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1. Introduction

The almost contractions form a class of generalized contractions that includes several contractive
type mappings like usual contractions, Kannan mappings, Zamfirescu mappings, etc. Since any usual
contraction is continuous, while a Kannan mapping is not generally continuous but is continuous at the
fixed point. The almost (multivalued) contractions are not continuous. However, the almost contraction
is continuous at its fixed point(s) (see [6, 18] for details). This work has been extended to generalized
multivalued almost contractions in b-metric spaces [12].The b-metric space was formally introduced
by Czerwick [7]. Every metric is a b-metric, but converse is not true. The fixed point theorems in the
b- metric spaces have been established by many authors (see [1, 2, 4, 13, 22] and references therein).

On the other hand, Matthews [14] introduced the notion of the partial metric space as a part of
study of denotational semantics of data flow network. Every metric is a partial metric, but converse is
not true. Matthews also initiated the fixed point theory in the partial metric space. He proved Banach
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contraction principle in this space to be applied in program verification. We can find so many fixed-
point theorems in the partial metric spaces by many fixed-point theorists (see [17] and references there
in). Shukla [23] extended the concept of partial metric to partial b-metric and investigated fixed points
of Banach contraction and Kannan contraction in the partial b-metric spaces. Mustafa [16] modified
the triangle property of partial b-metric and established convergence criterion and some working rules
in partial b- metric spaces. Diana Dolicanin-Dekic [8], obtained the fixed-point theorems for Ciric type
contractions in the partial b-metric spaces.

Nadler [20] extended the contraction rule to the multivalued mappings and find fixed points of such
mappings. Rhoades [11], Feng and Liu [10], Altun et al. [3] and Miculescu et al. [15] added more
fixed point theorems for multivalued mappings. Recently, Ameer et al. [4] presented some fixed-point
results in the Hausdorff partial b-metric spaces. However, many supporting results are yet to prove.
In this paper, we prove all the supporting results in the Hausdorff partial b-metric spaces and hence
prove some fixed-point theorems which state some conditions for the existence of fixed points of the
multivalued almost contractions. The examples and an application are presented to support this theory.

2. Preliminaries

Definition 2.1. [22] Let X , φ and s ≥ 1. A mapping pb : X×X → R+ is referred as a partial b-metric
if for all x, y, ť ∈ X, pb satisfies the following conditions:

(i) pb(x, x) = pb(x, y) = pb(y, y)⇔ x = y.
(ii) pb(x, y) ≤ s[pb(x, ť) + pb(ť, y)] − pb(ť, ť).

(iii) pb(x, y) = pb(y, x).
(iv) pb(x, x) ≤ pb(x, y).

The pair (X, pb) is called a partial b-metric space.

Each partial b-metric pb on X induces a T0 topology τ(pb) on X which has as a base the family of
open balls {Bpb(x0, ε) : x0 ∈ X, ε > 0}, where Bpb(x0, ε) = {y ∈ X : pb(x0, y) < pb(x0, x0) + ε} for some
x0 ∈ X and ε > 0. Also B(x0, r) = {y ∈ X : pb(x0, y) ≤ pb(x0, x0) + ε} is a closed ball in (X, pb).

It is clear that pb(x, y) = 0 implies x = y by (P1) and (P2). But if x = y, then pb(x, y) may not be
0. A basic example of a partial b-metric space is the pair (R+

0 , pb), where pb(x, y) = (max{x, y})2 for all
x, y ∈ R+

0 .

Remark 2.2. Every partial b-metric space is a generalization of the partial metric space and the b-
metric space. However, converse is not true in general.

Example 2.3. Let X = [0,∞) and k > 1. Define pb : X × X → [0,∞) by

pb(x, y) = {(x ∨ y)k + |x − y|k}

for x, y ∈ X is a partial b-metric on X with s = 2k.

Also note that pb(x, x) = xk , 0. Thus pb is not a b-metric on X.
Now let x, y and ť ∈ X such that x > ť > y.
Then

(x − y)k > (x − ť)k + (ť − y)k.
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pb(x, y) = xk + (x − y)k

pb(x, ť) + pb(ť, y) − pb(ť, ť) = xk + (x − ť)k + (ť − y)k.

pb(x, y) > pb(x, ť) + pb(ť, y) − pb(ť, ť).

Hence, pb is not a partial metric on X.

Definition 2.4. [19] Let (X, pb) be a partial b-metric space and {xn} be a sequence in X and x ∈ X.
Then

(i) {xn} is said to be convergent to x if lim
n→∞

pb(xn, x) = pb(x, x).
(ii) {xn} is said to be Cauchy sequence if lim

p,q→∞
pb(xn, xm) exists and is finite.

Let (X, pb) be a partial b-metric space. The function b : X × X → [0,∞) defined by

b(x, ú) = 2pb(x, ú) − pb(x, x) − pb(ú, ú),∀x, ú ∈ X, (2.1)

satisfies all axioms of the b-metric. The pair (X, b) is a b-metric space. It is called an associated
b-metric space.

Another associated b-metric is defined as follows:
Let (X, pb) be a partial b-metric space and the mapping b : X × X → [0,∞) be defined by

b(x, y) =

{
pb(x, y), x , y
0, x = y

for x, y ∈ X. Then b is a b-metric associated with pb.
The following theorem states the convergence in both b-metric space and partial b-metric space.

Theorem 2.5. Let (X, pb) be a partial b-metric space. Define b : X × X → [0,∞) by

b(x, y) =

{
pb(x, y), x , y
0, x = y

for x, y ∈ X. If lim
n→∞

xn = x in (X, b), then lim
n→∞

xn = x in (X, pb).

Proof. Let xn = x for some n, then lim
n→∞

pb(xn, x) = pb(x, x). This proves that lim
n→∞

xn = x in (X, pb). So we
may assume that xn , x for all n ∈ N. Then b(xn, x) = pb(xn, x) for all n ∈ N. Since, lim

n→∞
xn = x in (X, b),

we have lim
n→∞

b(xn, x) = 0. Therefore, lim
n→∞

b(xn, x) = lim
n→∞

pb(xn, x) = 0. Note that 0 ≤ pb(x, x) ≤ pb(xn, x)
for n ∈ N, then 0 ≤ pb(x, x) ≤ pb(xn, x) = 0. This proves lim

n→∞
pb(xn, x) = 0 = pb(x, x), that is, lim

n→∞
xn = x

in (X, pb). �

Converse of the above theorem is not true, in general. The following example explains this fact.

Example 2.6. Let X = [0, 1] and pb(x, y) = |x − y|5 + c for x, y ∈ X and c ≥ 1. Then (X, pb) is a partial
b-metric space with s = 16. Note that for a sequence

{
1
n

}∞
n=1

in X,
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lim
n→∞

pb

(
1
n
, 0

)
= lim

n→∞

[∣∣∣∣∣1n − 0
∣∣∣∣∣5 + c

]
= c = pb(0, 0).

This prove that lim
n→∞

1
n = 0 in the partial b-metric space (X, pb). However,

lim
n→∞

b
(
1
n
, 0

)
= lim

n→∞

[∣∣∣∣∣1n − 0
∣∣∣∣∣5 + c

]
= c , 0.

This proves that the sequence
{

1
n

}∞
n=1

does not converge in the associated b-metric space (X, b).
The following Lemma relates the properties of the sequences in (X, pb) and (X, b).

Lemma 2.7. [16]

(1) A sequence {xn} is a Cauchy sequence in (X, pb) if and only if it is a Cauchy sequence in b-metric
space (X, b).

(2) (X, pb) is complete if and only if (X, b) is complete.
(3) A sequence {xn}n∈N converges to a point x ∈ X in (X, b) if and only if

lim
n→∞

pb(x, xn) = pb(x, x) = lim
n,m→∞

pb(xn, xm).

The following lemmas state the conditions for a sequence to be Cauchy-sequence in the partial
b-metric spaces.

Lemma 2.8. Let (X, pb, s) be a partial b-metric space and the function
g : {1, 2, 3, · · · } → {0, 1, 2, 3, · · · } be defined by g(n) = −[− log2 n] for all n ∈ {1, 2, 3, · · · }. Then for
(x0, x1, · · · , xn) ∈ Xn+1, the following inequality holds.

pb(x0,xn) < sg(n)
n−1∑
i=0

pb(xi, xi+1).

Proof. We observed that 2g(n)−1 < n ≤ 2g(n) for all n ∈ {1, 2, 3, · · · }. Let

p(n) := pb(x0,xn) < sg(n)
n−1∑
i=0

pb(xi, xi+1).

For p(1) we have pb(x0,xn) ≤ sg(1)
n−1∑
i=0

pb(xi , xi+1). Suppose that p(n) holds for n ≤ 2K for some K ∈

{0, 1, 2, 3, · · · }. For all those n lying in 2K < n ≤ 2K+1, we have g(n) = K + 1, g
(
2K

)
= K and

g
(
n − 2K

)
≤ K. By triangle property of the partial b-metric, we have

pb(x0,xn) ≤ spb(x0,x2K ) + spb(x2K , xn) − pb(x2K , x2K )
< spb(x0,x2K ) + spb(x2K ,xn)

< ssg(2K)
2K−1∑
i=0

pb(xi,xi+1) + ssg(n−2K)
n−1∑
i=2K

pb(xi,xi+1)
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≤ sK+1
n−1∑
i=0

pb(xi , xi+1)

= sg(n)
n−1∑
i=0

pb(xi , xi+1).

Thus (by induction), p(n) is true for all n. �

The Lemma 2.8 is useful to obtain the following lemma.

Lemma 2.9. Let (X, pb, s) be a partial b-metric space. If there exists λ ∈ [0, 1) and the sequence
{xn} ⊂ X meets the following condition:

pb(xn+1, xn+2) < λpb(xn, xn+1), for all n ∈ {1, 2, 3, · · · }. (2.2)

Then {xn} is a Cauchy sequence.

Proof. If λ = 0, then, (2.2) holds. Let 0 < λ < 1, and choose a natural number q́ such that sλ2q́
< 1.

By Lemma 2.8, we have

pb(xn,xm) < sg(m−n)
m−1∑
i=n

pb(xi, xi+1), for n < m ≤ n + 2q́

≤ sq́
m−1∑
i=n

λi−1 pb(x1, x2)

≤ sq́
∞∑

i=n

λi−1 pb(x1, x2)

= sq́ λ
n−1

1 − λ
pb(x1, x2).

For m > n + 2q́, the inequality (2.2) also holds. �

Definition 2.10. [20] Let CB(X) be the class of all non-empty, closed and bounded subsets of the
metric space (X, d). For A, E ∈ CB(X), we define

H(A, E) = max
{

sup
γ∈A

d(γ, E), sup
α∈E

d(α, A)
}
,

where, d(x, A) = inf{d(x, a) : a ∈ A} is the distance of a point x to the set A. It is known that H is a
metric on CB(X), called the Hausdorff metric induced by the metric d.

Definition 2.11. [20] Let (X, d) be the metric space. An element x ∈ X is labeled as a fixed point of a
multivalued mapping ψ : X → 2X, if x ∈ ψ(x).

A multivalued mapping ψ : X → CB(X) is called contraction if there exists λ ∈ [0, 1) such that

H(ψ(x), ψ(y)) ≤ λd(x, y)

for each x, y ∈ X. It is known as multivalued contraction.
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3. The properties of the Hausdorff partial b-metric spaces

The concept of Hausdorff metric or Hausdorff distance was first introduced by Hausdorff in his
book Grundzuge der Mengenlehre [21]. The second name of Hausdorff distance is Pompeiu–Hausdorff
distance. The Hausdorff distance has many applications in the computer field. The use of Hausdorff
distance is to find a given template in an arbitrary target image in computer vision. The most important
application of the Hausdorff metric in computer graphics is to measure the difference between two
different representations of the same 3D object specifically when generating the level of detail for
efficient display of complex 3D models.

In this section, we state and prove the supporting properties of the Hausdorff partial b-metric. These
properties are comparable to Proposition 2.2 and proposition 2.3 presented in [5].

Let (X, pb) denote the partial b-metric space and CBpb(X) denote the family of all non-empty
bounded and closed subsets of X with respect to partial b-metric. Note that the closedness is taken
from (X, τpb) and the boundedness is given as follows: A is a bounded subset in (X, pb) if there exists
x0 ∈ X and M ≥ 0 such that for all a ∈ A, we have a ∈ Bpb(x0,M), that is, pb(x0, a) < pb(x0, x0) + M.
The following distance functions are required in the proofs.

(1) Let the mapping fpb : X ×CBpb(X)→ [0,∞) be defined by

fpb(x, A) = inf{pb(x, ú), ú ∈ A}.

(2) Let the mapping gpb : CBpb(X) ×CBpb(X)→ [0,∞) be defined by

gpb(A,D) = sup{ fpb(ú,D) : ú ∈ A} and gpb(D, A) = sup{ fpb(u, A) : u ∈ D}.

(3) Let the mapping Υpb : CBpb(X) ×CBpb(X)→ [0,∞) be defined by

Υpb(A,D) = max{gpb(A,D), gpb(D, A)}, for all A,D ∈ CBpb(X).

Let A be any non-empty set in (X, pb), then, ú ∈ A if and only if fpb(ú, A) = pb(ú, ú) for all ú ∈ A. The
set A denotes the closure of A with respect to partial b-metric space (X, pb). Moreover, A is closed in
(X, pb) if and only if A = A. The following Lemmas have been stated without proofs in [9]. We give
their proofs in detail.

Lemma 3.1. Let (X, pb) be a partial b-metric space. For all A,D, Ĥ ∈ CBpb(X) the following equations
hold:

(i) gpb(A, A) = sup{pb(ú, ú) : ú ∈ A}.
(ii) gpb(A, A) ≤ gpb(A,D).

(iii) gpb(A,D) = 0 implies that A⊆D.
(iv) gpb(A,D) ≤ s[gpb(A, Ĥ) + gpb(Ĥ,D)] − inf

σ∈Ĥ
pb(σ,σ).

Proof. (i). If A ∈ CBpb(X), then for all ú ∈ A, we have fpb(x, A) = pb(x, ú). Therefore

gpb(A, A) = sup{pb(ú, A) : ú ∈ A} = sup{pb(ú, ú) : ú ∈ A}.

(ii). Let ú ∈ A. Since, pb(ú, ú) ≤ pb(ú, b) for all b ∈ D, therefore we have

pb(ú, ú) ≤ fpb(ú,D) ≤ gpb(A,D)
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by (i), we have
gpb(A, A) = sup{pb(ú, ú) : ú ∈ A} ≤ gpb(A,D).

Hence, gpb(A, A) ≤ gpb(A,D).
(iii). Suppose that ú ∈ A and gpb(A,D) = 0, then it implies fpb(ú,D) = 0 for each ú ∈ A. By
(i) and (ii) it follows that pb(ú, ú) ≤ gpb(A,D) = 0. That is pb(ú, ú) = 0 for all ú ∈ A, and hence
pb(ú, ú) = fpb(ú,D) for all ú ∈ A. Since, D is closed, we have ú ∈ D = D and A⊆D.
(iv). Assume that ú ∈ A, κ ∈ D and σ ∈ Ĥ. By triangle property, we have

pb(ú, κ) ≤ s[pb(ú, σ) + pb(σ, κ)] − pb(σ,σ).

Then

inf
κ∈D

pb(ú, κ) ≤ s[inf
κ∈D

pb(ú, σ) + inf
κ∈D

pb(σ, κ)] − inf
κ∈D

pb(σ,σ).

fpb(ú,D) ≤ s
[
pb(ú, σ) + fpb(σ,D)

]
− pb(σ,σ).

fpb(ú,D) + pb(σ,σ) ≤ s[pb(ú, σ) + fpb(σ,D)].

Now

sup
σ∈Ĥ

fpb(ú,D) + sup
σ∈Ĥ

pb(σ,σ) ≤ s[sup
σ∈Ĥ

pb(ú, σ) + sup
σ∈Ĥ

fpb(σ,D)].

fpb(ú,D) + pb(σ,σ) ≤ s[pb(ú, σ) + gpb(Ĥ,D)].

Taking sup with respect to ú, we have

gpb(A,D) ≤ s[gpb(A, Ĥ) + gpb(Ĥ,D)] − inf
σ∈Ĥ

pb(σ,σ).

�

Lemma 3.2. Let (X, pb) be a partial b-metric space. Then, for all A,D, Ĥ ∈ CBpb(X), we have

(i) Υpb(A, A) ≤ Υpb(A,D).
(ii) Υpb(A,D) = Υpb(D, A).

(iii) Υpb(A,D) ≤ s[Υpb(A, Ĥ) + Υpb(Ĥ,D)] − inf
σ∈Ĥ

pb(σ,σ).

Proof. (i). By definition Υpb(A, A) = max{gpb(A, A), gpb(A, A)}, so, that Υpb(A, A) = gpb(A, A) and
Υpb(A,D) = max{gpb(A,D), gpb(D, A)}. By Lemma 3.1, gpb(A, A) ≤ gpb(A,D) so that Υpb(A, A) ≤
Υpb(A,D).
(ii). Obvious.

(iii). Υpb(A,D) = max{gpb(A,D), gpb(D, A)} ≤ max {s[gpb(A, Ĥ) + gpb(Ĥ,D)]
− inf
σ∈Ĥ

pb(σ,σ), s[gpb(Ĥ, A) + gpb(D, Ĥ)] − inf
σ∈Ĥ

pb(σ,σ)}

= max {sgpb(A, Ĥ) + sgpb(Ĥ,D), sgpb(Ĥ, A) + sgpb(D, Ĥ)}− inf
σ∈Ĥ

pb(σ,σ)

= max {sgpb(A, Ĥ) + sgpb(Ĥ, A), sgpb(D, Ĥ) + sgpb(Ĥ,D) }− inf
σ∈Ĥ

pb(σ,σ)
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= s[ max {gpb(A, Ĥ), gpb(Ĥ, A)} + max {gpb(D, Ĥ), gpb(Ĥ,D)}]− inf
σ∈Ĥ

pb(σ,σ)

= s[Υpb(A, Ĥ) + Υpb(Ĥ,D)] − inf
σ∈Ĥ

pb(σ,σ).

�

Corollary 3.3. Let (X, pb) be a partial b metric space. For all A,D, ∈ CBpb(X), the following holds

Υpb(A,D) = 0 ⇐⇒ A = D.

Lemma 3.4. Let (X, pb) be a partial b-metric space and A,D, ∈ CBpb(X). For all x ∈ A, there exists
y = y(x) ∈ D and h > 1 such that

pb(x, y) ≤ hΥpb(A,D).

Proof. Case 1. If A = D, then we have

Υpb(A,D) = Υpb(A, A) = gpb(A,D) = sup
x∈D

pb(x, x).

Let x ∈ A, since h > 1, we have

pb(x, x) ≤ sup
x∈D

pb(x, x) = Υpb(A,D) ≤ hΥpb(A,D).

Case 2. If A , D, and suppose that there exists x ∈ A such that pb(x, y) > Υpb(A,D) for all y ∈ D. This
implies that

inf {pb(x, y) : y ∈ D} ≥ hΥpb(A,D).

Thus,
fpb(x,D) ≥ hΥpb(A,D).

Consider,
Υpb(A,D) ≥ gpb(A,D) = sup

x∈A
pb(x,D) ≥ fpb(x,D) ≥ hΥpb(A,D).

This implies that h ≤ 1, a contradiction. Hence,

pb(x, y) ≤ hΥpb(A,D).

�

The following is the main result on the multivalued almost contractions.

Theorem 3.5. Let (X, pb) be a complete partial b-metric space. Suppose that Ψ : X → CBpb(X) is an
multivalued almost contraction, that is, for all x, y ∈ X, there exist µ, υ ∈ (0, 1) satisfying 2(µ + υ) < 1
and s < υ

µ
+ 2 such that

Υpb(Ψx,Ψy) ≤ µpb(x, y) + υ fpb(y,Ψx). (3.1)

Then Ψ admits a fixed point.
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Proof. Let x0 ∈ X and x1 ∈ Ψ(x0). We construct an iterative sequence {xn} such that xn+1 ∈ Ψ(xn) for
all n ∈ N. By using Lemma 3.4 and taking h = 1

2(µ + υ) , for x1 ∈ Ψ(x0) there exists x2 ∈ Ψ(x1) such that

pb(x1, x2) ≤
1

2(µ + υ)
Υpb(Ψ(x0),Ψ(x1))

≤
1

2(µ + υ)

{
µpb(x0, x1) + υ fpb(x1,Ψ(x0))

}
≤

1
2(µ + υ)

{µpb(x0, x1) + υpb(x1, x1)}

pb(x1, x2) ≤
1

2(µ + υ)
{µpb(x0, x1) + υpb(x1, x2)}

≤
1

2(µ + υ)
{µpb(x0, x1) + υpb(x1, x2)}

=
µ

2(µ + υ)
pb(x0, x1) +

υ

2(µ + υ)
pb(x1, x2).

Then [
1 −

υ

2(µ + υ)

]
pb(x1, x2) ≤

µ

2(µ + υ)
pb(x0, x1)[

2µ + 2υ − υ
2(µ + υ)

]
pb(x1, x2) ≤

µ

2(µ + υ)
pb(x0, x1)[

2µ + υ

2(µ + υ)

]
pb(x1, x2) ≤

µ

2(µ + υ)
pb(x0, x1)

pb(x1, x2) ≤
(

µ

2µ + υ

)
pb(x0, x1). (3.2)

By Lemma 3.4, for x2 ∈ Ψ(x1) there exists x3 ∈ Ψ(x2) such that

pb(x2, x3) ≤
1

2(µ + υ)
Υpb(Ψ(x1),Ψ(x2))

≤
1

2(µ + υ)

{
µpb(x1, x2) + υ f

pb
(x2,Ψ(x1))

}
≤

1
2(µ + υ)

{µpb(x1, x2) + υpb(x2, x2)}

≤
1

2(µ + υ)
{µpb(x1, x2) + υpb(x2, x3)}

=
µ

2(µ + υ)
pb(x1, x2) +

υ

2(µ + υ)
pb(x2, x3).

Thus, [
1 −

υ

2(µ + υ)

]
pb(x2, x3) ≤

µ

2(µ + υ)
pb(x1, x2)[

2µ + 2υ − υ
2(µ + υ)

]
pb(x2, x3) ≤

µ

2(µ + υ)
pb(x1, x2)
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2µ + υ

2(µ + υ)

]
pb(x2, x3) ≤

µ

2(µ + υ)
pb(x1, x2)

pb(x2, x3) ≤
(

µ

2µ + υ

)
pb(x1, x2). (3.3)

By (3.2) and (3.3), we have

pb(x2, x3) ≤
µ

2µ + υ

(
µ

2µ + υ

)
pb(x0, x1).

Thus

pb(x2, x3) ≤
(

µ

2µ + υ

)2

pb(x0, x1).

In general, for xn ∈ Ψ(xn−1) there exists xn+1 ∈ Ψ(xn) such that

pb(xn, xn+1) ≤
(

µ

2µ + υ

)n

pb(x0, x1). (3.4)

To show that {xn} is a Cauchy sequence, we proceed by using triangle property.

pb(xn, xm) ≤ s
[
pb(xn, xn+1) + pb(xn+1, xm)

]
− pb(xn+1, xn+1)

≤ s
[
pb(xn, xn+1) + pb(xn+1, xm)

]
≤ spb(xn, xn+1) + spb(xn+1, xm)
≤ spb(xn, xn+1) + s

[
s {pb(xn+1, xn+2) + pb(xn+2, xm)}

]
− pb(xn+2, xn+2)

≤ spb(xn, xn+1) + s
[
s {pb(xn+1, xn+2) + pb(xn+2, xm)}

]
≤ spb(xn, xn+1) + s2 pb(xn+1, xn+2) + s2 pb(xn+2, xm)
≤ spb(xn, xn+1) + s2 pb(xn+1, xn+2) + s3 pb(xn+2, xn+3) + · · · + sm−n pb(xm−1, xm)

≤ s
(

µ

2µ + υ

)n

pb(x0, x1) + s2
(

µ

2µ + υ

)n +1

pb(x0, x1)

+s3
(

µ

2µ + υ

)n +2

pb(x0, x1) + · · · + sm−n

(
µ

2µ + υ

)m−1

pb(x0, x1)

≤ s
(

µ

2µ + υ

)n 1 +

(
sµ

2µ + υ

)
+

(
sµ

2µ + υ

)2

+ · · ·

 pb(x0, x1)

=
s
(

µ

2µ+υ

)n

1 −
(

sµ
2µ+υ

) pb(x0, x1)→ 0 as n→ ∞ since 0 ≤
sµ

2µ + υ
< 1.

That is
lim

n,m→∞
pb(xm, xn) = 0.

Thus, {xn} is a Cauchy sequence in (X, pb). Since pb(xn, xn) ≤ pb(xm, xn) for all n , m, this implies that

lim
n→∞

pb(xn, xn) = 0.
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By (2.1), lim
n,m→∞

b(xm, xn) = 2 lim
n,m→∞

pb(xm, xn) = 0. Thus, {xn} is a Cauchy sequence in (X, b). The

completeness of (X, pb) implies that of (X, b), so, there exists x∗ ∈ X, such that

lim
n→∞

b(xn, x∗) = 0.

By Lemma 2.7, we have

lim
n,m→∞

pb(xm, xn) = lim
n→∞

pb(xn, x∗) = pb(x∗, x∗). (3.5)

By (3.1) and (3.5), we get

Υpb(Ψ(xn),Ψ(x∗)) ≤ µpb(xn, x∗) + υ fpb(x∗,Ψ(xn)) ≤ µpb(xn, x∗) + υpb(x∗, xn+1).

This implies that lim
n→∞

Υpb(Ψ(xn),Ψ(x∗)) = 0. Now consider,

fpb(xn+1,Ψ(x∗)) ≤ gpb(Ψ(xn),Ψ(x∗)) ≤ Υpb(Ψxn,Ψx∗).
lim
n→∞

pb(xn+1,Ψ(x∗)) ≤ lim
n→∞

gpb(Ψ(xn),Ψ(x∗)) ≤ lim
n→∞

Υpb(Ψ(xn),Ψ(x∗)).

This implies that lim
n→∞

pb(xn+1,Ψ(x∗)) = 0. Also

fpb(x∗,Ψ(x∗)) ≤ s
[
pb(x∗, xn+1) + fpb(xn+1,Ψ(x∗))

]
− pb(xn+1, xn+1)

fpb(x∗,Ψ(x∗)) ≤ s
[
pb(x∗, xn+1) + fpb(xn+1,Ψ(x∗))

]
lim
n→∞

fpb(x∗,Ψ(x∗)) ≤ s
[
lim
n→∞

pb(x∗, xn+1) + lim
n→∞

fpb(xn+1,Ψ(x∗))
]
.

This implies that fpb(x∗,Ψ(x∗)) = 0 = pb(x∗, x∗). Hence,

x∗ ∈ Ψ(x∗) = Ψ(x∗).

�

Corollary 3.6. Let (X, Pb) be a complete partial b-metric space and Ψ : X → CBPb (X) satisfies the
following condition:

H (Ψ(x),Ψ(y)) ≤ µpb (x, y) , for all x, y ∈ X and 0 ≤ µ < 1.

Then Ψ has a fixed point.

Example 3.7. Let X = {0, 1, 4}. Define the function pb : X × X → [0,∞) by

pb(x, y) = (max{x, y})2 + |x − y|2,

for all x, y ∈ X.
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Note that pb(1, 1) = (max{1, 1})2 + |1 − 1|2 = 1 , 0. This implies that pb is not b-metric on X. In
the following, we show that {0} and {0, 1} are bounded and closed sets in (X, pb). Consider,

x ∈ {0} ⇔ pb(x, {0}) = pb(x, x)
⇔

(
max{x, 0})2 + |x − 0|2

)
=

[
(max{x, x})2 + |x − x|2

]
⇔ x2 + x2 = x2 + 02

⇔ 2x2 = x2

⇔ x ∈ {0}.

Therefore the set {0} in respect of the partial b-metric is closed.
Similarly,

x ∈ {0, 1} ⇔ pb(x, {0, 1}) = pb(x, x)
⇔ inf {(max{x, 0})2 + |x − 0|2, (max{x, 1})2 + |x − 1|2} =(max{x, x})2 + |x − x|2)
⇔ inf {x2 + x2, (max{x, 1})2 + |x − 1|2} =x2

⇔ inf {2x2, (max{x, 1})2 + |x − 1|2} =x2

⇔ x ∈ {0, 1}.

Therefore {0, 1} in respect of the partial b-metric is closed.
Now define

Ψ : X → CBpb(X) by Ψ(0) = Ψ(1) = {0} and Ψ(4) = {0, 1}.

We show that for all x, y ∈ X the contractive condition (3.1) is satisfied for µ = 1
5 and υ = 1

5 .

Case 1. If x, y ∈ {0, 1}, then,

Υpb(Ψ(0),Ψ(0)) = Υpb(Ψ(1),Ψ(1)) = Υpb(Ψ(0),Ψ(1)).

Υpb(Ψ(0),Ψ(0)) = Υpb(0, 0) = 0. (3.6)

For x = y = 0, we have

µpb(x, y) + υ fpb(y,Ψ(x)) =
1
5

pb(0, 0) +
1
5

inf
0∈{0}

f
pb

(0,Ψ(0))

=
1
5

pb(0, 0) +
1
5

inf
0∈{0}

pb(0, {0}) = 0.

µpb(x, y) + υ fpb(y,Ψ(x)) = 0. (3.7)

By (3.6) and (3.7), Υpb(Ψ(x),Ψ(y)) ≤ µpb(x, y) + υ fpb(y,Ψ(x)) holds for x, y ∈ {0, 1}.
Case 2. If x ∈ {0, 1} and y = 4

Υpb(Ψ(0),Ψ(4)) = Υpb(Ψ(1),Ψ(4))
= Υpb({0}, {0, 1}) = max{gpb({0}, {0, 1}), gpb({0, 1}, {0}).

Note that
gpb({0}, {0, 1}) = sup{0} = 0 and gpb({0, 1}, {0}) = sup{2, 0} = 2.
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Thus,
Υpb({0}, {0, 1}) = max{0, 2} = 2. (3.8)

For x = 0 and y = 4, we have

µpb(x, y) + υ fpb(y,Ψ(x)) =
1
5

pb(0, 4) +
1
5

fpb(4,Ψ(0))

=
1
5

(32) +
1
5

fpb(4, {0})

=
32
5

+
1
5

inf
0∈{0}

pb(4, 0)

=
32
5

+
32
5

=
65
5
.

For x = 1 and y = 4, we have

µpb(x, y) + υ fpb(y,Ψ(x)) =
1
5

pb(1, 4) +
1
5

fpb (4,Ψ(1))

=
1
5

(25) +
1
5

fpb(4, {0})

=
25
5

+
1
5

inf
0∈{0}

pb(4, 0)

=
25
5

+
32
5

=
57
5
.

So, the contractive condition (3.1) holds in this case, that is, we have

Υpb({0}, {0, 1}) = 2 ≤
1
5

pb(0, 4) +
1
5

fpb(4,Ψ(0)) =
65
5

Υpb({0}, {0, 1}) = 2 ≤
1
5

pb(1, 4) +
1
5

fpb(4,Ψ(1)) =
57
5
.

Case 3. For x = y = 4

Υpb(Ψ(x),Ψ(y)) = Υpb(Ψ(4),Ψ(4))
gpb({0, 1}, {0, 1} = sup{0, 1} = 1.

And

µpb(x, y) + υ fpb(y,Ψ(x)) =
1
5

pb(4, 4) +
1
5

fpb(4,Ψ(4))

=
16
5

+ inf
0∈{0,1}

pb(4, {0, 1}) =
16
5

+
25
5

=
41
5
.

So, in this case (3.1) also holds true.

Υpb({0, 1}, {0, 1}) = 1 ≤
1
5

pb(4, 4) +
1
5

fpb(4,Ψ(4)) =
41
5
.

Hence, this example verifies Theorem 3.5 and x = 0 is a fixed-point of Ψ. Since, the mapping pb is not
a partial metric and a b-metric, so, Theorem 3.5 is only useful in the partial b-metric space.

For the single valued almost contraction, we have the following theorem.
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Theorem 3.8. Let (X, pb) be a complete partial b-metric space. Suppose that T : X → X is an almost
contraction, that is, for all x, y ∈ X, there exist µ, υ ∈ (0, 1) satisfying 2(µ + υ) < 1 and s < υ

µ
+ 2 such

that
pb(T x,Ty) ≤ µpb(x, y) + υpb(y,T x). (3.9)

Then T admits a fixed point.

Proof. In Theorem 3.5, define Ψ(x) = {T (x)} for all x ∈ X. Then,

Υpb(Ψx,Ψy) = pb(T x,Ty).

Hence, proof follows the proof of Theorem 3.5. �

4. Multivalued almost contraction II

In this section, we define another multivalued almost contraction defined on a partial b-metric space
(X, pb). We will investigate the conditions under which such contractions admit at least one fixed point
point.

Definition 4.1. Let (X, pb) be a partial b-metric space with s ≥ 1. The mapping T : X → CBpb(X) is
said to be an multivalued almost contraction II, if there exist µ, υ ∈ (0, 1) satisfying 2(µ + υ) < 1 such
that

Υpb (T (x),T (y)) ≤ µM (x, y) + υN (x, y) , for all x, y ∈ X, (4.1)

where

M (x, y) = max
{

pb (x, y) ,
fpb (x,T x) fpb (y,Ty)

1 + pb (x, y)
,

fpb (x,T x) fpb (y,Ty)
1 + Υpb (T x,Ty)

}
,

N (x, y) = min
{
fpb (x,T x) , fpb (x,Ty) , fpb (y,T x) , fpb (y,Ty)

}
.

Theorem 4.2. Let (X, pb) be a complete partial b-metric space with s > 1. Suppose that T : X →
CBpb(X) is an multivalued almost contraction II. If s < υ

µ
+ 2, then T has a fixed point.

Proof. Let there exists x0 ∈ X such that x1 ∈ T (x0). We construct an iterative sequence xn of points in
X such a way that, xn ∈ T (xn−1) where n = 1, 2, . . .. We observe that if xn = xn+1, then xn is a fixed point
of T . Thus, suppose that xn , xn+1 for all n ≥ 0. By Lemma 3.4 and taking h = 1

2(µ+υ) , for xn+1 ∈ T (xn)
there exists xn+2 ∈ T (xn+1) such that

pb (xn+1, xn+2) ≤
1

2(µ + υ)
Υpb (T (xn,T (xn+1)) ≤

1
2(µ + υ)

[µM (xn, xn+1) + υN (xn, xn+1)]. (4.2)

Note that

M (xn, xn+1) = max


pb (xn, xn+1) ,

fpb (xn,T (xn)) fpb (xn+1,T (xn+1))
1 + pb (xn, xn+1)

,

fpb (xn,T (xn)) fpb (xn+1,T (xn+1))
1 + Υpb (T (xn),T (xn+1))


≤ max {pb (xn, xn+1) , pb (xn+1, xn+2)} ,
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and

N (xn, xn+1) = min
{

fpb (xn,T (xn)) , fpb (xn,T (xn+1)) , fpb (xn+1,T (xn)) ,
fpb (xn+1,T (xn+1))

}
≤ min {pb (xn, xn+1) , pb (xn, xn+2) , pb (xn+1, xn+1) , pb (xn+1, xn+2)}
= pb (xn+1, xn+1) .

Observe that if M (xn, xn+1) = pb (xn+1, xn+2), then inequality (4.2) does not hold, therefore, substituting
M (xn, xn+1) = pb (xn, xn+1) and N (xn, xn+1) = pb (xn+1, xn+1) in (4.2), we obtain

pb (xn+1, xn+2) ≤
1

2(µ + υ)
[µpb (xn, xn+1) + υpb (xn+1, xn+1)]

≤
1

2(µ + υ)
[µpb (xn, xn+1) + υpb (xn+1, xn+2)].

Thus, we have
pb (xn+1, xn+2) ≤

µ

2µ + υ
pb (xn, xn+1) , for all n = 0, 1, 2, · · · .

This implies that

pb (xn+1, xn+2) ≤
(

µ

2µ + υ

)n+1

pb(x0, x1).

The remaining part of the proof is omitted. It follows directly from the proof of Theorem 3.5. �

Example 4.3. Let A = {1, 2, 3, · · · , 40} and X = A ∪ {∞}. Let pb : X × X → R be given by the rule

pb(x, y) =



µ

760 , if x = y,

|1x −
1
y |, if one of x, y is even and the other is even or∞,

5, if one of x, y is odd and the other is odd (and x , y) or∞,
2, otherwise.

Then, (X, pb) is a partial b-metric space with s = 5/2. Let the mapping T : X → CBpb(X) be defined by

T (x) =

{
{3, 6} if x ∈ N − {3, 6}
{∞} if x ∈ {∞, 3, 6}

The mapping T satisfies (4.1). Indeed,
Case 1. If x, y , 6 are even numbers. Then Υpb (T (x),T (y)) = Υpb ({3, 6} , {3, 6}) =

µ

760 , and for
x = 6, y = ∞, Υpb (T (x),T (y)) =

µ

760 , and if x = 6, y is any other even number, then Υpb (T (x),T (y)) =

Υpb ({∞}, {3, 6}) = 1
6 . In all these sub-cases, there exist µ, υ ∈ (0, 1) satisfying 2(µ+υ) < 1 such that the

RHS of (4.1) is greater than Υpb (T (x),T (y)) .
Case 2. If x, y , 3 are odd numbers (and x , y). Then Υpb (T (x),T (y)) = Υpb ({3, 6} , {3, 6}) =

µ

760 , and for x = 3, y = ∞, Υpb (T (x),T (y)) =
µ

760 , and if x = 3, y is any other odd number, then
Υpb (T (x),T (y)) = Υpb ({∞}, {3, 6}) = 1

6 . In all these sub-cases, there exist µ, υ ∈ (0, 1) satisfying
2(µ + υ) < 1 such that the RHS of (4.1) is greater than Υpb (T (x),T (y)) .
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Case 3. If x, y are natural numbers of different parity. Then Υpb (T (x),T (y)) =
µ

760 , M (x, y) = 2 and
N (x, y) ≥ µ

760 . We can find µ, υ ∈ (0, 1) satisfying 2(µ + υ) < 1 such that the RHS of (4.1) is greater
than Υpb (T (x),T (y)) .

Similarly, for all other cases, we have same conclusion. The point x = ∞ is a fixed point of T .
Since, the mapping pb is not a partial metric and a b-metric, so, Theorem 4.2 is only useful in the
partial b-metric space.

5. Application to the BVP

This section contains an existence theorem for the solution to the following boundary value problem
(BVP):

−
d2ý
dt2 = g(t, ý(t));∀t ∈ [0, 1] = J, ý(0) = ý(1) = 0. (5.1)

The associated Green’s function G : J × J → J to (5.1) can be defined as follows:

G (t, l) =

{
t (1 − l) if 0 ≤ t ≤ l ≤ 1
l (1 − t) if 0 ≤ l ≤ t ≤ 1

}
Let C(J) represents the set of continuous functions defined on J. Let the mapping b : C (J)×C (J)→

[0, ∞) be defined by

b ( f , h) =
∥∥∥( f − h)2

∥∥∥ = sup | f (t) − h (t)|2 ,∀ f , h ∈ C(J), and t ∈ J.

The pair (C(J), b) is a complete b-metric space with s = 2. The associated integral operator S :
C(J)→ C(J) to (5.1) is defined by:

S( f )(t) =

∫ 1

0
G(t, b)g(b, f (b))db.

It is remarked that the fixed point of the operator S is a solution to (5.1). The following theorem
states the condition under which the BVP has a solution.

Theorem 5.1. Let the function g : J × C (J)→ R is continuous and satisfies the following condition:

|g(t, f ) − g(t, h)|2 ≤ 64
(
µ | f (t) − h(t)|2 + υ |h(t) − S( f )(t)|2

)
,

for all t ∈ J, f , h ∈ C (J) and µ, υ ∈ (0, 1) satisfying 2(µ+ υ) < 1 and s < υ
µ

+ 2.Then the BVP (5.1) has
a solution.

Proof. This proof will be done by the application of Theorem 3.8. Since, the function g is continuous,
so, the operator S : C (J) → C (J) defined above is continuous. To show that the mapping S form an
almost contraction, we proceed as follow:

|S( f )(t) − S(h)(t)|2 =

∣∣∣∣∣∣
∫ 1

0
G (t, b) (g (b, f ) − g (b, h)) db

∣∣∣∣∣∣2
≤

(∫ 1

0
G (t, b)

√
64

(
µ | f (t) − h(t)|2 + υ |h(t) − S( f )(t)|2

)
dt

)2

.
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Since,
(
sup

∫ 1

0
G (t, b) db

)2
= 1

64 , for all t ∈ J, thus, taking supremum on both sides of above
inequality, we have

pb (S( f ),S(h)) ≤ µd( f , h) + υd(h,S( f )) ∀ f , h ∈ C(J).

Now for any partial b-metric pb on C(J), we can have a b-metric b on C(J) by

b( f , h) =

{
pb ( f , h) if f , h

0 if f = h

The last inequality can be written as:

pb (S( f ),S(h)) ≤ µpb( f , h) + υpb(h,S( f )) ∀ f , h ∈ C(J).

Hence, by Theorem 3.8, the BVP (5.1) has a solution in C(J). �
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