqp + dqp)[Gp(up) −Gp(ûp)]
)∗( n∑

p=1

(bqp + dqp)[Gp(up) −Gp(ûp)]
)
+ (vq − v̂q)∗(vq − v̂q)

}
≤

m∑
q=1

{
‖vq − v̂q‖

2
Q + 2n

n∑
p=1

L2
p

[
‖bqp‖

2
Q‖up − ûp‖

2
Q + ‖dqp‖

2
Q‖up − ûp‖

2
Q

]}
. (3.6)

By (3.5) and (3.6), one has

2αU1 ≤ 2mAU2 + 2mA1U2 + U1 (3.7)

and

2γU2 ≤ 2nBU1 + 2nB1U1 + U2. (3.8)

We explore two possible cases: (1) U2 ≤ U1; (2) U2 > U1.

(1) When U2 ≤ U1, (3.7) implies

(2α − 1 − 2mA − 2mA1)U1 ≤ 0. (3.9)

Since U1 > 0, 2α − 1 − 2mA − 2mA1 > 0, then (3.9) leads a contradiction.
(2) When U2 > U1, (3.8) implies

(2γ − 1 − 2nB − 2nB1)U2 ≤ 0. (3.10)

Since U2 > 0, 2γ − 1 − 2nB − 2nB1 > 0, then (3.10) leads a contradiction.
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From the discussions of (1) and (2), it follows that H(u, v) is an injective. Consequently, (a) in
Lemma 2.2 is fulfilled. Next we prove that (b) in Lemma 2.2 is fulfilled. Namely, we will prove that
when ‖(u, v)‖Qn → ∞, ‖H(u, v)‖Qn → ∞. If lim

‖(u,v)‖Qn→∞
‖H(u, v)‖Qn , ∞, then there exist two positive

constants r and A∗ with

r >
√

2 max
{D
√

m +

√
D2m + [α2 − 2m(A + A1)

n∑
p=1

C2
p

α2 − 2m(A + A1)
,

D1
√

n +

√
D2

1n + [γ2 − 2n(B + B1)
m∑

q=1
(C∗q)2

]
γ2 − 2n(B + B1)

}
,

such that

‖H(u, v)‖Qn ≤ A∗, ‖(u, v)‖Qn > r, (3.11)

in which Cp,C∗q,D,D1 are defined respectively in (3.14) and (3.15). By (3.2), one has

n∑
p=1

[αpup −

m∑
q=1

(apq + cpq) − Ip]∗[αpup −

m∑
q=1

(apq + cpq) − Ip] < (A∗)2

and
m∑

q=1

[γqvq −

n∑
p=1

(bqp + dqp) − Jq]∗[γqvq −

n∑
p=1

(bpq + dqp) − Jq] < (A∗)2.

Then by the definition of ‖.‖Q, one has

‖αpup −

m∑
q=1

(apq + cpq)Fq(vq)‖Q ≤ A∗ + ‖Ip‖Q (3.12)

and

‖γqvq −

n∑
p=1

(bqp + dqp)Gp(up)‖Q ≤ A∗ + ‖Jq‖Q. (3.13)

It follows from (3.12) that

αp‖up‖Q ≤

∥∥∥∥ m∑
q=1

[
(apq + cpq)[Fq(vq) − Fq(0)] + (apq + cpq)Fq(0)

∥∥∥∥
Q
+ A∗ + ‖Ip‖Q

≤

m∑
q=1

[
‖apq‖QLq‖vq‖Q + ‖cpq‖QLq‖vq‖Q + ‖apq + cpq|Q|‖Fq(0)‖Q

]
+ A∗ + ‖Ip‖Q,

which implies

α2
n∑

p=1

‖up‖
2
Q
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≤

n∑
p=1

α2
p‖up‖

2
Q

≤

n∑
p=1

[ m∑
q=1

(‖apq‖Q + ‖cpq‖Q)Lq‖vq‖Q +Cp

]2

=

n∑
p=1

{( m∑
q=1

(‖apq‖Q + ‖cpq‖Q)Lq‖vq‖Q

)2
+C2

p + 2Cp

m∑
q=1

(‖apq‖Q + ‖cpq‖Q)Lq‖vq‖Q

}
≤

n∑
p=1

{
m

m∑
q=1

(
(‖apq‖Q + ‖cpq‖Q)Lq‖vq‖Q

)2
+C2

p + 2
n∑

p=1

Cp

m∑
q=1

[‖apq‖Q + ‖cpq‖Q]Lq‖vq‖Q

}
≤ 2m

n∑
p=1

m∑
q=1

(
‖apq‖

2
QL2

q‖vq‖
2
Q + ‖cpq‖

2
QL2

q‖vq‖
2
Q

)
+

n∑
p=1

C2
p + 2

n∑
p=1

Cp

m∑
q=1

[‖apq‖Q + ‖cpq‖Q]Lq‖vq‖Q

≤ 2m(A + A1)
m∑

q=1

‖vq‖
2
Q +

n∑
p=1

C2
p + 2D

m∑
q=1

‖vq‖Q

≤ 2m(A + A1)
m∑

q=1

‖vq‖
2
Q +

n∑
p=1

C2
p + 2D

√
m

√√ m∑
q=1

‖vq‖
2
Q, (3.14)

where Cp = A∗ + ‖Ip‖Q +
m∑

q=1
‖apq + cpq‖Q‖Fq(0)‖Q,D = max

1≤q≤m
{

n∑
p=1

Cp[‖apq‖Q + ‖cpq‖Q]Lq.

Similarly, from (3.13), we can get

γ2
m∑

q=1

‖vq‖
2
Q ≤ 2n(B + B1)

n∑
p=1

‖up‖
2
Q +

m∑
q=1

(C∗q)2 + 2D1
√

n

√√ n∑
p=1

‖up‖
2
Q, (3.15)

where C∗q = A∗ + ‖Jp‖Q +
n∑

p=1
[‖bqp‖Q + ‖dqp‖Q]‖Gp(0)‖Q,D1 = max

1≤p≤n
{

m∑
q=1

C∗q[‖bqp‖Q + ‖dqp‖Q]Lp.

Denoting M2
1 =

n∑
p=1
‖up‖

2
Q,M

2
2 =

m∑
q=1
‖vq‖

2
Q, on the basis of (3.14) and (3.15), we have

α2M2
1 ≤ 2m(A + A1)M2

2 +

n∑
p=1

C2
p + 2D

√
mM2 (3.16)

and

γM2
2 ≤ 2n(B + B1)M2

1 +

m∑
q=1

(C∗q)2 + 2D1
√

nM1. (3.17)

Next we consider two possible cases: (1) M2 ≤ M1; (2) M2 > M1.

(1) When M2 ≤ M1, (3.16) implies

[α2 − 2m(A + A1)]M2
1 −

n∑
p=1

C2
p − 2D

√
mM1 ≤ 0.
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As a result,

M2 ≤ M1

≤

D
√

m +

√
D2m + [α2 − 2m(A + A1)]

n∑
p=1

c2
p

α2 − 2m(A + A1)
= d1.

Then

‖(u, v)‖Qn =

√√ n∑
p=1

u∗pup +

m∑
q=1

v∗qvq

≤

√
d2

1 + d2
1

=
√

2d1.

This contradicts the choice of r in (3.11).
(2) When M2 > M1, (3.17) implies

(γ − 2nB)M2
2 − 2mC2

1 − 4C1D1
√

nM2 ≤ 0.

As a result,

M1 ≤ M2

≤

D1
√

n +

√
D2

1n + [2γ − 2n(B + B1)
m∑

q=1
(C∗q)2

γ2 − 2n(B + B1)
= d2.

Then

‖(u, v)‖Qn =

√√ n∑
p=1

u∗pup +

m∑
q=1

v∗qvq

≤

√
d2

2 + d2
2

=
√

2d2.

This contradicts the choice of r in (3.11).
By the discussions of (1) and (2), we have

lim
‖(u,v)‖Qn→∞

‖H(u, v)‖Qn = ∞.

Thus (b) in Lemma 2.2 is fulfilled. By Lemma 2.2, system (1.1) has a unique equilibrium point.
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4. Asymptotic stability of equilibrium point

Theorem 4.1. Assume that (D1) holds. Further assume that τ′(t) ≤ τ+ < 1, σ′(t) ≤ σ+ < 1. Then
system (1.1) has a unique equilibrium point which is globally asymptotically stable if the following
conditions hold:
(D6)

2α > 1 + 2mA +
2mA1

1 − τ+
, α , 1,

(D7)

2γ > 1 + 2nB +
2nB1

1 − σ+
, γ , 1.

Proof. Since 0 < 1 − τ+ < 1, then 2mA1
1−τ+ > 2mA1. Thus by (3.4), we obtain 2α > 1 + 2m(A + A1).

Consequently (D2) holds. Similarly, by (3.5), we can prove (D3) holds. By Theorem 3.1, system (1.1)
has a unique equilibrium point, say, (u+, v+) = (u+1 , u

+
2 , · · · , u

+
n , v
+
1 , v
+
2 , · · · , v

+
m). Let

(u(t), v(t)) = (u1(t), u2(t), · · · , un(t), v1(t), v2(t), · · · , vm(t)) be a arbitrary solution of system (1.1).
Construct two Lyapunov functions as follows:

K1(t) =
n∑

p=1

[up(t) − u+p]∗[up(t) − u+p],

K2(t) =
m∑

q=1

[vq(t) − v+q ]∗[vq(t) − v+q ].

By system (1.1), we have

K′1(t) =
n∑

p=1

(
([up(t) − u+p]∗)′[up(t) − u+p] + [up(t) − u+p]∗[up(t) − u+p]′

)
=

n∑
p=1

{[
− αp[up(t) − u+p]∗ +

m∑
q=1

a∗pq[Fq(vq(t)) − Fq(v+q )]∗ +
m∑

q=1

c∗pq[Fq(vq(t − τ(t))) −

Fq(v+q )]∗
]
[up(t) − u+p] + [up(t) − u+p]∗

[
− αp[up(t) − u+p] +

m∑
q=1

apq[Fq(vq(t)) − Fq(v+q )] +

n∑
q=1

cpq[Fq(vq(t − τ(t))) − Fq(v+q )]
]}
. (4.1)

By employing Lemma 2.1 and (D1), it follows that

[up(t) − u+p]∗
( m∑

q=1

apq[Fq(vq(t)) − Fq(v+q )] +
n∑

q=1

cpq[Fq(vq(t − τ(t))) − Fq(v+q )]
)
+

m∑
q=1

a∗pq[Fq(vq(t)) − Fq(v+q )]∗ +
m∑

q=1

c∗pq[Fq(vq(t − τ(t))) − Fq(v+q )]∗
]
[up(t) − u+p]

≤ [up(t) − u+p]∗[up(t) − u+p] +
( m∑

q=1

apq[Fq(vq(t)) − Fq(v+q )] +
m∑

q=1

cpq[Fq(vq(t − τ(t))) −
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Fq(v+q )]
)∗( m∑

q=1

apq[Fq(vq(t)) − Fq(v+q )] +
m∑

q=1

cpq[Fq(vq(t − τ(t))) − Fq(v+q )]
)

= ‖up(t) − u+p‖
2
Q +

∥∥∥∥ m∑
q=1

apq[Fq(vq(t)) − Fq(v+q )] +
m∑

q=1

cpq[Fq(vq(t − τ(t))) − Fq(v+q )]
∥∥∥∥2

Q

≤ ‖up(t) − u+p‖
2
Q +

[ m∑
q=1

‖apq‖QLq‖vq(t) − v+q ‖Q +
m∑

q=1

‖cpq‖QLq‖vq(t − τ(t)) − v+q ‖Q
]2

≤ ‖up − u+p‖
2
Q + m

m∑
q=1

L2
q

(
‖apq‖Q‖vq(t) − v+q ‖Q + ‖cpq‖Q‖vq(t − τ(t)) − v+q ‖Q

)2

≤ ‖up − u+p‖
2
Q + 2m

m∑
q=1

L2
q

[
‖apq‖

2
Q‖vq(t) − v+q ‖

2
Q + ‖cpq‖

2
Q‖vq(t − τ(t)) − v+q ‖

2
Q

]
. (4.2)

Substituting (4.2) into (4.1) gives

K′1(t)

≤

n∑
p=1

{
(1 − 2αp)‖up(t) − u+p‖Q + 2m

m∑
q=1

L2
q

[
‖apq‖

2
Q|vq(t) − v+q ‖Q + ‖cpq‖

2
Q‖vq(t − τ(t)) − v+q ‖

2
Q

]}
≤ (1 − 2α)K1(t) + 2mAK2(t) + 2mA1K2(t − τ(t)). (4.3)

Similarly, we can get

K′2(t) ≤ (1 − 2γ)K2(t) + 2nBK1(t) + 2nB1K1(t − σ(t)). (4.4)

Because (u1(t), u2(t), · · · , un(t), v1(t), v2(t), · · · , vm(t)) is a solution of system (3.3) with initial values,
according to the uniqueness and existence theorem of solutions of differential equations, the solution of

system (3.3) which satisfies the initial conditions exists and is unique. Consequently, K1(t) =
n∑

p=1
[vp(t)−

v+p]∗[vp(t) − v+p] and K2(t) =
m∑

q=1
[vq(t) − v+q ][vq(t) − vq(t)] converge to one point.

Discuss two possible cases: (1) K2(t) ≤ K1(t); (2) K2(t) > K1(t).
(1) When K2(t) ≤ K1(t), from (4.3), we have

K′1(t) ≤ (1 − 2α)K1(t) + 2mAK1(t) + 2mA1K1(t − τ(t)). (4.5)

Define V1(t) = K1(t) + 2mA1
1−τ+

∫ t

t−τ(t)
K1(s)ds, then in view of (4.5), it follows that

V ′1(t) = K′1(t) + 2mA1

[ K1(t)
1 − τ+

−
1 − τ′(t)
1 − τ+

K1(t − τ(t)
]

≤
(
1 − 2α + 2mA +

2mA1

1 − τ+
)
K1(t)

≤ 0. (4.6)

(2) When K2(t) > K1(t), from (4.4), we have

K′2(t) ≤ (1 − 2γ)K2(t) + 2nBK2(t) + 2nB1K2(t − σ(t)). (4.7)

AIMS Mathematics Volume 7, Issue 5, 8206–8223.



8218

Define V2(t) = K2(t) + 2nB1
1−σ+

∫ t

t−σ(t)
K2(s)ds, then in view of (4.7), it follows that

V ′2(t) = K′2(t) + 2nB1

[ K2(t)
1 − σ+

−
1 − σ′(t)
1 − σ+

K2(t − σ(t)
]

≤
(
1 − 2γ + 2nB +

2nB1

1 − σ+
)
K2(t)

≤ 0. (4.8)

From the discussions of (1) and (2), namely from (4.6) and (4.8), it follows that system has a
unique equilibrium point which is globally asymptotically stable.
Claim2. So far, in many papers which studied the existence and uniqueness of equilibrium point of
neural networks, the results have been gained mainly employing Homeomorphism theorem and
applying [H(x) − H(x)]T M[H(x) − H(x)] > 0(< 0)(M is a positive or negative constant, M can be a
positive or negative definite matrix). In our paper, we employ Homeomorphism theorem, but without
applying [H(x) − H(x)]T M[H(x) − H(x)] > 0(< 0), we apply a contradictory method to discuss the
equilibrium point. Namely, the method of proving the existence of equilibrium point for
quaternion-valued neural networks is different from those in the existing papers [6–8,24–26,29].
Claim3. In many papers [4–15,19,21–30] which investigated the global exponential/asymptotic
stability of equilibrium point for neural networks, a Lyapunov functional is constructed to obtain the
sufficient conditions of global asymptotic/exponential stability for neural networks, while in our
paper, two Lyapunov functionals respectively are constructed to reach the sufficient condition on
global asymptotic stability of equilibrium point for neural networks.
Claim4. Even if when the quaternion-valued BAM neural networks discussed by us degenerate into
real-valued neural networks [4–14,24–26] and complex-valued neural networks [28,29], the results
and study method in our paper are also completely new.
Claim5. The study approach in our paper can be applied to dealing with the global
asymptotic/exponential stability for the real-valued BAM neural networks, complex-valved neural
networks and Octonion-valued neural networks.
Claim6. The inequality techniques used in our are different from those used in [30–33].

5. An example

Example 5.1. We discuss the following quaternion BAM neural networks with time-varying delays
for n = 2,m = 2, p = q = 1, 2,

u′p(t) = −αpup(t) +
m∑

q=1

apqFq(vq(t)) +
m∑

q=1

cpqFq(vq(t − τ(t)) + Ip,

v′q(t) = −γqvq(t) +
n∑

p=1

bqpGp(up(t))] +
n∑

p=1

dqpGp(up(t − σ(t)) + Jq, (5.1)

where a11 = a21 = 0.5 + i − 0.6 j + 0.2k, a12 = a22 = 0.3 − 0.1i + j − 0.4k, b11 = b21 = 0.7 + 0.6i +
0.9 j− 0.3k, b12 = b22 = 0.3+ 0.4i− 0.6 j+ 0.8k, c11 = c21 = 0.1− 0.2i− 0.3 j+ 0.4k, c12 = c22 =

0.2−0.5i+0.7 j−01k, d11 = d21 = −0.4−0.5i+0.6 j−0.3k, d12 = d22 = 0.3+0.4i−0.6 j+0.8k, Ip =

1 + 2i + 3 j + 4k, Jp = 0.4 + 06i + 0.8 j + k, F1(u) = F2(u) = 1
5 |u

R| + i1
6 |u

I | + j1
7 |u

J | + k 3
8 |u

K |,G1(u) =
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G2(u) = −1
3 |u

R| + i3
4 |u

I | + j1
5 |u

J | + k 2
7 |u

K |, τ(t) = 1 + 0.5 sin t, σ(t) = 1 + 0.3 cos t. Consequently, in
Theorem 4.1, τ+ = 0.5, σ+ = 0.5, Lq =

3
8 , Lp =

3
4 , α1 = 3, α2 = 5, γ1 = 10, γ2 = 9. It is easy to know

A = 0.4640, A1 = 0.2222, B = 1.9688, B1 = 0.9675, α = 3, γ = 9. It is easy to verify that (D1) − (D7)
are all satisfied with these parameters.

Through using the Matlab software, the curves of variables are abstracted in the following figures.
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Figures 1–4 show that the neuron states’curves of quaternion-valued neural networks:

up(t) = up(t)R − up(t)Ii − up(t) j j − up(t)Kk ∈ Q,

vq(t) = vq(t)R − vq(t)Ii − vq(t) j j − vq(t)Kk ∈ Q.

It can be seen from the Figures 1–4 that each component solution tends to be globally asymptotically
stable after a fixed point with the change of time T ,which point that the curves of the components
behind become horizontal, meaning the components’ derivatives is 0, so this fixed point is the only
equilibrium point. It is a clear argument that the assumptions are all met with our conditions. As a
result, under the all assumptions in Theorems 3.1 and 4.1, the system has a unique equilibrium solution
which can be globally asymptotically stable.

6. Conclusion

Since the quaternion-valued BAM neural networks have the behaviors of the real-valued BAM
neural networks and complex-valued BAM neural networks, then the study of the global asymptotic
stability for a class of quaternion-valued BAM neural networks is of definite meaning in theory. In
this paper, we explore the existence and stability of the equilibrium point for a class of
quaternion-valued BAM neural networks with time-varying delays. By non-decomposing the system
into eight real-valued systems and by applying a contradictory method and constructing two
Lyapunov functionals, novel sufficient conditions to ensure the existence and stability of equilibrium
point of above networks are gained. Contradictory method and constructing two Lyapunov
functionals are completely novel study approach of global asymptotic stability. In the near future, we
will study the finite-time synchronization of quaternion-valued neural networks.

Acknowledgments

The work was supported by the Science and Technology Research Project of the Education
Department of Hebei Province (No. QN2021009).

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

AIMS Mathematics Volume 7, Issue 5, 8206–8223.



8221

References

1. Y. K. Li, J. L. Qin, B. Li, Anti-periodic solutions for quaternion-valued high-order Hopfield
neural networks with time-varying delays, Neural Process. Lett., 49 (2019), 1217–1237.
https://doi.org/10.1007/s11063-018-9867-8

2. N. N. Huo, B. Li, Y. K. Li, Existence and exponential stability of anti-periodic solutions for inertial
quaternion-valued high-order Hopfield neural networks with state-dependent delays, IEEE Access,
7 (2019), 60010–60019. https://doi.org/10.1109/ACCESS.2019.2915935

3. Q. K. Song, X. F. Chen, Multistability analysis of quaternion-valued neural
networks with time delays, IEEE T. Neur. Net. Lear., 29 (2018), 5430–5440.
https://doi.org/10.1109/TNNLS.2018.2801297

4. X. F. Chen, Q. K. Song, Z. S. Li, Z. J. Zhao, Y. R. Liu, Stability analysis of continuous-time and
discrete-time quaternion-valued neural networks with linear threshold neurons, IEEE T. Neur. Net.
Lear., 29 (2018), 2769–2781. https://doi.org/10.1109/TNNLS.2017.2704286

5. X. F. Chen, Z. S. Li, Q. K. Song, J. Hu, Y. S. Tan, Robust stability analysis of quaternion-valued
neural networks with time delays and parameter uncertainties, Neural Networks, 91 (2017), 55–65.
https://doi.org/10.1016/j.neunet.2017.04.006

6. R. X. Li, X. B. Gao, J. D. Cao, K. Zhang, Stability analysis of quaternion-valued Cohen-
Grossberg-Grossberg neural networks, Math. Method. Appl. Sci., 42 (2019), 3721–3738.
https://doi.org/10.1002/mma.5607

7. X. J. Yang, C. D. Li, Q. K. Song, J. Y. Chen, J. J. Huang, Global mittag-leffler
stability and synchronization analysis of fractional-order quaternion-valued neural
networks with linear threshold neurons, Neural Networks, 105 (2018), 88–103.
https://doi.org/10.1016/j.neunet.2018.04.015

8. Y. K. Li, J. L. Qin, B. Li, Periodic solutions for quaternion-valued fuzzy cellular neural networks
with time-varying delays, Adv. Differ. Equ., 2019 (2019), 63. https://doi.org/10.1186/s13662-019-
2008-5

9. J. W. Zhu, J. T. Sun, Stability of quaternion-valued neural networks with mixed delay, Neural
Process Lett., 49 (2019), 819–833. https://doi.org/10.1007/s11063-018-9849-x

10. Y. K. Li, J. L. Qin, Existence and global exponential stability of periodic solutions for quaternion-
valued cellular neural networks with time-varying delays, Neurocomputing, 292 (2018), 91–103.
https://doi.org/10.1016/j.neucom.2018.02.077

11. X. X. You, Q. K. Song, J. Liang, Y. R. Liu, F. E. Alsaadi, Global µ-stability of quaternion-
valued neural networks with mixed time-varying delays, Neurocomputing, 290 (2018), 12–25.
https://doi.org/10.1016/j.neucom.2018.02.030

12. X. W. Liu, Z. G. Li, Global µ-stability of quaternion-valued neural networks with unbounded
and asynchronous time-varying delays, IEEE Access, 7 (2019), 9128–9141. https://doi.org/
10.1109/ACCESS.2019.2891721

13. Z. W. Tu, Y. X. Zhao, N. Ding, Y. M. Teng, W. Zhang, Stability analysis of quaternion-valued
neural networks with both discrete and distributed delays, Appl. Math. Comput., 343 (2019), 342–
353. https://doi.org/10.1016/j.amc.2018.09.049

AIMS Mathematics Volume 7, Issue 5, 8206–8223.

http://dx.doi.org/https://doi.org/10.1007/s11063-018-9867-8
http://dx.doi.org/https://doi.org/10.1109/ACCESS.2019.2915935
http://dx.doi.org/https://doi.org/10.1109/TNNLS.2018.2801297
http://dx.doi.org/https://doi.org/10.1109/TNNLS.2017.2704286
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2017.04.006
http://dx.doi.org/https://doi.org/10.1002/mma.5607
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2018.04.015
http://dx.doi.org/https://doi.org/10.1186/s13662-019-2008-5
http://dx.doi.org/https://doi.org/10.1186/s13662-019-2008-5
http://dx.doi.org/https://doi.org/10.1007/s11063-018-9849-x
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2018.02.077
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2018.02.030
http://dx.doi.org/https://doi.org/ 10.1109/ACCESS.2019.2891721
http://dx.doi.org/https://doi.org/ 10.1109/ACCESS.2019.2891721
http://dx.doi.org/https://doi.org/10.1016/j.amc.2018.09.049


8222

14. M. C. Tan, Y. F. Liu, D. S. Xu, Multistability analysis of delayeed quaternion-valued neural
networks with nonmonotonic piecewise nonlinear activation functions, Appl. Math. Comput., 341
(2019), 229–255. https://doi.org/10.1016/j.amc.2018.08.033

15. R. Y. Wei, J. D. Cao, Fixed-time synchronization of quaternion-valued memristive
neural networks with time delays, Neural Networks, 113 (2019), 1–10.
https://doi.org/10.1016/j.neunet.2019.01.014

16. S. P. Shen, B. Li, Y. K. Li, Anti-periodic dynamics of quaternion-valued fuzzy cellular neural
networks with time-varying delays on time scales, Discrete Dyn. Nat. Soc., 2018 (2018), 5290786.
https://doi.org/10.1155/2018/5290786

17. C. A. Popa, E. Kaslik, Multistability and muitiperiodicity in impulsive hybird quaternion-
valued neural networks with mixed delays, Neural Networks, 99 (2018), 1–18.
https://doi.org/10.1016/j.neunet.2017.12.006

18. R. Y. Wei, J. D. Cao, Synchronization control of quaternion-valued menristive neural
networks with and without event-triggered scheme, Cogn. Neyrodyn., 13 (2019), 489–502.
https://doi.org/10.1007/s11571-019-09545-w

19. H. Q. Shen, Q. K. Song, J. Liang, Z. J. Zhao, Y. R. Liu, F. E. Alsaadi, Glibal exponential stability in
lagrange sense for quaternion-valued neural networks with leakage delay and mixed time-varying
delays, Int. J. Syst. Sci., 50 (2019), 858–870. https://doi.org/10.1080/00207721.2019.1586001

20. D. H. Li, Z. Q. Zhang, X. L. Zhang, Periodic solutions of discrete-time Quaternion-
valued BAM neural networks, Chaos Soliton. Fract., 138 (2020), 110144.
https://doi.org/10.1016/j.chaos.2020.110144

21. Q. K. Song, L. Y. Long, Z. J. Zhao, Y. R. Liu, F. E. Alsaadi, Stability criteria of
quaternion-valued neutral-type delayed neural networks, Neurocomputing, 412 (2020), 287–294.
https://doi.org/10.1016/j.neucom.2020.06.086

22. H. M. Wang, J. Tan, S. P. Wen, Exponential stability analysis of mixed delayed quaternion-
valued neural networks via decomposed approach, IEEE Access, 8 (2020), 91501–91509.
https://doi.org/10.1109/ACCESS.2020.2994554

23. U. Humphries, G. Rajchakit, P. Kaewmesri, P. Chanthorn, R. Sriraman, R. Samidurai, et al., Global
stability analysis of fractional-order quaternion-valued bidirectional associative memory neural
networks, Mathematics, 8 (2020), 801.https://doi.org/10.3390/math8050801

24. Z. Q. Zhang, W. B. Liu, D. M. Zhou, Global asymptotic stability to a generalized Cohen-
Grossberg BAM neural networks of neutral type delays, Neural Networks, 25 (2012), 94–105.
https://doi.org/10.1016/j.neunet.2011.07.006

25. Z. Q. Zhang, J. D. Cao, D. M. Zhou, Novel LMI-based conditioon on global asymptotic stability
for a class of Cohen-Grossberg BAM networks with extended activation functions, IEEE T. Neur.
Net. Lear., 25 (2014), 1161–1172. https://doi.org/10.1109/TNNLS.2013.2289855

26. W. L. Peng, Q. X. Wu, Z. Q. Zhang, LMI-based global exponential stability of equilibrium point for
neutral delayed BAM neural networks with delays in leakage terms via new inequality technique,
Neurocomputing, 199 (2016), 103–113. https://doi.org/10.1016/j.neucom.2016.03.030

27. H. L. Li, X. B. Gao, R. X. Li, Exponential stability and sampled-data synchronization of

AIMS Mathematics Volume 7, Issue 5, 8206–8223.

http://dx.doi.org/https://doi.org/10.1016/j.amc.2018.08.033
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2019.01.014
http://dx.doi.org/https://doi.org/10.1155/2018/5290786
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2017.12.006
http://dx.doi.org/https://doi.org/10.1007/s11571-019-09545-w
http://dx.doi.org/https://doi.org/10.1080/00207721.2019.1586001
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2020.110144
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2020.06.086
http://dx.doi.org/https://doi.org/10.1109/ACCESS.2020.2994554
http://dx.doi.org/https://doi.org/10.3390/math8050801
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2011.07.006
http://dx.doi.org/https://doi.org/10.1109/TNNLS.2013.2289855
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2016.03.030


8223

delayed complex-valued memristive neural networks, Neural Process. Lett., 51 (2020), 193–209.
https://doi.org/10.1007/s11063-019-10082-0

28. Z. Q. Zhang, S. H. Yu, Global asymptotic stability for a class of complex-valued Cohen-
Grossberg neural networks with time delays, Neurocomputing, 171 (2016), 1158–1166.
https://doi.org/10.1016/j.neucom.2015.07.051

29. Z. Q. Zhang, D. L. Hao, D. M. Zhou, Global asymptotic stability by complex-valued inequalities
for complex-valued neural networks with delays on periodic time scales, Neurocomputing, 219
(2017), 494–501. https://doi.org/10.1016/j.neucom.2016.09.055

30. C. J. Xu, M. X. Liao, P. L. Li, Z. X. Liu, S. Yuan, New results on pseudo almost periodic solutions
of quaternion-valued fuzzy cellular neural networks with delays, Fuzzy Set. Syst., 411 (2021), 25–
47. https://doi.org/10.1016/j.fss.2020.03.016

31. C. J. Xu, Z. X. Liu, M. X. Liao, P. L. Li, Q. M. Xiao, S. Yuan, Fractional-order bidirectional
associate memory (BAM) neural networks with multiple delays: The case of Hopf bifurcation,
Math. Comput. Simulat., 182 (2021), 471–494. https://doi.org/10.1016/j.matcom.2020.11.023

32. C. J. Xu, Z. X. Liu, L. Y. Yao, C. Aouit, Further exploration on bifurcation of fractional-
order sixneuron bidirectional associative memory neural networks with multi-delays, Appl. Math.
Comput., 410 (2021), 126458. https://doi.org/10.1016/j.amc.2021.126458

33. C. J. Xu, M. X. Liao, P. L. Li, Y. Guo, Q. M. Xiao, S. Yuan, Influence of multiple time delays
on bifurcation of fractional-order neural networks, Appl. Math. Comput., 361 (2019), 565–582.
https://doi.org/10.1016/j.amc.2019.05.057

34. R. Zhao, B. X. Wang, J. G. Jian, Lagrange stability of BAM quaternion-valued inertial
neural networks via auxiliary function-based integral inequalities, Neural Process. Lett., 2022.
https://doi.org/10.1007/s11063-021-10685-6

35. J. Liu, J. G. Jian, B. X. Wang, Stability analysis for quaternion-valued BAM inertial neural
networks with time delay via nonlinear measure approach, Math. Comput. Simulat., 174 (2020),
134–152. https://doi.org/10.1016/j.matcom.2020.03.002

36. C. J. Xu, M. X. Liao, P. L. Li, Y. Guo, Z. X. Liu, Bifurcation properties for fractional order delayed
BAM neural networks, Cogn. Comput., 13 (2021), 322–356. https://doi.org/10.1007/s12559-020-
09782-w

37. C. J. Xu, W. Zhang, C. Aouit, Z. X. Liu, M. X. Liao, P. L. Li, Further investigation
on bifurcation and their control of fractional-order bidirectional associative memory neural
networks involving four neurons and multiple delays, Math. Method. Appl. Sci., 2021.
https://doi.org/10.1002/mma.7581

38. C. J. Xu, M. X. Liao, P. L. Li, S. Yuan, Impact of leakage delay on bifurcation in
fractional-order complex-valued neural networks, Chaos Soliton. Fract., 142 (2021), 110535.
https://doi.org/10.1016/j.chaos.2020.110535

c© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 7, Issue 5, 8206–8223.

http://dx.doi.org/https://doi.org/10.1007/s11063-019-10082-0
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2015.07.051
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2016.09.055
http://dx.doi.org/https://doi.org/10.1016/j.fss.2020.03.016
http://dx.doi.org/https://doi.org/10.1016/j.matcom.2020.11.023
http://dx.doi.org/https://doi.org/10.1016/j.amc.2021.126458
http://dx.doi.org/https://doi.org/10.1016/j.amc.2019.05.057
http://dx.doi.org/https://doi.org/10.1007/s11063-021-10685-6
http://dx.doi.org/https://doi.org/10.1016/j.matcom.2020.03.002
http://dx.doi.org/https://doi.org/10.1007/s12559-020-09782-w
http://dx.doi.org/https://doi.org/10.1007/s12559-020-09782-w
http://dx.doi.org/https://doi.org/10.1002/mma.7581
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2020.110535
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminary
	Existence of equilibrium point
	Asymptotic stability of equilibrium point 
	 An example
	Conclusion

