
http://www.aimspress.com/journal/Math

AIMS Mathematics, 7(5): 8162–8175.
DOI:10.3934/math.2022454
Received: 22 December 2021
Revised: 10 February 2022
Accepted: 16 February 2022
Published: 25 February 2022

Research article

Periodic solution of a stage-structured predator-prey model with
Crowley-Martin type functional response

Weijie Lu and Yonghui Xia∗

Department of Mathematics, Zhejiang Normal University, 321004, Jinhua, China

* Correspondence: Email: xiadoc@163.com; yhxia@zjnu.cn.

Abstract: In this paper, the existence of positive periodic solution of stage-structured predator-prey
model with Crowley-Martin type functional response is investigated. The prey population fall into two
categories: mature and immature prey. The predator population is dependent only on mature prey and
is influenced by Crowley-Martin type functional response. Based on the Mawhin’s coincidence degree
theory and nontrivial estimation techniques for a priori bounds of unknown solutions to the operator
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our result is verified by an example and numerical simulation.

Keywords: periodic solution; stag-structure; Crowley-Martin type functional response
Mathematics Subject Classification: 34C25, 92B05, 92D25

1. Introduction

The predator-prey relationship has become one of the most important relationships in ecology in
recent decades due to the prevalence and importance of species predation. The predator-prey model [1,
2] generally takes the form of

dzi(t)
dt

= zi(t)

ai(t) +

n∑
j=1

bi jz j(t)

 , i = 1, 2, · · · , n.

Many scholars have made contributions to it (see e.g. [3–18]). In population models, stage-structure
is one of the important factors to explain the dynamics of predator-prey model. Recently, many
studies (see for example [19–24]) have considered the predator-prey system with the stage-structure of
predator, prey or both.

On the other hand, in the study of predator-prey system, functional response also plays an important
role, which can represent the quantity of prey killed by a predator per unit time and describe the amount
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of biological transfer between different nutritional levels. Holling type-II functional response [16, 25,
26] takes into account the average feeding rate of a predator to its prey. It can be expressed as: f (x, y) =

a1 x
1+a2 x , where a1 and a2 are positive constants, which denote the capture rate and the influence of the
processing time, respectively. In this functional response, competition between predators for food
only occurs when prey is depleted. Another functional response function is the Beddinton-DeAnglis
type [22,27,28], which is similar to the Holling type-II. However, it takes into account the interference
between predators. Therefore, Beddinton-DeAnglis type functional response function describes that
individuals from two or more predator groups not only take prey, but also meet and compete with other
predators. It has the type: f (x, y) = a1 x

1+a2 x+a3y , where a3 is a positive constant, describing the degree of
disturbance between predators. Moreover, it is assumed that its influence on the predation rate can be
ignored in the case of high prey density. In this paper, we consider the Crowley-Martin type functional
response [29–32]:

f (x, y) =
a1x

1 + a2x + a3y + a2a3xy
=

a1x
(1 + a2x)(1 + a3y)

.

It also takes the interference between predators into account, but the biggest difference between it and
Beddinton-DeAnglis type functional response is: the influence of predator disturbance on the predation
rate is always an important factor, which cannot be ignored. Hence, Crowley-Martin type functional
response is more consistent with the phenomenon in ecology and has more research value.

Maiti et al. [32] studied the global dynamics of an autonomous stage-structured predator-prey model
with Crowley-Martin type functional response. However, they did not cosider the periodic behavior
of this model with periodic parameters. The assumption of periodicity of the parameters is a way of
incorporating the periodicity of the environment. The periodic oscillation of the parameters seems
reasonable in view of seasonal factors, e.g. mating habits, availability of food, weather conditions,
harvesting and hunting, etc. Cai et al. [30] presented the existence of positive periodic solutions of an
Eco-Epidemic model with Crowley- Martin type functional response. Inspired by the above works, we
study a stage-structured predator-prey system with Crowley-Martin type functional response:

dx1(t)
dt = s(t)x2(t) − r(t)x1(t) − d(t)x1(t),

dx2(t)
dt = r(t)x1(t) − α(t)x2

2(t) − β(t)x2(t)y(t)
(1+ax2(t))(1+by(t)) − d1(t)x2(t),

dy(t)
dt =

β1(t)x2(t)y(t)
(1+ax2(t))(1+by(t)) − d2(t)y(t) − γ(t)y2(t),

(1.1)

where x1(t) and x2(t) are the population density of immature and mature prey at time t, y(t) is the
population density of predator at time t, and all the following parameters involved are continuous
positive periodic functions: (I) for immature prey: (1) the ratio function s(t) represents the ratio of
birth rate to available mature prey; (2) the ratio of the conversion of immature prey to mature prey to
existing immature prey is denoted by r(t), and the ratio of the death rate of immature prey to existing
immature prey is represented by d(t). (II) for mature prey: (1) α(t) is an internally specific interference
function; (2) the ratio of the death rate to existing mature prey is denoted by d1(t); (3) the interaction
between predator and mature prey is a Crowley-Martin type functional response with rate β(t). (III) for
predator: (1) β1(t) denotes the intake of predators, and 0 < β1(t) < β(t); (2) d2(t) denotes the death rate
of the predator; (3) γ(t) denotes the internal specific disturbance function for the predator.

In terms of the number of creatures, the initial conditions for model (1.1) are given by

(x1(t), x2(t), y(t)) ∈ C+ = C(0,R3
+), x1(0) > 0, x2(0) > 0, y(0) > 0.

AIMS Mathematics Volume 7, Issue 5, 8162–8175.



8164

The purpose in the present paper is to find some suitable conditions of the existence of positive periodic
solution for system (1.1). The method is based on Mawhin’s coincidence degree theory.

2. Existence of positive periodic solution

In this section, we establish the existence of positive periodic solution for the system (1.1). For this
purpose, we first assume that the parameters in the system (1.1) are all ω-period. To obtain a positive
periodic solution for system (1.1), we summarize the following lemmas.

Lemma 2.1. [35–37] Let U ∈ Z be an open bounded set on Banach space Z. Assume that F is a
Fredholm operator of index zero and N is F-compact on Ū. If the following conditions hold:
(1) for any fixed µ ∈ (0, 1), z ∈ ∂U ∩ DomF, Fz , µNz;
(2) for any fixed z ∈ ∂U ∩ ker F, QNz , 0 and the Brouwer’s degree: deg[JQN,U ∩ ker F, 0] , 0.
Then Fz = Nz has at least one solution on Ū ∩ DomF.

For the sake of simplicity, we use the notations:
ϑ̄ = 1

ω

∫ ω

0
ϑ(t)dt, ϑM = max

t∈[0,ω]
ϑ(t), ϑL = min

t∈[0,ω]
ϑ(t),

l± =
−(γL+bdL

2 )±
√
M1

2bγL , M1= (γL − bdL
2 )2 + 4a−1bγLβM

1 ,

h± =
−(γM+bdM

2 )±
√
M2

2bγM , M2= (γM − bdM
2 )2 +

4bγMβL
1

1+a ,

q+ =
rM sM−d̄1ω(rL+dL)

αω(rL+dL) , m+ = ln s̄p+

r̄+d̄ − 2d̄1ω,

M3= [β̄ + d̄1(1 + a)(b + l−1
+ e−2d̄2ω]2 + 4ᾱr̄(1 + a)2(b + l−1

+ e−2d̄2ω)2,

p± = {−[β̄ + d̄1(1 + a)(b + l−1
+ e−2d̄2ω] ±

√
M3}{2ᾱ(1 + a)(b + l−1

+ e−2d̄2ω)}−1.
Furthermore, we assume that:

(H1) βM
1 > adL

2 , (H2) βL
1 > (1 + a)dM

2 , (H3) s̄p+ > (r̄ + d̄)e2(d̄+d̄1)ω.

From a biological viewpoint, the assumptions (H1) and (H2) imply that the intake of a mature predator
is greater than its death rate, while the assumption (H3) implies that the birth rate of the prey is
influenced by the stage structure and the death rate of mature and immature prey.

Now, we present a theorem on the existence.

Theorem 2.1. If (H1), (H2), (H3) hold, then system (1.1) has at least a positive periodic solution.

Proof: Firstly, replacing the variables by

z1(t) = ln x1(t), z2(t) = ln x2(t), z3(t) = ln y(t).

Then system (1.1) changes into
dz1(t)

dt = s(t)ez2(t)−z1(t) − r(t) − d(t),
dz2(t)

dt = r(t)ez1(t)−z2(t) − α(t)ez2(t) − d1(t) − β(t)ez3(t)

(1+aez2(t))(1+bez3(t)) ,
dz3(t)

dt =
β1(t)ez2(t)

(1+aez2(t))(1+bez3(t)) − γ(t)ez3(t) − d2(t).

(2.1)

Define
Z = W = {z = (z1, z2, z3) ∈ C(R,R3)|z(t + ω) = z(t)}.
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Z,W are both Banach space with the norm || · || as follows

||z|| = max
t∈(0,ω)

3∑
i=1

|zi|, z = (z1, z2, z3) ∈ Z or W.

For any z = (z1, z2, z3) ∈ Z, the periodicity of system (2.1) implies:

s(t)ez2(t)−z1(t) − r(t) − d(t) := Γ1(z, t),

r(t)ez1(t)−z2(t) − α(t)ez2(t) − d1(t) −
β(t)ez3(t)

(1 + aez2(t))(1 + bez3(t))
:= Γ2(z, t)

and
β1(t)ez2(t)

(1 + aez2(t))(1 + bez3(t))
− γ(t)ez3(t) − d2(t) := Γ3(z, t)

are ω-period functions. In fact,

Γ1(z(t + ω), t + ω) =s(t + ω)ez2(t+ω)−z1(t+ω) − r(t + ω) − d(t + ω)
=s(t)ez2(t)−z1(t) − r(t) − d(t)
=Γ1(z, t).

Obviously, Γ2(z, t),Γ3(z, t) are also both periodic functions by a similar way. Set

F : DomF
⋂

V, F(z1, z2, z3) =

(
dz1

dt
,

dz2

dt
,

dz3

dt

)
,

where DomF = {(z1, z2, z3) ∈ C(R,R3)} and N : Z → Z is defined by

N


z1

z2

z3

 =


Γ1(z, t)
Γ2(z, t)
Γ3(z, t)

 .
Define

P


z1

z2

z3

 = Q


z1

z2

z3

 =


1
ω

∫ ω

0
z1(t)dt

1
ω

∫ ω

0
z2(t)dt

1
ω

∫ ω

0
z3(t)dt

 ,


z1

z2

z3

 ∈ Z = W.

From the above definition, we have

ker F = {z ∈ Z|z = C0,C0 ∈ R
3} and =F =

{
w ∈ W |

∫ ω

0
w(t)dt ≡ 0

}
,

and codim=F = dim ker F = 3 < ∞. Hence, F is a Fredholm map of index zero. Moreover, it is clear
that P and Q are continuous projection operators with

ker F = ImP, and ImF = ker Q = Im(I − Q).

Therefore, the inverse Kp : =F → DomF ∩ ker P exists and is given by
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Kp


z1

z2

z3

 =


∫ t

0
z1(s)ds − 1

ω

∫ ω

0

∫ t

0
z1(s)dsdt∫ t

0
z2(s)ds − 1

ω

∫ ω

0

∫ t

0
z2(s)dsdt∫ t

0
z3(s)ds − 1

ω

∫ ω

0

∫ t

0
z3(s)dsdt

 .
Thus, we have

QN


z1

z2

z3

 =


1
ω

∫ ω

0
Γ1(z, t)dt

1
ω

∫ ω

0
Γ2(z, t)dt

1
ω

∫ ω

0
Γ3(z, t)dt


and

Kp(I − Q)Nz =

∫ t

0
Nz(s)ds −

1
ω

∫ ω

0

∫ t

0
Nz(s)dsdt − (

t
ω
−

1
2

)
∫ ω

0
Nz(s)ds.

Clearly, QN and Kp(I − Q)N are continuous. Due to Z is a Banach space, using the Arzala-Ascoli
theorem, we have that N is F-compact on Ū for any open bounded set U ⊂ Z.

Next, in order to apply the continuation theorem, we need construct an appropriate open bounded
subset U. Therefore, the operator equation is defined by Fz = µNz, µ ∈ (0, 1), that is,

ż1(t) = µ[s(t)ez2(t)−z1(t) − r(t) − d(t)],
ż2(t) = µ

[
r(t)ez1(t)−z2(t) − α(t)ez2(t) − d1(t) − β(t)ez3(t)

(1+aez2(t))(1+bez3(t))

]
,

ż3(t) = µ
[

β1(t)ez2(t)

(1+aez2(t))(1+bez3(t)) − γ(t)ez3(t) − d2(t)
]
.

(2.2)

We assume that z = (z1, z2, z3)T ∈ Z is a solution of system (2.1) for any fixed µ ∈ (0, 1). Now,
integrating system (2.1) from 0 to ω leads to

d̄ω =
∫ ω

0
[s(t)ez2(t)−z1(t) − r(t)]dt,

d̄1ω =
∫ ω

0

[
r(t)ez1(t)−z2(t) − α(t)ez2(t) −

β(t)ez3(t)

(1+aez2(t))(1+bez3(t))

]
dt,

d̄2ω =
∫ ω

0

[
β1(t)ez2(t)

(1+aez2(t))(1+bez3(t)) − γ(t)ez3(t)
]

dt.

(2.3)

From (2.2) and (2.3), we can deduce that
∫ ω

0
|ż1(t)|dt ≤ µ

[∫ ω

0
|s(t)ez2(t)−z1(t) − r(t)|dt +

∫ ω

0
|d(t)|dt

]
< 2d̄ω,∫ ω

0
|ż2(t)|dt ≤ µ

[∫ ω

0
|r(t)ez1(t)−z2(t) − α(t)ez2(t) −

β(t)ez3(t)

(1+aez2(t))(1+bez3(t)) |dt +
∫ ω

0
|d1(t)|dt

]
< 2d̄1ω,∫ ω

0
|ż3(t)|dt ≤ µ

[∫ ω

0
|

β1(t)ez2(t)

(1+aez2(t))(1+bez3(t)) − γ(t)ez3(t)|dt +
∫ ω

0
|d2(t)|dt

]
< 2d̄2ω.

(2.4)

Since (z1, z2, z3) ∈ Z, there exist ηi, ξi ∈ [0, ω] such that

zi(ηi) = max
t∈[0,ω]

zi(t), zi(ξi) = min
t∈[0,ω]

zi(t), i = 1, 2, 3.

Integrating the third equation of (2.1) from 0 to ω, we obtain∫ ω

0
[d2(t) + γ(t)ez3(t)]dt =

∫ ω

0

β1(t)ez2(t)

(1 + aez2(t))(1 + bez3(t))
dt. (2.5)
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From the equation (2.5), we immediately have

dL
2 + γLez3(ξ3) ≤

∫ ω

0
[d2(t) + γ(t)ez3(t)]dt =

∫ ω

0

β1(t)ez2(t)

(1 + aez2(t))(1 + bez3(t))
dt

≤

∫ ω

0

β1(t)
a(1 + bez3(t))

·
aez2(t)

(1 + aez2(t))
dt

≤
βM

1

a
·

1
(1 + bez3(t))

which implies

bγLe2z3(ξ3) + (γL + bdL
2 )ez3(ξ3) + (dL

2 −
βM

1

a
) ≤ 0.

Since M1= (γL − bdL
2 )2 + 4a−1bγLβM

1 > 0, we have

l± :=
−(γL + bdL

2 ) ±
√
M1

2bγL .

In view of (H1), l− =
−(γL+bdL

2 )−
√
M1

2bγL < 0, it does not exist. Hence,

z3(ξ3) < ln l+. (2.6)

It follows from (2.4), (2.6) that

z3(t) ≤ z3(ξ3) +

∫ ω

0
|ż3(t)|dt < ln l+ + 2d̄2ω,

thus,
z3(η3) < ln l+ + 2d̄2ω = M1.

In view of equation (2.5) again, we have that

dM
2 + γMez3(η3) ≥

∫ ω

0
[d2(t) + γ(t)ez3(t)]dt =

∫ ω

0

β1(t)ez2(t)

(1 + aez2(t))(1 + bez3(t))
dt

≥
βL

1

(1 + bez3(η3))
·

1
(1 + aez2(ξ3))

≥
βL

1

(1 + bez3(η3))(1 + a)
,

which implies

bγMe2z3(η3) + (γM + bdM
2 )ez3(η3) + (dM

2 −
βL

1

1 + a
) ≥ 0.

Since M2= (γM − bdM
2 )2 +

4bγMβL
1

1+a > 0, we have

h± :=
−(γM + bdM

2 ) ±
√
M2

2bγM ,
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and in view of (H2), h− < 0 does not exist. Consequently,

z3(η3) > ln h+. (2.7)

It follows from (2.4), (2.7) that

z3(t) ≥ z3(η3) −
∫ ω

0
|ż3(t)|dt > ln h+ − 2d̄2ω,

in particular,
z3(ξ3) > ln h+ − 2d̄2ω = M2.

Thus, we take
max
t∈[0,ω]

|z3(t)| < max{|M1|, |M2|} = C3.

It follows the second equation of (2.3) that

d̄1ω ≥
r̄ω

ez2(η2) − ᾱωez2(η2) −
¯βω

(1 + a)
·

1
b + 1/ez3(η3) ,

that is,

ᾱ(1 + a)(b + l−1
+ e2z2(η2) + [β̄ + d̄1(1 + a)(b + l−1

+ e−2d̄2ω]ez2(η2) − r̄(1 + a)(b + l−1
+ e−2d̄2ω) ≥ 0.

Due to
M3= [β̄ + d̄1(1 + a)(b + l−1

+ e−2d̄2ω]2 + 4ᾱr̄(1 + a)2(b + l−1
+ e−2d̄2ω)2 > 0,

we obtain

p± :=
−[β̄ + d̄1(1 + a)(b + l−1

+ e−2d̄2ω] ±
√
M3

2ᾱ(1 + a)(b + l−1
+ e−2d̄2ω)

,

Notice that p− < 0 does not exist, we have

z2(η2) > ln p+. (2.8)

It follows from (2.4), (2.8) that

z2(t) ≥ z2(η2) −
∫ ω

0
|ż2(t)|dt > ln p+ − 2d̄1ω,

in particular,
z2(ξ2) > ln p+ − 2d̄1ω = M3. (2.9)

Multiplying the first equation of (2.1) by ez1(t)−z2(t) and integrating over [0, ω], we deduce∫ ω

0
[r(t) + d(t)]ez1(t)−z2(t)dt =

∫ ω

0
s(t)dt.

It implies that ∫ ω

0
ez1(t)−z2(t)dt ≤

sM

rL + dL .
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In view of the second equation of (2.3), we find that

d̄1 ≤
rM

ω

∫ ω

0
ez1(t)−z2(t)dt − ᾱez2(ξ2) ≤

rM · sM

ω(rL + dL)
− ᾱez2(ξ2). (2.10)

It can be rewritten as

z2(ξ2) ≤ ln
rM sM − d̄1ω(rL + dL)

αω(rL + dL)
= ln q+,

which implies,
z2(η2) < ln q+ + 2d̄1ω = M4.

Hence,
max
t∈[0,ω]

|z2(t)| < max{|M3|, |M4|} = C2.

Combining the first equation of (2.3) with (2.9) leads to

d̄ ≥
s̄ez2(ξ2)

ez1(η1) − r̄,

which is
z1(η1) > ln

s̄p+

r̄ + d̄
− 2d̄1ω = m+. (2.11)

It follows from (2.4), (2.11) that
z1(ξ1) > m+ − 2d̄ω = M5.

Finally, from the first equation of (2.3), we deduce

r̄ + d̄ ≤ s̄ ·
ez2(η2)

ez1(ξ1) < s̄q+e2d̄1ω
1

ez1(ξ1) ,

which can be rewritten as

z1(ξ1) < ln
s̄q+e2d̄1ω

r̄ + d̄
. (2.12)

From (2.4), (2.12), we have

z1(t) ≤ z1(ξ1) + 2d̄ω < ln
s̄q+e2d̄1ω

r̄ + d̄
+ 2d̄ω,

which is

z1(η1) < ln
s̄q+e2d̄1ω

r̄ + d̄
+ 2d̄ω = M6.

Therefore, we take
max
t∈[0,ω]

|z1(t)| < max{|M5|, |M6|} = C1.

Now, we consider QNz with z = (z1, z2, z3)T ∈ R3. Note that

QN(z1, z2, z3)T =
[
−(r̄ + d̄) + s̄ez2(t)−z1(t), r̄ez1(t)−z2(t) − ᾱez2(t) − d̄1

−
β̄ez3(t)

(1 + aez2(t))(1 + bez3(t))
,

β̄1ez2(t)

(1 + aez2(t))(1 + bez3(t))
− γ̄ez3(t) − d̄2

]
.
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In view of (Hi)3
i=1, we know that the equation QN(z1, z2, z3)T = 0 has a solution z̃ = (z̃1, z̃2, z̃3) with

M5 < z̃1 < M6, M3 < z̃2 < M4, M2 < z̃3 < M1.

where Mi > 0, i = 1...6 are positive constants. Take B = max{C1 + C0,C2 + C0,C3 + C0}, where C0 > 0
is sufficiently large constant such that ||(z̃1, z̃2, z̃3)|| < C0. We set

U = {z(t) = (z1(t), z2(t), z3(t))T ∈ Z : ||z|| < B}.

Then the open bounded set U of Z satisfies the condition (1) of Lemma 2.1. If (z1, z2, z3) ∈ ∂U∩ker F =

∂U ∩ R3, then (z1, z2, z3) is a constant vector on R3, and it satisfies ||(z1, z2, z3)|| = |z1| + |z2| + |z3| = B.
Hence, we obtain that QN(z1, z2, z3)T , (0, 0, 0)T . In order to calculate Brouwer’s degree, we consider
a homotopic mapping as follows:

Hλ((z1, z2, z3)T ) = λQN((z1, z2, z3)T ) + (1 − λ)G((z1, z2, z3)T ), λ ∈ [0, 1],

where

G((z1, z2, z3)T ) =


s̄ez2(t)−z1(t) − (r̄ + d̄)

r̄ez1(t)−z2(t) − ᾱez2(t) − d̄1
β̄1ez2(t)

(1+aez2(t))(1+bez3(t)) − γ̄ez3(t) − d̄2

 .
Then for any λ ∈ [0, 1], 0 < Hλ(∂U ∩ ker F). Moreover, we see that equation G((z1, z2, z3)T ) = 0 has a
unique solution on R3. Indeed, through the first and second components of G, we can get the unique
expression of z2, i.e., z2(t) = ln

[
α−1

(
s̄

r̄+d̄ + d̄1

)]
. Further, the expression of z1 is uniquely determined,

i.e. z1(t) = z2(t) − ln
(

r̄+d̄
s̄

)
. Now through the third component of G, we have

bγ̄(ez3(t))2 + (γ + d2b)ez3(t) + d2 −
β̄1ez2(t)

(1 + aez2(t))
= 0.

In view of (H1) and (H2), the product of two solutions of the above equation must be less than zero,
thus there is only one positive solution z3(t). Since =Q = ker F, we deduce that J = I. Thus

deg(JQN,U ∩ ker F, 0) = deg(QN,U ∩ ker F, 0) = deg(G,U ∩ ker F, 0) , 0,

where deg(·, ·, ·) is Brouwer’s degree. Hence, the requirement (2) of Lemma 2.1 also holds. From
Lemma 2.1 and the periodicity of the system, we know that system (1.1) has at least one positive
periodic solution on DomF ∩ Ū. This completes the proof of Theorem 2.1.

3. Example and numerical simulations

As an example, we consider the following nonautonomous predator-prey model with Crowley-
Martin type functional response:

dx1(t)
dt = (10 + sin t)x2(t) − (7 + sin t)x1(t) − 0.3x1(t),

dx2(t)
dt = (7 + sin t)x1(t) − 0.1x2

2(t) − (2+sin t)x2(t)y(t)
(1+0.5x2(t))(1+0.5y(t)) − 0, 2x2(t),

dy(t)
dt =

(1.5+sin t)x2(t)y(t)
(1+0.5x2(t))(1+0.5y(t)) − 0.1y(t) − 0.05y2(t).

(3.1)
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where x1(t) and x2(t) are the population density of immature and mature prey at time t, y(t) is the
population density of predator at time t. s(t) = 10 + sin t denotes the ratio of birth rate to available
mature prey, r(t) = 7 + sin t represents the ratio of the conversion of immature prey to mature prey
to existing immature prey, d(t) = 0.3 and d1(t) = 0.2 are the ratio of the death rate of immature prey
and mature prey, respectively. α(t) = 0.1 is an internally specific interference coefficient. The term

(2+sin t)x2(t)y(t)
(1+0.5x2(t))(1+0.5y(t)) stands for the Crowley-Martin type functional response with rate β(t) = 2 + sin t.
Moreover, β1(t) = 1.5 + sin t denotes the intake of predator; d2(t) = 0.1 is the death rate of the predator
and γ(t) = 0.05 is the internal specific disturbance coefficient for the predator. Simple computation
shows (H1)-(H3) in Theorem 2.1 are satisfied, we conclude that system (3.1) has at least one positive
periodic solution. Now we take the initial values x1(0) = 0.5, x2(0) = 0.5, y(0) = 5, then the following
figure is obtained through Maple software.

Figure 1. The periodic solution

As can be seen from the above figure, system (3.1) has a periodic solution with a period 2π. Namely,
immature prey, mature prey and predator all have a periodic solution with period 2π in the same
periodic environment. On the other hand, it also shows that our results are feasible based on the
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method of Mawhins coincidence degree theory and some nontrivial estimation techniques.

4. Conclusion

In the present paper, a stage-structured predator-prey model with Crowley-Martin type functional
response is considered. It is assumed that the prey population can divide into two parts: mature
and immature prey. The predator population is only dependent on mature prey and is influenced
by Crowley-Martin type functional response. Based on the method of Mawhin’s coincidence degree
theory and novel estimation techniques for a priori bounds of unknown solutions to the operator
equation Fz = µNz, we obtain some interesting and novel sufficient conditions for the existence
of positive periodic solution of the ecological model. Another interesting topic is the existence of
analytic periodic solution. Kosov and Semenov [33, 34] studied the existence of (analytic) exact
periodic solutions of some nonlinear differential equations, and showed that these periodic solutions
are analytic functions under some sufficiently conditions. However, it is impossible to get the analytic
periodic solutions in this model due to its great complexity. The analytic periodic solutions can be
obtained for some particular systems, it is difficult for the very complicated system. Moreover, our
method is based on Mawhin’s coincidence degree theory. Thus, we can prove the existence of the
periodic solutions by this method.
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