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Abstract: In this paper, we present a computational algorithm, namely, local fractional natural 

homotopy analysis method (LFNHAM) to explore the solutions of local fractional coupled Helmholtz 

and local fractional coupled Burgers’ equations (LFCHEs and LFCBEs). This work also investigates 

the uniqueness and convergence of the solution of a general local fractional partial differential 

equation (LFPDE) obtained by the suggested method in view of theory of fixed point and Banach 

spaces. Furthermore, the error analysis of the LFNHAM solution is also discussed. Moreover, the 

numerical simulations are presented for each of the local fractional coupled equations on the Cantor 

set. The computational procedure clearly illustrates the validity and reliability of the proposed method 

for achieving the solutions of local fractional coupled Helmholtz and coupled Burgers’ equations. The 

proposed method also minimizes the computational work unlike other conventional methods while 

still giving extremely precise results. The implemented combination supplies a more general solution 

as compared to other methods and assimilates their consequences as a special case. In addition, the 

acquired solutions are also in excellent match with previously determined solutions. 
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1. Introduction 

Helmholtz and Burgers’ equations play an important role in various streams of applied physics. 

The Helmholtz equation frequently occurs in the study of physical phenomena involving elliptic partial 

differential equations (PDEs) such as wave and diffusion, magnetic fields, seismology, electromagnetic 

radiation, transmission, vibrating lines, acoustics, and geosciences. This equation is actually derived 

from the wave equation. The Helmholtz equation is a transformed form of the acoustic wave equation. 

It is utilized in a stream of seismic wave propagation and imaging. This equation plays a significant 

role in estimations of acoustic propagation in shallow water at low frequencies and characteristics of 

geodesic sea floor [1]. Mathematically, the eigenvalue problem for the Laplace operator is called the 

Helmholtz equation expressed by elliptic type linear PDE  22 k−=  , where 
2   denotes the 

Laplacian differential operator, 
2k  signifies the eigenvalue, and   is the eigen function. When this 

equation is used in respect of waves, k  is termed as the wave number which measures the spatial 

frequency of waves. For the first time, Samuel and Thomas [2] suggested the Helmholtz equation with 

fractional order. Recently, Prakash et al. [3] presented the solution of the space-fractional Helmholtz 

equation with the q-homotopy analysis transform method (q-HATM). More recently, Shah et al. [4] 

examined the fractional Helmholtz equation also. 

On the other hand, the Burgers’ equations [5–7] characterize the nonlinear diffusion phenomenon 

through the simplest PDEs. Burgers’ equations occur mainly in the mathematical model of turbulence, 

fluid mechanics, and approximation of flow in viscous fluids [5,8,9]. The coupled Burgers’ equations 

in one-dimensional form are described as a sedimentation and/or evolution model of scaled volume 

concentrations in fluid suspensions. More literature about coupled Burgers’ equations can be found in 

previous works [10,11]. In view of the development of the fractional calculus approach, the Burgers’ 

equation with a fractional derivative was first presented in [12]. After that, many authors investigated the 

solution for fractional Burgers’ equations in past decades using approximate analytical methods (see, for 

example, [13–23]). 

From the past decade, the concept of local fractional calculus and local fractional derivatives 

developed in the work of Yang [24,25] has been a centre of attraction among researchers. Further, 

many authors investigated the equations and models appearing in fractal media through various local 

fractional methods, for instance, local fractional homotopy perturbation method (LFHPM) for handling 

local fractional PDEs (LFPDEs) [26,27], local fractional Tricomi equation arising in fractal transonic 

flow [28], local fractional Klein-Gordon equations [29], local fractional heat conduction equation [30], 

local fractional wave equation in fractal strings [31], local fractional Laplace equation [32], system of 

LFPDEs [33], and fractal vehicular traffic flow [34], etc. In this sequence, the 2D local fractional 

Helmholtz equation (LFHE) was introduced in [35]. Recently, the LFHE was solved by local 

fractional variational iteration method [36], local fractional series expansion method [37]. The 

local fractional Helmholtz and coupled Helmholtz equations were handled successfully by 

Baleanu and Jassim [38–40] through various local fractional methods. In recent years, the local 

fractional coupled Burgers’ equations (LFCBEs) were also investigated for solutions through various 

techniques that can be found in [41–45]. 
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The 2D local fractional coupled Helmholtz equations (LFCHEs) suggested in [38] are given as 

follows:  
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where ( ) ,1  and ( ) ,2  are unknown local fractional continuous functions, and ( ) ,1  and 

( ) ,2  are the nondifferentiable source terms. 

The system of nonlinear coupled Burger’s equations with local fractional derivatives can be 

described as: 
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subject to the initial conditions: 

( ) ( ) ( ) ( ) 2211 0,,0, ff == ,                      (1.6) 

where 1  , 2  , 1  , and 2   denote real constants,    and    specify arbitrary constants that 

depend on parameters of the system, ( ) ,1  and ( ) ,2  are local fractional continuous functions, 

and   lies in the computational domain  . 

The key purpose of this work is to establish a new coupling of local fractional homotopy analysis 

method (LFHAM) [43,46] and local fractional natural transform (LFNT) [47], named as local 

fractional natural homotopy analysis method (LFNHAM) throughout in this paper. The second goal of 

the paper is to explore the solutions for the LFCHEs and the LFCBEs by utilizing the newly suggested 

combination LFNHAM. Moreover, the numerical simulations have also been presented for the 

obtained solutions of LFCHEs and LFCBEs for the fractal order 3ln/2ln=  of a local fractional 

derivative by using MATLAB. The originality and novelty of the paper lie in the fact that the LFCHEs 
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and LFCBEs have never been solved by using this newly suggested combination LFNHAM. In 

addition, convergence and uniqueness of the LFNHAM solution are also examined for the LFNHAM 

solution of general LFPDE in view of Banach’s fixed point theory. 

The notable aspect of the LFNHAM as compared to others is that it offers an extended degree of 

freedom for analysis and the main ingredient is an auxiliary parameter 0   to ensure the 

convergence of the acquired series solution. Furthermore, a more appropriate choice of an initial guess 

& effortless creation of deformation equations are the interesting attributes of this method. The 

LFNHAM is surely beneficial as it combines two powerful algorithms to attain the solutions for 

nonlinear LFDEs. The LFNHAM generates a convergent series solution that revolves around a 

convergence parameter without involving linearization, perturbation, or descretization phenomena. In 

addition, the LFNHAM also minimizes the numerical work unlike other conventional methods while 

still giving extremely precise results. The LFNHAM provides a more general solution as compared to 

LFHPM, local fractional Adomian decomposition method (LFADM) and local fractional natural 

homotopy perturbation method (LFNHPM) and assimilates their consequences as a special case. In 

addition, it does not involve the computation of complicated Adomian or He’s polynomials. But there 

is also a point of demerit with this technique. The implementation of LFNHAM can be difficult in the 

situation of non-evaluation of the LFNT of a function. This work checks the LFNHAM solution 

regarding uniqueness and convergence for the first time and the error analysis of the LFNHAM 

solution is also discussed. These points surely illustrate the reliability and validity of the proposed 

method. The other aspect of the LFNHAM is that the coupling of LFNT with LFHAM performs fast-

tracked calculations in comparison to LFHAM and consequently consumes less time and less computer 

memory. 

Moreover, the LFNT possesses two important attributes, scale property and unit-preserving 

property, and hence can be utilized to handle LFPDEs without exerting new frequency range. In the 

light of these facts, the LFNT which possesses the linearity feature, also possesses the feature of 

linearity of functions, and hence does not involve the changing of units. This transform performs 

operation similarly as the local fractional Laplace transform (LFLT) and local fractional Sumudu 

transform (LFST). By virtue of these facts, the LFNT may be used to analyze some complex problems 

of science and engineering that may be handled hardly with other integral transforms. 

The rest portion of the paper is organized as follows: Section 2 presents definitions and formulae 

for the local fractional derivative and LFNT. Section 3 illustrates the computational procedure for the 

suggested scheme LFNHAM. The convergence and uniqueness of the LFNHAM solution is discussed 

in Section 4. Sections 5 and 6 are devoted to the implementation of the LFNHAM to the LFCHEs and 

LFCBEs, respectively. In Section 7, numerical simulations have been performed in respect of a fractal 

value. At the end, Section 8 presents the epilogue. 

2. Preliminaries 

The section presents a quick view of some definitions and formulae which have been utilized in 

this work. 

2.1. Local fractional integral (LFI) and local fractional derivative (LFD) 

Definition 2.1.1. [24,25] Let ( )21 , ll  be the interval and  ,...,,,max 3210 ttttt =  be a partition 
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of ( )21 , ll   with ( )1, +jj tt  , 1,...,0 −= Nj  , 10 lt =  , 2lt N =
  

with 
jjj ttt −= +1
 . Now, the LFI of 
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Definition 2.1.2. [24,25] The Mittag-Leffler function is given as 
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Definition 2.1.3. [24,25] The fractal sine and cosine functions are given by 
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Definition 2.1.4. [24,25] The LFD of ( ) ( )21 , llC   of order   at 0 =  is presented as 
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where ( ) ( )( ) ( ) ( ) ( )( )00 1  −+− . 

The local fractional partial derivative of ( ) ( )21 ,, llC   of order   was provided by 

Yang [24,25] as follows: 
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where ( ) ( )( ) ( ) ( ) ( )( )00 ,,1,,  −+− . 

The LFIs and LFDs of special functions used in this study and described in [24,25] are given as 

follows: 
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where 
  signifies a Cantor function. 

2.2. Local fractional natural transform (LFNT) 

For the first time, Khan & Khan [48] suggested a new integral transform called N-transform. 

Some years later, Belgacem and Silambarasan [49–51] changed its name to Natural transform and also 

presented a comprehensive study regarding its applications. This transform performs operation 

similarly as the Laplace and Sumudu transforms. 

Definition 2.2.1. [47] The LFNT of the function ( ) ,  of order   is defined as 
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and the corresponding inverse LFNT 1−

NLF  is formulated as 
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where s  and u  signify the LFNT variables and   denotes a real constant.  The integral in the 

definition of inverse LFNT is taken along  =s   in the complex plane 
 yixs += . It is notable 

that the LFNT converges to LFLT for 1=u  and to LFST for 1=s . 

Some properties of the LFNT are being mentioned here: 

Proposition 2.2.2. [47] The LFNT of a LFD is defined by 
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For 2,1=q  and 3, the following expressions are generated 
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Proposition 2.2.3. [47] The linearity property of the LFNT is defined by 
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where ( )us,,,1    and ( )us,,,2    denote the LFNT of ( ) ,1  and ( ) ,2 , respectively. 

Theorem 2.2.4. (Local fractional convolution). If  ( )  ( )usNLF ,,, ,11   =   and 
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Some useful formulae for LFNT are listed in Table 1 [47]. 

Table 1. Formulae of LFNT. 
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3. LFNHAM: Computational procedure 

To explain the basic idea of LFNHAM, the following LFPDE is taken here 

( ) ( ) ( ) ( )  ,,,, =++ QPL , 10   , 10  ,          (3.1) 

where 





 q

q

L



  denotes the linear local fractional differential operator (LFDO) of order q  i.e., 

   a number 0   such that  L  ,   specifies the linear fractional differential 

operator of general nature in    and   . Here, it is also assumed that P
  

is bounded i.e., 

( )  −− P . Q  denotes the nonlinear differential operator which is Lipschitz continuous 

with 0   fulfilling the criteria ( )  −− Q  ,    and    are independent variables, 

( ) ,   and ( ) ,   denote local fractional unknown function and nondifferentiable source term, 

respectively.  

Now, the suggested computational approach recommends the implementation of the LFNT 

operator  on Eq (3.1) 
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Now on account of Eq (3.5), the nonlinear operator is constituted as 
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( )  ( ) ( ) 0;,;, =++  
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where  1,0   is an embedding parameter, ( ) ;,   symbolizes the local fractional unknown 

function of  ,  and ,  and the symbol NLF  represents the LFNT operator. 

Now utilizing the traditional approach of LFHAM [43,46] and basic methodology of HAM [52–54], the 

zeroth-order deformation equation is developed in this way: 

( ) ( ) ( )  ( )   ;,,;,1 0 =−− NLF
,                 (3.7) 

where 0   is a convergence regulation parameter and ( ) ,0   symbolizes an initial guess for 

( ) , . 

It is observed that LFNHAM makes easy the choice of auxiliary parameters, linear operator, and 

initial guess. The following equations stand firmly for 0=  and 1=  in this manner 

( ) ( ) ,0;, 0= , ( ) ( ) ,1;, = .                    (3.8) 
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The convergence controller 0   promptly provides the convergence of the series solution (3.9). 

Thus the series given by Eq (3.9) converges at 1=  with appropriate pick of ( ) ,0 . Thus, we 

have 
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Equation (3.11) provides a relationship between ( ) ,0   
and the exact solution ( ) ,  

through the terms ( ) ( ),...3,2,1,, =  , that will be calculated in upcoming steps. Eq (3.11) 

provides the solution of Eq (3.1) in the form of a series. 

The vectors are constituted as 
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Now, the th -order deformation equation is framed as 
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Operating the inverse of LFNT on Eq (3.13), we get 
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where the value of   is presented as 
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In Eq (3.15), P  denotes homotopy polynomial suggested in [55] in functioning of LFHAM [43,46], 

and is formulated as 
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Putting the value of ( )1−    from Eq (3.15) in Eq (3.14) transforms the Eq (3.14) as follows: 
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From Eq (3.19), the components ( ) ,   can be evaluated for 1   and the LFNHAM 

solution is presented in the following way: 
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The significant aspect of the LFNHAM is the auxiliary parameter 0  which guarantees the 

convergence of the series solution of Eq (3.1). 

Theorem 3.1. If a constant 10   can be estimated such that ( ) ( )  ,,1 +  for each 

value of  . Moreover, if the truncated series ( )
  ,

0 =

N

 
is assumed as an approximate solution 

  then the maximum absolute truncated error is computed as 
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Proof. The maximum absolute truncated error is computed in this way:  
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This finishes the proof. 

In the upcoming Section 4, we establish the convergence and uniqueness of the LFNHAM 

solution. 

4. Uniqueness and convergence analyses of LFNHAM solution 

Theorem 4.1. (Uniqueness theorem). The attainment of solution by implementation of LFNHAM for 

the LFPDE (3.1) is unique, wherever 10   , where 
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Proof. The solution of nonlinear LFPDE (3.1) is obtained as 
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Let ( ) ,  and ( ) ,
 be two distinct possible solutions for Eq (3.1), then we acquire 
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Utilization of the local fractional convolution theorem for LFNT in Eq (4.4) gives 

( )
( )

( ) ( ) ( )( )
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+
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−






 .                (4.5) 

Now, with the help of mean value theorem (MVT) of LFI calculus [56,57], inequality (4.5) 

transforms in the following form 

( ) ( ) ( ) ( )   −++−+− 1,,  

                                 ( ) ( )  −+++= 1  

                                 −=  . 

∴ (1 − 𝜌)|𝜗 − 𝜗∗| ≤ 0,                             (4.6) 

where ( ) ( ) +++= 1 .                                                    (4.7) 

Since 10    , therefore 0=−   , which provides =  . This ensures the aspect of 

uniqueness of the solution of Eq (3.1). 

Theorem 4.2. (Convergence theorem). Suppose   is a Banach space and → :  is a nonlinear 

mapping. Assume that 
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( ) ( )  −−  ,  , .                         (4.8) 

Then Banach’s fixed point theory [58,59] suggests the existence of a fixed point for . Moreover, the 

sequence constructed by LFNHAM converges to the fixed points of    with arbitrary choices of 

00 , 
 
and 

 

,
1

01

2

21
 −

−
−



 l

ll  , .                         (4.9) 

Proof. It is presumed that  ( ).,  , where     signifies the Banach space of continuous 

functions on real line interval   holding the sup norm.
 
Now, it is sufficient to prove that  

2l
  is a 

Cauchy sequence in the Banach space  . 

Now, consider 
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      (4.10) 

Employing the local fractional convolution theorem for LFNT in Eq (4.10), we have 
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 .     (4.11) 

Now, application of MVT of LFI calculus [56,57] reduces the inequality (4.11) in the following 

form 

( ) ( ) 


1111 212121
1max −−−−


−++−+− llllll   

( ) ( )  11 21
1max −−


−+++= ll

t
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.11 21 −− −= ll                             

11 2121 −− −− llll   ,                             (4.12) 

where ( ) ( ) +++=  1 .                                                   (4.13) 

Assume 121 += ll , then it produces 

0121

2

11
2

222222
 −−−− −−−+

l

llllll  .                          (4.14) 

Utilizing the triangular inequality, we have 

1121 11222221 −+++ −++−+−− llllllll  
 

     
( ) 01

121 1222  −++++
−++ llll 

 

   ( ) 01

12 212 1  −++++=
−−lll   

         01
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1

1 21
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−

−
=

−−






ll
l .                            (4.15) 

Since 10   , thus 11
121 −
−−ll , then 

01
1

2

21
 −

−
−



 l

ll .                          (4.16) 

But − 01   , thus 0
21
→− ll    as →n  , hence  

2l


  
 is a Cauchy sequence in 

   and so  
2l

  is convergent. This ensures the convergence of the solution ( ) ,  of LFPDE (3.1). 

Hence the theorem.                                                           □ 

5. Application of LFNHAM for LFCHEs 

In this section, LFNHAM is implemented for deriving the solutions for LFCHEs. 

The following LFCHEs on Cantor set are investigated 

( ) ( )
( ) 0,

,,
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2

2
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( ) ( )
( ) 0,
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1
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2

2

2
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,   ,10                (5.2) 

subject to the fractal initial conditions: 

( ) 00,1 = , 
( ) ( )









E=



 0,1 , 

( ) 00,2 = , 
( ) ( )









E−=



 0,2 ,                     (5.3) 

where ( ) ,1  and ( ) ,2  represent the local fractional continuous functions. 

On account of the initial conditions (5.3) and algorithm of LFNHAM, the initial guess are written 

as 
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Employing the LFNT operator NLF
 on Eqs (5.1) and (5.2), we get 
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Now, the implementation of formula of LFNT for local fractional derivatives yields 
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After rearranging the terms, we get 
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( ) ( ) ( )( )
( )

( )( )



 

















,

,
0,0,

1
,, 12

2

2

2

2

2

2

1211 N
s

u
N

s

u

s

u

s
us LFLF +












−+= ,     (5.9) 

( ) ( ) ( ) ( )
( )

( )( )



 

















,

,
0,0,

1
,, 22

2

2

1

2

2

2

2222 N
s

u
N

s

u

s

u

s
us LFLF +












−+= .   (5.10) 

Now, further simplification in view of initial condition (5.3) reduces Eqs (5.9) and (5.10) in the 

following way 

( ) ( ) ( )
( ) 0

,
,, 12

2

2

2

2

2

2

21 =−











+− 




 
















N
s

u
N

s

u
E

s

u
us LFLF

,         (5.11) 

( ) ( ) ( )
( ) 0

,
,, 22

2

2

1

2

2

2

22 =−











++ 




 
















N
s

u
N

s

u
E

s

u
us LFLF

.        (5.12) 

Now in view of Eqs (5.11) and (5.12), the nonlinear operators are formed as: 
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+ ,   (5.14) 

where   is an embedding parameter and ( ) ;,1  & ( ) ;,2  are real valued functions of  ,  
and  . 

Now using the steps of the LFHAM [43,46] and basic methodology of HAM [52–54], th -order 

deformation equations are constructed as follows: 

( ) ( ) ( )( )( )  ,,, )1(,1

1

)1(,1,1 −

−

− += NLF ,              (5.15) 

( ) ( ) ( )( )( )  ,,, )1(,2

1

)1(,2,2 −

−

− += NLF .            (5.16) 

In Eqs (5.15) and (5.16), the terms ( )( )  ,)1(,1 −  and ( )( )  ,)1(,2 −  are expressed as 
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Now implementing the LFNHAM and using Eqs (5.15) to (5.18), we have 
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On account of Eqs (5.19) and (5.20) for 1= , we have 
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Using initial guess values (5.4) and further simplification reduces Eqs (5.21) and (5.22) in this 

way 

( ) ( ) ( )
( )


















31

22,
3

22

2
1

1,1
+

−=







−= − E

s

u

s

u
NE LF  ,            (5.23)

 

( ) ( ) ( )
( )


















31

22,
3

22

2
1

1,2
+

=







= − E

s

u

s

u
NE LF  .            (5.24) 

By means of Eqs (5.19) and (5.20) for 2= , we have 
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Utilizing the values provided by Eqs (5.23) and (5.24) in Eqs (5.25) and (5.26), we obtain 
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Following the similar procedure, we obtain the rest of the values for ( )  ,,1
 and ( )  ,,2

 

for 3 . 

Setting the convergence-control parameter 1−= , we attain the following values 
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8098 

AIMS Mathematics  Volume 7, Issue 5, 8080–8111. 

  
and so on. 

Hence, the solutions of Eqs (5.1) and (5.2) are obtained as 
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Similarly, we have 
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Finally, the solutions of the coupled Helmholtz Eqs (5.1) & (5.2) are expressed as 

( ) ( ) ( )
2

2sinh
,1







 E= , 
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( ) ( ) ( )
2

2sinh
,2







 E−= .                    (5.32) 

Thus, the LFNHAM solutions are in complete agreement with the solutions obtained by Yang and 

Hua [60]. 

6. Application of LFNHAM for LFCBEs 

In this portion, the LFNHAM is executed for deriving the solutions for LFCBEs. 
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subject to the fractal initial conditions: 

( ) ( ) ( )
  E== 0,0, 21 ,                            (6.3) 

where ( ) ,1  and ( ) ,2  are local fractional continuous functions. 

In view of initial conditions (6.3) and LFNHAM, the initial guess are expressed as 

( ) ( ) ( )
  E== ,, 0,20,1

.                           (6.4) 

Employing the LFNT operator NLF
 on Eqs (6.1) and (6.2), we get 
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Now, employing the formula of LFNT for LFDs yields 
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After rearranging the terms, we get 
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Now, further simplification in view of initial conditions (6.3) reduces Eqs (6.9) and (6.10) as 

follows: 
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Now in view of Eqs (6.11) and (6.12), the nonlinear operators are formed as 
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where  1,0  is an embedding parameter and ( ) ;,1  & ( ) ;,2  are real valued functions 

of  , , and  . 

Performing the steps of the LFNHAM, th -order deformation equations are formed as 
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− += NLF ,                (6.15) 
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−

− += NLF .                (6.16) 

In Eqs (6.15) and (6.16), the terms ( )( )  ,)1(,1 −  and ( )( )  ,)1(,2 −  are computed as 
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where 
1−P ,

1−

P , 

1−


P  denote the homotopy polynomials [55] and are formulated as 
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and 
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( ) +++= 2,1
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( ) +++= 2,2
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1,20,22 ,,  t .                      (6.23) 

On account of LFNHAM and Eqs (6.15)–(6.18), we have 
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Taking into account the set of iterative schemes (6.24) & (6.25) and initial conditions (6.3), the 

iterative terms for various values of   are computed as follows: 
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Proceeding in the similar way, we get the remaining values for ( )  ,,1
  and ( )  ,,2

  for 

4 . 

Setting the convergence-control parameter 1−= , we attain the following values 
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and so on. 

Proceeding in the same way, the rest of the terms of ( )  ,,1
 and ( )  ,,2

 for 4  are 

evaluated in a smooth manner, and finally the local fractional series solutions are obtained. 

Hence, the solutions of Eqs (6.1) and (6.2) are obtained as 
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( ) ( )



  −= EE .                                              (6.28) 

Similarly, 

( ) ( ) ( ) ( )



  −==



=

EE
n

n

0

,22 ,, .                  (6.29) 

The solutions of LFCHEs and LFCBEs acquired by implementing the LFNHAM are the general 

form of solutions as compared to the LFADM, LFHPM, and LFNHPM. It is noteworthy that the 

LFNHAM solution transforms to the LFNHPM solution for 1−=  . The computational results 

validate the reliability and accuracy of the proposed method to achieve solutions for LFCHEs and 

LFCBEs. Moreover, the solutions of LFCHEs are in excellent match with the solutions obtained by 

Yang and Hua [60]. These facts authenticate the reliability of the solutions obtained by LFNHAM. 

Conclusively, the suggested hybrid framework can be employed to a variety of local fractional models 

occurring in a fractal medium. 

7. Numerical simulation 

In this segment, the numerical simulations are presented for the solutions of the LFCHEs and 

LFCBEs under fractal initial conditions obtained via LFNHAM. The 3D plots for solutions of LFCHEs 

and LFCBEs have been generated for the fractal order 3ln/2ln= . Here, all the 3D plots on the 

Cantor sets have been prepared with the aid of MATLAB software. Figures 1 and 2 depict the 3D 

surface graphics of coupled solutions ( ) ,1  and ( ) ,2  for the LFCHEs. Similarly, Figures 3 

and 4 show the 3D surface graphics of coupled solutions ( ) ,1  and ( ) ,2  for LFCBEs. Here, 

  and   have been taken in the closed interval of 0 to 1. The nature of ( ) ,1  and ( ) ,2  have 

been explored with respect to   and  .  The fractal solutions of the LFCHEs and LFCBEs show 

interesting characteristics for 3ln/2ln=  . The graphical presentation demonstrates that the 

computed solutions for the LFCHEs and LFCBEs are consistently dependent on the fractal order  . 

Furthermore, the 3D figures drawn on Cantor sets indicate that the coupled solutions ( ) ,1  and 

( ) ,2  are of fractal nature. 
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Figure 1. 3D plot of the solution ( ) ,1  with respect to   and   in case of LFCHEs 

for 3ln/2ln= . 

 

Figure 2. 3D plot of the solution ( ) ,2  with respect to   and   in case of LFCHEs 

for 3ln/2ln= . 
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Figure 3. 3D nature of the solution ( ) ,1   with respect to    and    in case of 

LFCBEs for 3ln/2ln= . 

 

Figure 4. 3D behavior of the solution ( ) ,2   with respect to    and    in case of 

LFCBEs for 3ln/2ln= . 
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8. Conclusions 

In this paper, the LFNHAM is proposed for computation of solutions for LFCHEs and LFCBEs 

on Cantor sets. The local fractional series solutions for LFCHEs and LFCBEs have been depicted in 

terms of Mittag-Leffler function. The 3D plots are presented for solutions of LFCHEs and LFCBEs by 

using the MATLAB software. It is clearly observed from the surface graphics of the solutions that the 

figures plotted on the Cantor set for the functions ( ) ,1  and ( ) ,2  are of fractal nature. The 

computational results authenticate the reliability and accuracy of the implemented method to obtain 

solutions for LFCHEs and LFCBEs. The combination of LFHAM and LFNT performs faster 

calculations than LFHAM. The convergence and uniqueness of the LFNHAM solution for a general 

LFPDE is also discussed in view of Banach’s fixed point theory. In a nutshell, the suggested hybrid 

approach in connection with LFNT can be employed to such types of local fractional models appearing 

in a fractal media. 
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