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1. Introduction

In recent years, regression analysis is widely used in various fields; for example, logistic regression
was used to implement distributed classification of large data sets in Wang, Xu and Wu [1]. Traditional
regression analysis is based on the mean, which is easy to calculate and is straightforward to interpret.
But mean regression may fail for heavy-tailed error distributions, so a series of new regression methods
were proposed. Rank regression and quantile regression are robust estimation methods which are
widely used. There are many applications in which several response variables are predicted with a
common set of predictors. Zhao, Lian and Ma [2] took the possible correlations among the responses
into account, and introduced robust reduced-rank estimator via rank regression. Zhang et al. [3] applied
rank regression to the varying-coefficient model and proposed a robust multivariate varying-coefficient
model based on rank loss that models the relationships among different responses via reduced-rank
regression and penalized variable selection. The above two methods are often used to multivariate
regression model. Gong, Xu and Chen [4] proposed a penalized modal regression method for additive
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models in high dimensional. Quantile regression (QR), as introduced by Koenker and Bassett [5], is
also a robust regression and can describe the entire conditional distribution of the response variable
given the covariates. Because of these significant advantages, QR has become an effective method for
statistical research. It is well known that different quantiles may contain different information of error
distributions. Therefore, combining different quantile information could appropriately be a feasible
way to improve efficiency. With this idea, Zou and Yuan [6] defined a new loss function which is simply
an average of the loss function based on different quantiles, and named the new method as composite
quantile regression (CQR). CQR could be considered as a useful extension of the quantile regression.
Zhao and Xiao [7] pointed out that simple average (using equal weights) is not an efficient way of
using distributional information from different quantile regressions. Koenker [8, 9] proposed a more
general approach, which assigns different weights to different quantiles. Jiang et al. [10] extended the
research on robust and efficient estimation and model selection in high dimensions to nonlinear models.
Unfortunately, when the number of quantiles is large, the calculation is very demanding. Therefore,
Bloznelis et al. [11] considered a model-averaged quantile estimator with a computationally cheaper
alternative and compared its performance to the composite quantile estimator in both low and high
dimensional cases.

Classical regression analysis and related theories are based on completely observed data, while
missing data are frequently encountered in almost all research areas, such as psychological sciences
and medical studies. In cases of missing data, classical statistical methods such as maximum likelihood
estimation (MLE) cannot be applied directly to the corresponding statistical analysis. We know that
the complete-case (CC) method, which only uses the fully observed data, can lead to seriously biased
parameter estimations when the covariate is not missing completely at random. Yates [12] introduced
an imputation method which is widely used to handle missing responses. This method aims to find
an appropriate value that to be filled in for each missing data. Then the data with the filled in values
can be treated as fully observed data that can be analyzed by classical methods. Xia [13] employ the
profile nonlinear least squares estimation based on the weighted imputation method to estimate the
unknown parameter and nonparametric function and consider empirical likelihood inferences based
on the weighted imputation method for the varying coefficient partially nonlinear model with missing
responses. The inverse probability weighted (IPW) method is another frequently used method dated
back to Horvitz and Thompson [14] that can be applied to the case of missing covariates. In this
method, the inverse of the selection probability is chosen to be the weight assigned to the fully observed
data. The missing at random (MAR) assumption, in the sense of Rubin [15], is a common assumption
for statistical analysis with missing data. Under the MAR assumption, many approaches for mean
regression with missing values were developed to obtain efficient estimators, such as the imputation
method proposed by Little and Rubin [16], the IPW method introduced by Robins et al. [17], and
likelihood-based methods given by Ibrahim et al. [18]. For a comprehensive review, readers are
referred to Qin, Shao and Zhang [19]. It is worth mentioning that IPW method is unbiased under
MAR assumption.

However, most of the above methods are built on least squares (LS) estimator which is not robust
against outliers. Recently, Sherwood, Wang and Zhou [20]considered a linear QR approach based on
IPW with a parametric model for the selection probability when covariates are missing at random,
and investigated the variable selection problem with the proposed method. Chen, Wan and Zhou [21]
proposed three estimation methods for a linear quantile regression when observations are missing at
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random, one of which is to use nonparametric IPW. The above three references focused on a given
individual quantile. Due to the effectiveness and robustness of the CQR method, Yang and Liu [22]
investigated the CQR estimation of linear models with missing covariates by using IPW method. It is
worth pointing out that, they used equal weights at different quantiles to construct their CQR estimator
for a linear model. Recently, Wang, Song and Zhang [23] proposed an optimal weighted quantile
average estimation for parameters in additive partially linear models with missing covariates, and their
simulation results verified that the proposed method is an efficient and reliable alternative of both
the weighted least squares (WLS) method and the weighted CQR (WCQR) method. So in this paper,
applying the idea of Jiang et al. [24] and Wang, Song and Zhang [23], we consider two types of WCQRs
for nonlinear models with missing covariates and the proposed methods are demonstrated superior via
simulation studies and a real data example.

The rest of this paper is organized as follows. The proposed estimation technique and its theoretical
properties are presented in Section 2. Numerical simulation studies are conducted in Section 3 in order
to examine the performance of the proposed methods and to justify the derived theoretical results in
Section 2. A real data analysis is given in Section 4 to illustrate the implementation of the proposed
methods. The regularity conditions and the proofs of those theoretical results are given in Appendix.

2. Methodology

Zhao and Lian [25] studied two weighting schemes to further improve the efficiency of CQR for
linear models. And they showed that the two weighting schemes are asymptotically equivalent to each
other and always result in more efficient estimators compared with CQR in theory. Now, In order to
get a more general approach, we generalize the linear models to the nonlinear models and consider the
covariates missing at random. Consider the nonlinear model

Yi = f (Xi, β) + εi, i = 1, . . . , n, (2.1)

where Yi is an observable response, Xi = (UT
i ,V

T
i )T ∈ Rq+s is the vector of covariates, β is the p-

dimensional vector of unknown parameters, and εi is the random error independent of X. Let K be
the number of quantiles, for the equally spaced quantiles τk = k

K+1 , k = 1, 2, . . . ,K. Jiang et al. [24]
proposed the weighted composite quantile estimator for β by minimizing

ln(β,b) =

K∑
k=1

ωk

n∑
i=1

ρτk(Yi − f (Xi, β) − bτk)

over β and b = (bτ1 , bτ2 , . . . , bτk)
T , where ρτ(t) = t(τ − I(t < 0)), and ωk is the weight which controls

the amount of contribution of the τk-th quantile regression satisfying
∑K

k=1 ωkg(bτk) > 0 with g(·) being
the density of ε.

Here we assume some covariates are missing. More specifically, we assume Ui’s are all observed
while some Vi’s are missing. Let δi = 0 if Vi is missing, and δi = 1 if Vi is observed. Throughout this
paper, following Wang, Song and Zhang [23], we assume the following missing mechanism

P(δi = 1|Yi,Ui,Vi) = P(δi = 1|Ui) , π(Ui), (2.2)

where π(·) is called the selection probability function or the propensity score.
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When the selection probability function π(·) is known, the IPW estimator of β under missing
covariates is defined as

(b̂, β̂) = arg min
b,β

Ln (π(U), β,b) , (2.3)

where Ln(π(U), β,b) =
∑K

k=1 ωk
∑n

i=1
δi

π(Ui)
ρτk(Yi − f (Xi, β) − bτk). However, in reality the selection

probability function π(·) is usually unknown and needs to be estimated. Next we follow Wang, Song
and Zhang [23] and consider estimating π(Ui) using both parametric and nonparametric models.

2.1. Estimation of propensity scores

To estimate the propensity scores nonparametrically, we apply nonparametric smoothing
techniques. Particularly, we use the Nadaraya-Watson estimator of π(Ui) which is defined as

π̂(Ui) =

∑n
j=1 Kh(Ui − U j)δ j∑n

j=1 Kh(Ui − U j)
, (2.4)

where Kh(·) = K(·/h)/hq is a q-variate kernel function, h is the bandwidth.
When the dimension of U is high, a fully nonparametric estimation is encountered with the curse of

dimensionality. In this case, a parametric approach might be more feasible for the estimation of π(Ui)
given in (2.2). A commonly used model for (2.2) is the logistic regression given by

π(Ui, γ) =
exp(γ0 + UT

i γ1)
1 + exp(γ0 + UT

i γ1)
=

exp(ΓT
i γ)

1 + exp(ΓT
i γ)

, (2.5)

where Γi = (1,UT
i )T and γ = (γ0, γ

T
1 )T ∈ Θ is an unknown parameter vector with Θ ⊂ Rq+1. Here γ can

be estimated by maximizing the log-likelihood function

L(γ) =

n∑
i=1

{
δi log π(Ui, γ) + (1 − δi) log(1 − π(Ui, γ)

}
.

Let γ̂ be the MLE of γ, then the parametric estimator of π(Ui) is denoted by π(Ui, γ̂). If the specified
parametric model (2.5) of the selection probability function π(·) is valid, then the IPW method is
applicable.

2.2. WCQR estimation of regression parameters

In this subsection, we propose two weighting schemes for the WCQR estimation. The first one is
based on weighting the quantile loss and the second one is weighting the quantile regression estimator
at different levels with details given below. For convenience, we use π̂(Ui) for the estimator of π(Ui)
by either the parametric or nonparametric method.

As in Jiang et al. [24], we let τk = k
K+1 , k = 1, 2, . . . ,K for some K. By weighting the different loss

functions in CQR with the IPW method, our first WCQR estimator is defined as

(b̂, β̂WCQR1) = argminb,βLn(π̂(U), β,b), (2.6)

where Ln(π̂(U), β,b) =
∑K

k=1 ωk
∑n

i=1
δi

π̂(Ui)
ρτk(Yi − f (Xi, β) − bτk), the weight ωk’s are allowed to be

negative and satisfy
∑K

k=1 ωkg(bτk) > 0, where g(·) is the density function of the error term ε.
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The following theorem presents the asymptotic distribution of β̂WCQR1. We first introduce some
notations. Let β∗ be the true value of β, b∗τk

be the τk-th quantile of ε and b∗ = (b∗τ1
, b∗τ2

, . . . , b∗τK
)T .

Denote f ∗i = f (Xi, β
∗), ∇ f ∗i =

∂ f (Xi,β)
∂β
|β=β∗ , Σ1 = E[∇ f ∗1 (∇ f ∗1 )T ], Σ2 = E[∇ f ∗1 (∇ f ∗1 )T

π(U) ], g = (g(b∗τ1
),

g(b∗τ2
), . . . , g(b∗τK

))T , Ω = {min(τk, τk′)(1 −max(τk, τk′))}1≤k,k′≤K , and H = (min(τk ,τk′ )(1−max(τk ,τk′ ))
g(b∗τk )g(b∗τk′

) )1≤k,k′≤K .
Theorem 2.1. Suppose that the conditions C1−C6 in Appendix hold and β∗ is the true value. Then we
have

√
n(β̂WCQR1 − β

∗)
D
−→ N

(
0,

ωT Ωω

ωT ggTω
Σ−1

1 Σ2Σ
−1
1

)
.

Similar to Jiang et al. [24] and Zhao et al. [26], we can derive the optimal weights by minimizing
ωT Ωω
ωT ggTω

in the asymptotic variance given in Theorem 2.1.
Corollary 2.1. The optimal weight vector ω∗ = (ω∗1, ω

∗
2, · · · , ω

∗
K)T for β̂WCQR1 is

ω∗ = argmin
ωT Ωω

ωT ggTω
= (gT Ω−2g)−1/2Ω−1g. (2.7)

Note that the optimal weight depends on the density function of ε. Based on estimated residuals
ε̂i, the usual nonparametric density estimation methods can provide a consistent estimator ĝ(·) of g(·).
Then the estimated optimal weight vector is ω̂∗ = (ĝT Ω−2ĝ)−1/2Ω−1ĝ. With the optimal weight vector
ω̂∗ obtained in hand, the first optimal WCQR estimator of β is defined as

β̂OWCQ1 = arg min
β

K∑
k=1

ω̂∗k

n∑
i=1

δi

π̂(Ui)
ρτk(Yi − f (Xi, β) − b̂τk). (2.8)

Corollary 2.2. The optimal weighted compositive quantile estimators β̂OWCQ1 of β has the optimal
asymptotic variance 1

n (gT Ω−1g)−1Σ−1
1 Σ2Σ

−1
1 .

Next, we present the second weighting schemes. Our method is inspired by Wang, Song and
Zhang [23]. Let

(b̂τk , β̂τk) = arg min
bτk ,β

n∑
i=1

δi

π̂(Ui)
ρτk(Yi − f (Xi, β) − bτk),

then the second WCQR estimator is defined as

β̂WCQR2 =

K∑
k=1

ωkβ̂τk , (2.9)

where ωk’s satisfy
∑K

k=1 ωk = 1. The asymptotic distribution of β̂WCQR2 is summarized in the following
theorem.
Theorem 2.2. Suppose that the conditions C1−C6 in Appendix hold and β∗ be is true parameter value.
Then we have

√
n(β̂WCQR2 − β

∗)
D
−→ N

(
0, ωT HωΣ−1

1 Σ2Σ
−1
1

)
.

Similarly, we can obtain the optimal weight by minimizing ωT Hω in the asymptotic covariance
given in Theorem 2.2. As a result, the second optimal WCQR of β can be correspondingly defined as
β̂OWCQ2 with the associated optimal asymptotic variance derived in the following corollary.
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Corollary 2.3. The optimal weight vector ω∗ = (ω∗1, ω
∗
2, . . . , ω

∗
K)T of WCQR2 is

ω∗ = arg min
ωT 1=1

ωT Hω =
H−11

1T H−11
, (2.10)

where 1 is a K × 1 vector with all elements 1. With this optimal weight vector, the optimal WCQR
estimator β̂OWCQ2 =

∑K
k=1 ω

∗
kβ̂τk has the optimal asymptotic variance

1
n

(1T H−11)−1Σ−1
1 Σ2Σ

−1
1 =

1
n

(gT Ω−1g)−1Σ−1
1 Σ2Σ

−1
1 .

Remark 1. The optimal weight of OWCQ2 is essentially the same as Zhao and Lian [25], but with
different representation. And from the above results for the two weighting methods we observe that if
we use the optimal weight vectors, the optimal WCQR estimators achieve the same optimal asymptotic
variance 1

n (gT Ω−1g)−1Σ−1
1 Σ2Σ

−1
1 .

3. Simulation studies

In this section, we use simulation studies to examine the finite sample performance of our proposed
methods and compare it with the inverse probability weighted CQR (IWCQ) method which uses the
same weight for different QR models, and the inverse probability WLS estimator. Referring to Zou
and Yuan [6], the estimator of the proposed methodology is nearly efficient as the oracle maximum
likelihood (OML) estimator for K ≥ 9 in various error distributions. Therefore, we take K = 10,
τk = k/11, k = 1, 2, . . . , 10, and consider the exponential regression models

Y = exp(β1X1 + β2X2 + β3X3) + ε,

where β1 = 0.5, β2 = 1, β3 = 1 and (X1, X2, X3) follows multivariate normal distribution with
covariances always 0.5 and variances always 1. The model error ε and X = (X1, X2, X3)T are
independent. Then, using the method described in Section 4 in Wang, Chen and Lin [27], we set the
data in X3 to be missing at random while X1, X2,Y are fully observed. And we consider two selection
probability functions

π1(X1, X2) = exp(2 + 0.5X1 + 0.5X2)/
[
1 + exp(2 + 0.5X1 + 0.5X2)

]
,

π2(X1, X2) = exp(1 + 1.25X1 + X2)/
[
1 + exp(1 + 1.25X1 + X2)

]
.

Their corresponding average missing rates are 15% and 35% respectively. In our simulation, four
different distributions of model error ε are considered:

(Case 1) The standard normal distribution N(0, 1).
(Case 2) The centralized t distribution with four degrees of freedom.
(Case 3) The mixture of normal distribution 0.6N(0, 1) + 0.4N(2, 1).
(Case 4) The centralized χ2 distribution with four degrees of freedom.
In the simulation, samples of size n = 200 and n = 600 are generated independently. Four

estimation methods, OWCQ1, OWCQ2, WLS and IWCQ are used to estimate β1, β2 and β3 under
the above selection probability functions and error distributions. Then the root of mean squared errors
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(RMSEs) can be calculated. To evaluate the different estimators, we repeat the process 1000 times
and calculate the average RMSEs. The simulation results are reported in Tables 1–4 for cases that the
selection probability function π(·) is known (denoted as T), estimated nonparametrically (denoted as
N) and parametrically (denoted as P). When the selection probability is estimated nonparametrically,
we use the Gaussian kernel K(x) = 1

√
2π

exp(− x2

2 ) to construct the multiplicative kernel L(x1, x2) =

K(x1)K(x2), and use the bandwidth proposed by Ruppert, Sheather and Wand [28]. When π(·) is
estimated by parametric method, we apply model (2.5) to estimate it. Meanwhile, similar to Jiang
et al. [24], our proposed estimator involves a weighting scheme and the density of error is known in
simulations, so we took the optimal weight ω∗ (see Section 2.2) for all simulations.

Table 1. The RMSEs (multiplied by 104) for β under the selection probability function
π1(X1; X2) for n = 200.

ε β
OWCQ1 OWCQ2 WLS IWCQ

T N P T N P T N P T N P

Case1
β1 69.815 70.083 70.394 72.635 72.568 72.357 69.481 69.228 69.405 70.208 69.758 70.045
β2 67.619 67.682 67.697 70.266 70.334 70.316 66.842 66.872 66.880 67.598 67.771 67.520
β3 67.451 66.999 67.862 69.436 69.148 69.571 66.548 66.339 66.534 67.456 67.096 67.599

Case2
β1 91.124 90.406 91.482 92.599 92.082 92.282 97.444 97.329 97.498 91.918 91.159 91.469
β2 86.790 84.551 86.247 85.497 84.982 85.157 93.340 92.772 93.262 86.649 86.011 86.640
β3 87.330 86.256 86.832 86.259 86.408 86.438 92.537 92.775 92.519 87.302 87.413 86.463

Case3
β1 103.49 103.60 104.43 104.01 104.21 104.02 116.86 116.63 116.76 103.24 104.69 104.19
β2 97.220 96.335 97.271 94.204 94.251 94.005 112.09 111.73 112.13 99.724 100.34 99.991
β3 103.11 103.66 104.10 100.51 100.17 100.26 117.34 117.38 117.33 105.15 103.92 105.87

Case4
β1 194.52 192.19 195.21 168.33 170.55 171.35 411.30 411.00 409.41 256.99 259.41 259.73
β2 178.00 168.97 174.80 150.73 148.00 149.04 391.41 390.18 391.30 241.40 238.28 241.31
β3 196.63 195.57 196.35 163.73 167.43 169.52 400.91 400.87 399.81 250.51 247.66 247.75

Table 2. The RMSEs (multiplied by 104) for β under the selection probability function
π2(X1; X2) for n = 200.

ε β
OWCQ1 OWCQ2 WLS IWCQ

T N P T N P T N P T N P

Case1
β1 72.059 70.502 72.837 72.631 72.315 72.331 68.665 68.472 68.565 73.059 71.171 72.846
β2 69.884 66.711 69.543 69.375 69.399 69.523 65.568 65.516 65.486 69.057 67.296 68.708
β3 70.649 69.247 71.376 71.898 70.976 71.581 67.101 66.943 67.111 70.199 68.972 70.806

Case2
β1 89.885 90.720 91.987 91.404 90.922 89.848 95.801 95.740 95.810 94.513 91.495 94.635
β2 84.532 83.575 85.351 81.752 81.301 82.248 89.878 89.691 89.885 84.997 81.760 84.635
β3 86.637 86.019 88.037 86.442 85.448 85.523 90.878 91.106 90.837 88.500 85.344 88.625

Case3
β1 111.25 107.40 110.85 106.60 105.38 106.70 117.16 117.54 117.09 114.25 110.63 110.23
β2 102.81 98.443 103.60 95.112 96.201 95.374 111.66 111.44 111.53 108.05 102.58 107.68
β3 109.44 106.47 105.94 100.80 101.37 100.26 115.30 115.45 115.55 113.12 106.08 108.44

Case4
β1 200.03 190.67 196.16 178.68 173.67 185.99 410.08 412.02 410.44 279.83 264.94 285.81
β2 170.64 167.98 174.57 155.36 146.81 153.24 382.39 381.07 382.02 259.52 239.58 250.77
β3 196.65 186.94 195.98 175.10 167.23 175.20 391.13 391.01 391.34 270.68 257.52 270.36
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Table 3. The RMSEs (multiplied by 104) for β under the selection probability function
π1(X1; X2) for n = 600.

ε β
OWCQ1 OWCQ2 WLS IWCQ

T N P T N P T N P T N P

Case1
β1 25.572 25.515 24.947 26.134 26.437 26.173 24.447 24.525 24.442 25.424 25.342 25.320
β2 23.663 23.839 23.743 24.582 24.823 24.726 23.140 23.253 23.142 23.938 23.643 23.878
β3 24.046 23.974 23.934 24.758 24.746 24.892 23.426 23.507 23.429 24.246 24.019 24.215

Case2
β1 30.219 30.031 30.487 30.349 30.274 30.454 32.960 32.914 32.959 30.739 30.452 30.924
β2 30.093 30.356 30.087 29.949 29.838 29.894 32.766 32.736 32.772 30.636 30.554 30.107
β3 29.388 29.358 29.372 29.042 29.074 29.069 32.962 32.924 32.966 29.949 29.783 29.989

Case3
β1 41.449 41.209 41.214 37.899 37.862 37.805 48.247 48.244 48.183 41.469 41.915 42.827
β2 37.420 37.788 37.515 35.155 34.787 34.723 46.331 46.481 46.301 39.647 38.938 40.156
β3 37.194 36.275 36.613 33.889 33.677 33.792 45.890 45.957 45.905 37.930 37.878 38.686

Case4
β1 69.441 67.445 68.620 56.757 56.679 56.131 173.27 173.52 173.24 104.62 106.89 104.78
β2 65.303 63.240 62.968 52.234 50.795 51.504 176.16 176.44 176.46 105.95 107.51 103.95
β3 67.368 62.231 62.897 54.403 54.812 54.689 182.13 182.04 182.06 104.29 111.02 103.67

Table 4. The RMSEs (multiplied by 104) for β under the selection probability function
π2(X1; X2) for n = 600.

ε β
OWCQ1 OWCQ2 WLS IWCQ

T N P T N P T N P T N P

Case1
β1 26.185 25.492 26.202 25.716 25.794 25.532 24.259 24.271 24.288 26.034 25.786 25.998
β2 24.210 24.086 24.215 24.426 24.648 24.535 22.966 23.048 22.968 24.498 24.623 24.252
β3 24.971 24.826 25.319 25.077 25.128 25.043 23.276 23.295 23.311 25.454 24.999 25.898

Case2
β1 31.548 31.632 31.631 30.495 30.447 30.524 33.423 33.397 33.411 32.692 32.331 32.422
β2 30.301 29.961 30.383 29.742 29.760 29.827 32.471 32.430 32.454 31.721 31.218 31.278
β3 30.325 29.495 29.733 29.124 28.802 29.064 32.906 32.873 32.897 31.516 30.954 30.065

Case3
β1 45.130 43.852 45.128 37.870 37.555 38.020 48.043 48.115 48.048 50.746 47.710 52.185
β2 41.167 39.934 41.160 35.190 35.213 35.411 46.267 46.312 46.233 45.117 43.963 47.649
β3 40.974 38.909 40.893 34.035 34.065 33.732 45.492 45.414 45.479 44.275 43.626 45.085

Case4
β1 78.214 75.849 77.303 57.448 57.145 56.259 171.73 172.81 171.66 134.52 124.10 136.22
β2 73.627 69.376 70.722 52.432 51.211 51.105 175.48 175.61 175.55 136.08 124.71 136.97
β3 73.030 69.922 69.207 54.729 52.922 54.132 179.53 179.19 179.42 134.62 125.02 135.85

From Tables 1–4 we observe that when the model error ε follows the standard normal distribution
N(0, 1), WLS performs the best among the four estimators considered, while OWCQ1, OWCQ2 and
IWCQ behave very similarly. For all other non-normal distributions considered, WLS always performs
the worst. The performance of the other three methods are very similar when the model error follows
the centralized t distribution with four degrees of freedom. It is further noted that when the missing
rate is high or the sample size is large, our proposed methods are superior to IWCQ. Particularly, when
the model error follows chi-square distribution with four degrees of freedom, the superiority of both
OWCQ1 and OWCQ2 are even more obvious. We also find that for OWCQ1 and IWCQ methods
a better result can be obtained by estimating the selection probability function with a nonparametric
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method. At the same time, IWCQ also performs much better than WLS.
When sample size is large, it can be seen from Tables 3 and 4 that the performance of the four

estimators are significantly improved compared with that when the sample case is small.And our
proposed estimators have more obvious advantages over WLS and IWCQ. We observe that both
OWCQ1 and OWCQ2 always have a high accuracy under any of the four error distributions, and
OWCQ2 performs slightly better than OWCQ1 except when the model error ε follows the standard
normal distribution. We also find that the RMSEs are not sensitive to missing rate. In addition, the
calculation speed of OWCQ1 is faster than OWCQ2 when the optimal weight obtained from the known
error distribution is used. For example, when we simulated case1 at n=200 and π=0.15, we found that
OWCQ1 was about 20% faster than OWCQ2. For other cases, the difference between OWCQ1 and
OWCQ2 in computing speed is similar.

4. A real data example

In this section, we will illustrate our proposed methods using a real data originally presented by
Baum [29] to investigate how age, marriage state, number of children and education background affect
whether a women works or not. For each women there are five variables:

• Work (y): 1=Yes, 0=Not;

• Age (x1): the age of the women;

• Children(x2): the number of the children the women raises;

• Education (x3): the years that the women has passed in school;

• Married (x4): 1=Yes, 0=Not.

Note that the response y is the average estimated probability of work. A logistic model with all of
covariates given by

yi =
exp(β0 + β1x1i + β2x2i + β3x3i + β4x4i)

1 + exp(β0 + β1x1i + β2x2i + β3x3i + β4x4i)
+ εi, i = 1, 2, . . . , 2000

is suitable for modeling the relationship between the choice of work and all possible factors. In order
to use the data set to illustrate our methods, artificial missing data were created by using the selection
probability π(X) =

exp(γ0+γ1 x1+γ2 x2)
1+exp(γ0+γ1 x1+γ2 x2) . The missing proportion is about 18.65% with γ0 = 2, γ1 =

0.15, γ2 = 0.25, and, following Li and Ding [30], the quantile vector is taken as τ = (0.2, 0.4, 0.6, 0.8)T

with K = 4.
From (2.7) and (2.10), we know that the optimal weights depend on g(b∗τ) and b∗τ, both of which are

unknown here and need to be estimated. Motivated by Sun and Sun [31] and Zhao and Xiao [7], we
propose the following procedure under the case when the selection probability is known.

(1) Use the uniform weight ω = (1/K, 1/K, . . . , 1/K)T to obtain the preliminary estimator β̂ of β as
follows:

(b̂τ1 , b̂τ1 , . . . , b̂τK , β̂) = arg min
bτk ,β

K∑
k=1

1
K

n∑
i=1

δi

π(Ui)
ρτk(Yi − bτk − f (Xi, β)).
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(2) Let m =
∑n

i=1 δi. Without loss of generality, we assume the first m observations are complete.
Then, based on the complete data, the pseudo residuals ε̂i with δi = 1 are computed as ε̂i =
δi

π(Ui)
(Yi − f (Xi, β̂)), i = 1, 2, . . . ,m.

(3) Use the nonparametric kernel density estimator to estimate g(t):

ĝ(t) =
1

mb

m∑
i=1

K(
t − ε̂i

b
),

where K(·) is a non-negative kernel function and the bandwidth b is selected by

b = 0.9 ×min
{

SD(ε̂1, ε̂2, . . . , ε̂m),
IQR(ε̂1, ε̂2, . . . , ε̂m)

1.34

}
× m−1/5,

where SD and IQR stand for the sample standard deviation and sample interquantile range,
respectively.

(4) Estimate g(b∗τk
) by ĝ(b̂τk) and then substitute it into (2.7) or (2.10), from which the optimal weight

vector can be obtained, where b̂τk denotes the sample τk-quantile of ε̂1, ε̂2, . . . , ε̂m.

It is obvious that when a women has a work, the response yi will take a larger value. Because there
are only 32.85% of women in the data set does not work, we could believe that a woman has a job
if the corresponding response ŷi is bigger than the 0.3285 quantile of the fitted values ŷ. In order to
compare the performance of our proposed methods with IWCQ and the composite quantile estimator
which only uses the fully observed data (denoted by CQR-CCA), we calculate the fitted values ŷ with
all the 2000 data of the above four methods respectively, and predict whether a women works or not.
The prediction accuracy is reported in Table 5. From Table 5 we observe that IWCQ method can
obviously improve the efficiency of estimation in the case of missing data, and CQR-CCA estimator
has the lowest accuracy. It is obvious that our proposed methods are more accurate compared with
IWCQ method.

Table 5. Accuracy of prediction.

OWCQ1 OWCQ2 IWCQ CQR-CCA
Accuracy 0.708 0.693 0.6725 0.6195

5. Discussion

In this article, we have proposed two types of weighted quantile estimators for nonlinear models
with missing covariates. The asymptotic properties of our proposals have been obtained under certain
conditions. Our simulation studies reveal that our proposed method has better advantages than the
existing methods. Finally, we propose some future directions. First, We only consider the estimates
of unknown parameters in this paper, and future studies can start from variable selection. Second,
the logistic model for the selection probability function is assumed in our article. When the selection
probability function is misspecified, how to derive a robust estimation of the selection probability
could be a direction for further study. Third, our method could be used in Altun et al. [32] to obtain
the unknown model parameters of new extended gamma distribution. At last, how to generalize our
method to optimal reinsurance problems of Fang, Cheng and Qu [33] is also an interesting topic.
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A. Appendix: Assumptions and proofs

The following assumptions are needed in the proof of our main results, and they are commonly used
in nonparametric regression and quantile regression literatures.

C1: The random error ε is independent of X, its density function g(·) has a continuous and uniformly
bounded derivative. For each p-vector u, the cumulative distribution function G(·) satisfies

lim
n→∞

1
n

n∑
i=1

∫ u0+(∇ f ∗i )T u

0

√
n
[
G(a +

t
√

n
) −G(a)

]
dt =

1
2

g(a)(u0,uT )
(

1 0
0 Σ1

)
(u0,uT )T .

C2: There is a large enough open subset B contains the true parameter point β0, such that for all Xi

the second derivative matrix ∇2 f (Xi, β) of f (Xi, β) with respect to β satisfies that

‖∇2 f (Xi, β1) − ∇2 f (Xi, β2)‖ ≤ M(Xi)‖β1 − β2‖

and |∂2 f (Xi, β)/∂β j∂βk| ≤ Ni j(Xi) for all β ∈ B, where E[M2(Xi)] < ∞ and E[N2
i j(Xi)] < C1 < ∞ for all

j, k.
C3: The matrix Σ1 is positive definite.
C4: The function π(·) has bounded joint derivatives up to order r0 (r0 > q) and satisfies mini π(Ui) ≥

c0 for some c0 > 0.
C5: The density function PU(·) of U has bounded joint derivatives up to order r0 (r0 > q) on the

support of U and satisfies PU(u) ≥ c for some c > 0.
C6: The kernel functions K(·) is a bounded kernel function of order r0 with bounded support. The

bandwidth h satisfies h→ 0, nh2r0 → 0, nh2q/(log n · log log n)→ ∞ as n→ ∞.
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C7: The MLE γ̂ of γ is
√

n-consistent and satisfies the regularity conditions of asymptotic
normality.

Assumptions C1 and C2 are the same as the assumptions (b)and (c) in Jiang et al. [24]. Assumptions
C1, C4, C5 and C6 are commonly used conditions in missing data and nonparametric regression.
Proof of Theorem 2.1. The proof of Theorem 2.1 is divided into three parts: (1) when the selection
probability function is supposed to be known, (2) when the selection probability function is estimated
by the nonparametric method, and (3) when the selection probability function is estimated by the
parametric method.

(1) Let
√

n(β̂−β∗) = u,
√

n(b̂τk−bτk) = vk, v = (v1, v2, . . . , vK)T , θ = (uT , vT ), S n(π(U), θ) = Ln(π(U),
β∗ + n−1/2u,b∗ + n−1/2v) − Ln(π(U), β∗,b∗), ξi(u, vk) = (∇ f ∗i )T u + vk, ηi =

∑K
k=1 ωk[I(εi < b∗τk

) − τk].
Then minimizing the object function Ln(π(U), β,b) is equivalent to minimizing S n(π(U), θ). Similar to
Jiang et al. [24], we let

S ∗n(π(U), θ) =

K∑
k=1

ωk

n∑
i=1

δi

π(Ui)
{ρτk(Yi − f ∗i − (∇ f ∗i )T n−1/2u − (b∗τk

+ n−1/2vk))

−ρτk(Yi − f ∗i − b∗τk
)},

S ∗∗n (π(U), θ) =

K∑
k=1

ωk

n∑
i=1

δi

π(Ui)
{ρτk(Yi − f ∗i − (∇ f ∗i )T n−1/2u −

1
2n

uT (∇2 f ∗i )u

−(b∗τk
+ n−1/2vk)) − ρτk(Yi − f ∗i − b∗τk

)}.

Then

S ∗n(π(U), θ) =

K∑
k=1

ωk

n∑
i=1

δi

π(Ui)
{ρτk(εi − b∗τk

−
1
√

n
ξi(u, vk)) − ρτk(εi − b∗τk

)},

S ∗∗n (π(U), θ) =
∑K

k=1 ωk
∑n

i=1
δi

π(Ui)
{ρτk(εi − b∗τk

− 1
√

nξi(u, vk) − 1
2nuT (∇2 f ∗i )u) − ρτk(εi − b∗τk

)}.

Applying the identity in Knight [34]

ρτ(r − s) − ρτ(r) = s(I(r < 0) − τ) +

∫ s

0
[I(r ≤ t) − I(r ≤ 0)]dt,

we have

S ∗n(π(U), θ) =

K∑
k=1

ωk

n∑
i=1

δi

π(Ui)
{

1
√

n
ξi(u, vk)[I(εi < b∗τk

) − τk]}

+

K∑
k=1

ωk

n∑
i=1

δi

π(Ui)

∫ 1√
n
ξi(u,vk)

0
[I(εi < b∗τk

+ x) − I(εi < b∗τk
)]dx
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=

K∑
k=1

ζnkvk + ZT
n u +

K∑
k=1

ωkBnk,

where

ζnk = ωk
1
√

n

n∑
i=1

δi

π(Ui)
[I(εi < b∗τk

) − τk],

Zn = 1
√

n

∑n
i=1

δi
π(Ui)

(∇ f ∗i )Tηi,

Bnk =
∑n

i=1
δi

π(Ui)

∫ 1√
n
ξi(u,vk)

0 [I(εi < b∗τk
+ x) − I(εi < b∗τk

)]dx.

Let

Bni,k =
δi

π(Ui)

∫ 1√
n
ξi(u,vk)

0
[I(εi < b∗τk

+ x) − I(εi < b∗τk
)]dx,

for any ε > 0, we have

[Bni,k]2 = [Bni,k]2I(
1
√

n
ξi(u, vk) ≥ ε) + [Bni,k]2I(

1
√

n
ξi(u, vk) < ε).

Similar to the proof of Theorem 2.1 in Yang and Liu [22], we can verify that
∑n

i=1[Bni,k − E(Bni,k)] =

op(1). Moreover, we have

E(Bnk) =

n∑
i=1

E(Bni,k) = nE{
δi

π(Ui)

∫ 1√
n
ξi(u,vk)

0
[I(εi < b∗τk

+ x) − I(εi < b∗τk
)]dx}

= nE{
∫ 1√

n
ξi(u,vk)

0
[G(b∗τk

+ x) −G(b∗τk
)]dx}

=
1
2

g(b∗τk
)[v2

k + uT Σ1u] + op(1).

Note that E{ δi
π(Ui)

[I(εi < b∗τk
) − τk]} = 0, using the central limit theorem, we know ζnk and Zn converge

in distribution to ζk and Z, where ζk is normal with mean 0 and Z ∼ N(0,Σ2(ωT Ωω)). So we have

S ∗n(π(U), θ)→d S (u, v) =

K∑
k=1

ζkvk + ZT u +
1
2

K∑
k=1

ωkg(b∗τk
)[v2

k + uT Σ1u].

Similar to Jiang et al. [24], we can prove that

S ∗∗n (π(U), θ) − S ∗n(π(U), θ) = op(1)

and
S n(π(U), θ) − S ∗n(π(U), θ) = op(1).

So we derive

S n(π(U), θ) =

K∑
k=1

ζkvk + ZT u +
1
2

K∑
k=1

ωkg(b∗τk
)[v2

k + uT Σ1u] + op(1).
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Since S n(π(U), θ) is a convex function, then following Knight [34] and Koenker [9], we derive

ûn →
d û,

where ûn and û is the minimizer of S n(π(U),u, v) and S (u, v) for u, respectively. By some simple
algebra calculation we have

û = −[
K∑

k=1

ωkg(b∗τk
)Σ1]−1Z.

Using the fact that Z ∼ N(0,Σ2(ωT Ωω)), we derive that ûn ∼ N(0, ωT Ωω
ωT ggTω

Σ−1
1 Σ2Σ

−1
1 ).

(2) When the selection probability function is estimated by the nonparametric method, minimizing
the object function Ln(π̂(U), β,b) is equivalent to minimizing S n(π̂(U), θ). Similar to the proof of (1),
we have

S ∗n(π̂(U), θ) =

K∑
k=1

ωk

n∑
i=1

δi

π̂(Ui)
{

1
√

n
ξi(u, vk)[I(εi < b∗τk

) − τk]}

+

K∑
k=1

ωk

n∑
i=1

δi

π̂(Ui)

∫ 1√
n
ξi(u,vk)

0
[I(εi < b∗τk

+ x) − I(εi < b∗τk
)]dx

=

K∑
k=1

ζ(1)
nk vk + [Z(1)

n ]T u +

K∑
k=1

ωkB(1)
nk ,

where

ζ(1)
nk = ωk

1
√

n

n∑
i=1

δi

π̂(Ui)
[I(εi < b∗τk

) − τk],

Z(1)
n = 1

√
n

∑n
i=1

δi
π̂(Ui)

(∇ f ∗i )Tηi,

B(1)
nk =

∑n
i=1

δi
π̂(Ui)

∫ 1√
n
ξi(u,vk)

0 [I(εi < b∗τk
+ x) − I(εi < b∗τk

)]dx.

Since
δi

π̂(Ui)
=

δi

π(Ui)
+
δi(π(Ui) − π̂(Ui))
π(Ui)π̂(Ui)

,

so we have

B(1)
nk = Bnk +

n∑
i=1

δi(π(Ui) − π̂(Ui))
π(Ui)π̂(Ui)

∫ 1√
n
ξi(u,vk)

0
[I(εi < b∗τk

+ x) − I(εi < b∗τk
)]dx

=̂ Bnk + B̃nk.

Under the Assumption C4–C6, we can show that

n∑
i=1

δi

π(Ui)π̂(Ui)

∫ 1√
n
ξi(u,vk)

0
[I(εi < b∗τk

+ x) − I(εi < b∗τk
)]dx = Op(1).
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Since supu |π̂(u)−π(u)| = op(1), combine this result with the above one, we can derive that B̃nk = op(1),
therefore, B(1)

nk = Bnk + op(1). Similar to the proof of Theroem 3 in Wong et al. [35], we can show that

Z(1)
n =

1
√

n

n∑
i=1

{
δi

π(Ui)
(∇ f ∗i )Tηi −

δi − π(Ui)
π(Ui)

E[(∇ f ∗i )Tηi|Ui]} + op(1).

Noting that ε is independent of X, we can easily derive that E[(∇ f ∗i )Tηi|Ui] = E{E[(∇ f ∗i )Tηi|Xi]|Ui} =

E{(∇ f ∗i )T E(ηi|Xi)|Ui} = E{(∇ f ∗i )T E(ηi)|Ui} = 0. So we have Z(1)
n = Zn + op(1). Therefore, we derive

that

S ∗n(π̂(U), θ) =

K∑
k=1

ζ(1)
nk vk + ZT

n u +

K∑
k=1

ωkBnk + op(1).

The following is same to the proof of (1), here we omit. So we complete the proof of (2).
(3) When the selection probability function is estimated by the parametric method, minimizing the

object function Ln(π(U, γ̂), β,b) is equivalent to minimizing S n(π(U, γ̂), θ). Using the same argument,
we analyse

S ∗n(π(U, γ̂), θ) =

K∑
k=1

ωk

n∑
i=1

δi

π(U, γ̂)
{

1
√

n
ξi(u, vk)[I(εi < b∗τk

) − τk]}

+

K∑
k=1

ωk

n∑
i=1

δi

π(U, γ̂)

∫ 1√
n
ξi(u,vk)

0
[I(εi < b∗τk

+ x) − I(εi < b∗τk
)]dx

=

K∑
k=1

ζ(2)
nk vk + [Z(2)

n ]T u +

K∑
k=1

ωkB(2)
nk ,

where

ζ(2)
nk = ωk

1
√

n

n∑
i=1

δi

π(Ui, γ̂)
[I(εi < b∗τk

) − τk],

Z(2)
n = 1

√
n

∑n
i=1

δi
π(Ui,γ̂) (∇ f ∗i )Tηi,

B(2)
nk =

∑n
i=1

δi
π(Ui,γ̂)

∫ 1√
n
ξi(u,vk)

0 [I(εi < b∗τk
+ x) − I(εi < b∗τk

)]dx.

Similarly, the proof will be completed if we can show that

S ∗n(π(U, γ̂), θ) =

K∑
k=1

ζ(2)
nk vk + ZT

n u +

K∑
k=1

ωkBnk + op(1).

Under Assumption C7, we have

δi

π(Ui, γ̂)
−

δi

π(Ui, γ)
= −

δi
∂π(Ui,γ)
∂γ

π2(Ui, γ)
(γ̂ − γ) + op(n−1/2).

Noting ∂π(Ui,γ)
∂γ

= π(Ui, γ)(1 − π(Ui, γ))ΓT
i , so we derive

δi

π(Ui, γ̂)
−

δi

π(Ui, γ)
= −

δi(1 − π(Ui, γ))
π(Ui, γ)

ΓT
i (γ̂ − γ) + op(n−1/2).
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Similarly, we can verify that B(2)
nk = Bnk + op(1).

Z(2)
n = Zn +

1
√

n

n∑
i=1

δi(1 − π(Ui, γ))
π(Ui, γ)

(∇ f ∗i )TηiΓi(γ̂ − γ) + op(1)

= Zn +
1
n

n∑
i=1

δi(1 − π(Ui, γ))
π(Ui, γ)

(∇ f ∗i )TηiΓi
√

n(γ̂ − γ) + op(1).

Using the fact that ε is independent of X, it is easy to derive

E[
δi(1 − π(Ui, γ))(∇ f ∗i )TηiΓi

π(Ui, γ)
] = E

(
(1 − π(Ui, γ))(∇ f ∗i )T Γi

)
E (ηi) = 0.

So we get
Z(2)

n = Zn + op(1).

With these results in hand, we easily derive

S ∗n(π(U, γ̂), θ) =

K∑
k=1

ζ(2)
nk vk + ZT

n u +

K∑
k=1

ωkBnk + op(1).

The following is same to the proof of (1), here we omit. This completes the proof of Theorem 2.1.
The Proof of corollary 2.1 and corollary 2.2 is same to the proof of Proposition 1 and Theorem 2 in

Jiang et al. [24], so here we omit.
Proof of Theorem 2.2. (1) When the selection probability function is supposed to be known, from
the first part proof of Theorem 2.1, we can derive the Bahadur expression of β̂τk , because the objective
function

∑n
i=1

δi
π(Ui)

ρτk(Yi − f (Xi, β) − bτk) with a single quantile is just a special case of Theorem 2.1.
Let ηi(τk) = [I(εi < b∗τk

) − τk] and Zn,τk =
√

n
∑n

i=1
δi

π(Ui)
(∇ f ∗i )Tηi(τk). the Bahadur expression of β̂τk is

√
n(β̂τk − β

∗) = −
E[∇ f ∗1 (∇ f ∗1 )T ]−1

g(b∗τk
)

Zn,τk + op(1).

Thus,

√
n(β̂OWCQ2 − β

∗) =
√

n(
K∑

k=1

ωkβ̂τk − β
∗)

=
√

n
K∑

k=1

ωk(β̂τk − β
∗)

=

K∑
k=1

ωk{−
E[∇ f ∗1 (∇ f ∗1 )T ]−1

g(b∗τk
)

Zn,τk + op(1)}

= −E[∇ f ∗1 (∇ f ∗1 )T ]−1 1
√

n
[

n∑
i=1

δi

π(Ui)
(∇ f ∗i )T

K∑
k=1

ωk

g(b∗τk
)
ηi(τk)] + op(1).

Using the assumption that ε is independent of X, by some calculations, we can have that

E[
δi

π(Ui)
(∇ f ∗i )T

K∑
k=1

ωk

g(b∗τk
)
ηi(τk)] = 0,
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and

Cov[
δi

π(Ui)
(∇ f ∗i )T

K∑
k=1

ωk

g(b∗τk
)
ηi(τk)] = E[

δi

π2(Ui)
∇ f ∗i (∇ f ∗i )T {

K∑
k=1

ωk

g(b∗τk
)
ηi(τk)}2]

= E[
δi

π2(Ui)
∇ f ∗1 (∇ f ∗1 )T ]E[{

K∑
k=1

ωk

g(b∗τk
)
ηi(τk)}2] = Σ2ω

T Hω.

So we have
√

n(β̂OWCQ2 − β
∗)

D
−→ N(0,Σ−1

1 Σ2Σ
−1
1 ω

T Hω).

(2) When the selection probability function is estimated by the nonparametric method, since the
objective function

∑n
i=1

δi
π̂(Ui)

ρτk(Yi − f (Xi, β) − bτk) with a single quantile is just a special case of the
second part in the proof of Theorem2.1. Similar to the first part, we can easily derive the Bahadur
expression of β̂τk ,N , that is

√
n(β̂τk ,N − β

∗) = −
E[∇ f ∗1 (∇ f ∗1 )T ]−1

g(b∗τk
)

Z(1)
n,τk

+ op(1)

= −
E[∇ f ∗1 (∇ f ∗1 )T ]−1

g(b∗τk
)

{Zn,τk −
1
√

n

n∑
i=1

δi − π(Ui)
π(Ui)

E[(∇ f ∗i )Tηi(τk)|Ui]} + op(1).

Because ε is independent of X, it is easy to derive that E[(∇ f ∗i )Tηi(τk)|Ui] = (∇ f ∗i )T E[ηi(τk)|Ui] = 0.
Hence, we have

√
n(β̂τk ,N − β

∗) = −
E[∇ f ∗1 (∇ f ∗1 )T ]−1

g(b∗τk
)

Zn,τk + op(1),

which implies the Bahadur expression of β̂τk ,N is same to that of β̂τk . So when the selection probability
function is estimated by the nonparametric method, we obtain

√
n(β̂OWCQ2,N − β

∗)
D
−→ N(0,Σ−1

1 Σ2Σ
−1
1 ω

T Hω).

(3) When the selection probability function is estimated by the parametric method, we can obtain
the Bahadur expression of β̂τk ,P from the third part in the proof of Theorem2.1. That is

√
n(β̂τk ,P − β

∗) = −
E[∇ f ∗1 (∇ f ∗1 )T ]−1

g(b∗τk
)

Z(2)
n,τk

+ op(1)

= −
E[∇ f ∗1 (∇ f ∗1 )T ]−1

g(b∗τk
)

{Zn,τk +
1
√

n

n∑
i=1

δi − π(Ui, γ)
π(Ui, γ)

(∇ f ∗i )Tηi(τk)Γi(γ̂ − γ)} + op(1).

Because ε is independent of X, we can easily obtain that

E{
δi − π(Ui, γ)
π(Ui, γ)

(∇ f ∗i )Tηi(τk)Γi} = E{
δi − π(Ui, γ)
π(Ui, γ)

(∇ f ∗i )T Γi}E[ηi(τk)]

= E{(1 − π(Ui, γ))(∇ f ∗i )T Γi}E[ηi(τk)]
= 0.
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Again we have
√

n(β̂τk ,P − β
∗) = −

E[∇ f ∗1 (∇ f ∗1 )T ]−1

g(b∗τk
)

Zn,τk + op(1).

Therefore,
√

n(β̂OWCQ2,P − β
∗)

D
−→ N(0,Σ−1

1 Σ2Σ
−1
1 ω

T Hω).

The proof of Theorem 2.2 is completed.
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