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1. Introduction

The general nonclassical diffusion equations describe some physical phenomena, for example, non-
Newtonian flows, soil mechanics and heat conduction theory. In this paper, we investigate the existence
of pullback attractors and obtain the finite fractal dimension of pullback attractors in H1

0(Ω) for the
following nonclassical diffusion equations:

ut − β∆ut − ∆u + g(u) = f (t), x ∈ Ω, t > τ,
u|∂Ω = 0, t > τ,
u|t=τ = uτ(x), x ∈ Ω,

(1.1)

where Ω is a bounded domain in Rn with smooth boundary ∂Ω, the nonlinearity g(u) and the given
external force term f (t) satisfy some assumptions later. It is called the nonclassical diffusion equation
when β > 0 and it is named the classical reaction-diffusion equation in the case β = 0.

Before exhibiting the main results in this paper, let us briefly review some known results to
the problem (1.1). In recent decades, the existence and asymptotic behavior of the solutions to
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problem (1.1) have been investigated by many authors under the different assumption conditions. There
have been some results [1–3] when the nonlinearity g(u) satisfies the arbitrary polynomial growth
condition. Anh and Toan [1] investigated the existence of pullback attractors for a non-autonomous
nonclassical diffusion equation in a non-cylindrical domain with the homogeneous Dirichlet boundary
condition and got the upper semi-continuity of pullback attractors. Xie, Li and Zhu [2] studied the
upper semi-continuity and regularity of global attractors for the autonomous nonclassical diffusion
equations by applying the operator decomposition method. Yuan et al. [3] studied the existence of
exponential attractors for problem (1.1). There have also been some results [4] for the fractal dimension
of the attractor. Chen, Chen and Tang [4] considered the fractal dimension of the global attractor of
nonclassical diffusion equation with fading memory and critical nonlinearity in a periodic boundary
value domain by using the fractal dimension theorem given in [5]. To be more precise, our motivation
in this paper is to use the operator decomposition method to prove the existence of pullback attractors
in H1

0(Ω) for the non-autonomous nonclassical diffusion equations with arbitrary polynomial growth
condition, then we prove the finite fractal dimension of pullback attractors in H1

0(Ω), which is still an
open problem before the present paper solved it.

According to the problem (1.1), we can observe that the equation contains the term −∆ut, it is
different from the original reaction diffusion equation. For instance, the solution of the usual reaction
diffusion equation has some smoothing effect, in other words, if the initial data only belong to a weaker
topology space, then the solution of the usual reaction diffusion equation will belong to a stronger
topology space with higher regularity. However, for problem (1.1), both the initial data and the solution
belong to the same space, but the solution has no higher regularity because of appearance of −∆ut. The
main purpose of this paper is to prove the finite fractal dimension of pullback attractors. We first prove
the existence of pullback attractors for a nonclassical diffusion equation with arbitrary polynomial
growth condition by applying the operator decomposition method. Then, by the fractal dimension
theorem of pullback attractors given by [6], we prove the finite fractal dimension of pullback attractors
for a nonclassical diffusion equation in H1

0(Ω).
Besides, under the conditions of nonlinearity g satisfies the following growth and dissipation

conditions, 

g(u)u ≥ −λu2 −C,
g′(u) ≥ −`, g(0) = 0,
|g′(u)| ≤ C(1 + |u|γ),
lim inf

|u|→∞

ug(u)−κG(u)
u2 ≥ 0, for some κ > 0,

lim inf
|u|→∞

G(u)
u2 ≥ 0,

there have also been some results [7–17] for problem (1.1) when the perturbation parameter β is a
fixed constant. Recently, Anh and Bao [7] established the existence of pullback D attractors and
the upper semi-continuity of pullback D attractors in H1

0(Ω) for the non-autonomous nonclassical
diffusion equation by using the asymptotic a priori estimate method. Wu and Zhang [15] discussed
the long-time behaviour of the nonclassical diffusion equation with critical nonlinearity in H1

0(Ω).
Zhang and Ma [16] investigated the existence of exponential attractors of the nonclassical diffusion
equation with critical nonlinearity and lower regular forcing term and got the finite fractal dimension
of the global attractors. Wang, Zhu and Li [17] proved the regularity of pullback attractors for a three
dimensional non-autonomous nonclassical diffusion equation with critical nonlinearity. In addition to
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the above results, the asymptotic behavior of solutions for a nonclassical diffusion equation with delay
and memory has been extensively investigated by a lot of authors in [18–33] and references therein.

Moreover, there have also some known results in [34–37] for a nonclassical diffusion equation when
β(t) depends on time. Besides, there have also some results in [38–40] for the fractional nonclassical
diffusion equations.

When the parameter β = 0, the problem (1.1) reduces to the one of the usual reaction diffusion
equations. To our best knowledge, many results have been obtained about the usual reaction diffusion
equations under the different assumption conditions. The existence of attractors for reaction diffusion
equations has been investigated in many literatures, see [41–48] and the references therein for the
recent progress.

Finally, the rest of the paper is arranged as follows. In Section 2, we give some definitions and
lemmas used frequently in this paper. In Section 3, we prove the existence of pullback attractors for
problem (1.1) in H1

0(Ω) by the operator decomposition method. In Section 4, we prove the finite fractal
dimension of pullback attractors in H1

0(Ω).
Hereafter, let capital letter C be a general positive constant, which may vary from line to line to

each step.

2. Preliminaries

In this section, we first introduce some notations on the function spaces and norms which will be
used later to study the existence and finite fractal dimension of pullback attractors. Without loss of
generality, we assume β = 1.

As in [10], let

A = −∆, with domain D(A) = H2(Ω) ∩ H1
0(Ω),

and consider the family of Hilbert spaces D(As/2), s ∈ R, with the standard inner products and norms,
respectively,

(·, ·)D(As/2) = (As/2·, As/2·) and ‖ · ‖D(As/2) = |As/2 · |2.

Let H = L2(Ω), V1 = H1
0(Ω), V2 = D(A) = H2(Ω) ∩ H1

0(Ω). Denote by (·, ·) and | · |2 the inner
product and norm of H, respectively. We denote by ‖ · ‖1 and ‖ · ‖2 the norms of V1 and V2, respectively.

To investigate problem (1.1), we need the following assumption conditions on g (see [2]),
(i) The nonlinearity g ∈ C1(R) fulfills g(0) = 0 and satisfies the following condition

γ1|s|p − β1 ≤ g(s)s ≤ γ2|s|p + β2, p ≥ 2, (2.1)

and the dissipative condition

g′(s) ≥ −`, (2.2)

where γi, βi (i = 1, 2) and ` are positive constants. Assume G(u) =
∫ u

0
g(s)ds, then there exist

positive constants γ̃i and β̃i (i = 1, 2) such that

γ̃1|s|p − β̃1 ≤ G(s) ≤ γ̃2|s|p + β̃2, p ≥ 2. (2.3)
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(ii) We assume that the external f ∈ L2
loc(R,H) satisfies∫ t

−∞

eα1 s| f |22ds < +∞, for any t ∈ R,

where α1 = min{1, λ1, 2(µ − `)}, µ ≥ 2` is a positive constant and λ1 is the first eigenvalue of the
operator A = −∆.

Definition 2.1. [49] A two parameter family of mappings U(t, τ) : X → X, t ≥ τ, τ ∈ R, is called to
be a process if
1) U(τ, τ)x = x, ∀τ ∈ R, x ∈ X,
2) U(t, s)U(s, τ)x = U(t, τ)x, t ≥ s ≥ τ, τ ∈ R, x ∈ X.

Definition 2.2. [49] A family of bounded sets B̂ = {B(t) : t ∈ R} ∈ D is called pullback D-absorbing
for the process {U(t, τ)} if for any t ∈ R and for any D̂ ∈ D, there exists τ0(t, D̂) ≤ t such that

U(t, τ)D(τ) ⊂ B(t), for all τ ≤ τ0(t, D̂).

Definition 2.3. [14] LetD = {D(t)}t∈R be a family of sets in X. A process {U(·, ·)} is said to be pullback
D-asymptotically compact in X if for any t ∈ R any sequences τn → ∞ and xn ∈ D(t−τn), the sequence
{U(t, t − τn)xn} is relatively compact in X.

Lemma 2.4. [6] Let U(t, τ) be a process in a separable Hilbert space H, B be a uniformly pullback
absorbing set in H, Â = {A(t) : t ∈ R} be a pullback attractor for U(t, τ), for all u1, u2 ∈ B, if there
exists a finite dimensional projection P in the space H such that

‖P(U(t, τ)u1 − U(t, τ)u2)‖X ≤ L(T0)‖u1 − u2‖X (2.4)

with some existed constants T0, L(T0) > 0 being independent on the choice of t and for all u1, u2 ∈ B

‖(I − P)(U(t, τ)u1 − U(t, τ)u2)‖X ≤ δ‖u1 − u2‖X (2.5)

with δ < 1. Then the family of pullback attractors Â = {A(t) : t ∈ R} possesses a finite fractal
dimension, specifically

dimF(A(t)) ≤ dimP · log
(
1 +

8L
1 − δ

)[
log

( 2
1 + δ

)]−1
, ∀t ∈ R.

3. Pullback attractors in V1

In this section, we shall show the existence of pullback attractors for Eq (1.1).

Theorem 3.1. Assume D = {D(t)}t∈R is pullback absorbing and U(·, ·) is pullback D-asymptotically
compact in V1. Then, there exists a pullback attractorA = {A(t)}t∈R, and

A(t) =
⋂
s≥0

⋃
τ≥s

U(t, t − τ)D(t − τ), ∀t ∈ R.

Indeed, we prove Theorems 3.1 by the following a series of lemmas.

AIMS Mathematics Volume 7, Issue 5, 8064–8079.



8068

3.1. Existence and uniqueness of solutions

We know that the existence and uniqueness of the solutions to the nonclassical diffusion Eq (1.1) in
H1

0(Ω) was proved by Galerkin approximation methods [2]. Here we only state the result.

Lemma 3.2. [2] For any τ ∈ R, T > τ, for each uτ ∈ H1
0(Ω), Eq (1.1) has a unique solution

u = u(t) = u(t; uτ). Moreover, we have also the following result: for any ui(τ) ∈ H1
0(Ω), ui(t) (i = 1, 2)

denote the corresponding solutions of Eq (1.1), then for all 0 ≤ t ≤ T,

|u1(t) − u2(t)|22 + ‖u1(t) − u2(t)‖21 ≤ Ceκ1(T−τ)(‖u1(τ) − u2(τ)‖21
)
, (3.1)

where κ1 is a positive constant.

Thanks to Lemma 3.2, we can define a continuous process {U(t, τ)}t≥τ in V1 by

U(t, τ)uτ = u(t), t ≥ τ, (3.2)

where u(t) is the unique solution of the Eq (1.1) with f (t) = f ∈ L2
loc(R; H) and u(τ) = uτ ∈ V1.

3.2. Pullback absorbing balls in V1

In this subsection, we shall establish the existence of pullback absorbing sets for n-dimensional
nonclassical diffusion equation with Dirichlet boundary condition. Throughout this subsection, we
always assume that the initial data belong to a bounded set of corresponding suitable space.

Next, we show the existence of pullback absorbing balls {B(t)} in V1 for the nonclassical
diffusion Eq (1.1).

Lemma 3.3. Let g satisfy the assumption conditions (2.1), (2.2) and f ∈ L2
loc(R; H) satisfy∫ t

−∞

eα1 s| f (s)|22ds < +∞, for any t ∈ R, (3.3)

then the process {U(t, τ)}t≥τ possesses a family of pullback absorbing balls {B(t)} in V1 with the center
zero and R(t) = C

(
1 + e−α1t

∫ t

−∞
eα1 s| f (s)|22ds

)
with α1 = min{1, λ1, 2(µ − `)}, for all τ ≤ τB ≤ t,

B =
{
u ∈ V1 : ‖u‖2V1

≤ R(t)
}
. (3.4)

Proof. Multiplying (1.1) by u and integrating the resulting equation over Ω, we attain

1
2

d
dt
|u|22 +

1
2

d
dt
‖u‖21 + ‖u‖21 + (g(u), u) = ( f (t), u). (3.5)

Using the assumption condition (2.1), we have

(g(u), u) ≥ γ1|u|
p
Lp − β1|Ω|. (3.6)

Applying the Young’s inequality to the right-hand side term in (3.5), we deduce

( f (t), u) ≤
1

2λ1
| f |22 +

λ1

2
|u|22. (3.7)
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Inserting (3.6) and (3.7) into (3.5), we obtain

d
dt
|u|22 +

d
dt
‖u‖21 + ‖u‖21 + 2γ1|u|

p
Lp ≤

1
λ1
| f |22 + C. (3.8)

Noting that ‖u‖21 ≥ λ1|u|2 and taking α1 = min{1, λ1, 2(µ − `)}, it follows from (3.8) that

d
dt

(|u|22 + ‖u‖21) + α1(|u|22 + ‖u‖21) + 2γ1|u|
p
Lp ≤ C

(
1 + | f |22

)
. (3.9)

Applying the Gronwall’s inequality [50–52] to (3.9), we deduce

|u(t)|22 + ‖u(t)‖21 ≤ e−α1(t−τ)(|u(τ)|22 + ‖u(τ)‖21) + C
(
1 + e−α1t

∫ t

τ

eα1 s| f (s)|22ds
)

≤ e−α1(t−τ)(|u(τ)|22 + ‖u(τ)‖21) + C
(
1 + e−α1t

∫ t

−∞

eα1 s| f (s)|22ds
)

≤ R(t), τ ≤ τB ≤ t. (3.10)

The proof is thus complete. �
By Lemma 3.3, it is easy to check that the B = {B(t)}t∈R, where

B(t) = {u ∈ V1; ‖u‖2V1
≤ R(t)}, (3.11)

is (V1,V1)-pullback absorbing for the process U defined by (3.2). Moreover,

eα1τ(R(t))→ 0, as τ→ −∞. (3.12)

3.3. Asymptotically compact in V1

In this subsection, we shall establish the existence of the pullback attractors in V1 for the Eq (1.1).
The main difficulty is to attain a higher regularity estimates to ensure the asymptotic compactness
of process. To overcome this difficulty, we shall use the decomposition method from [2]. We now
decompose the solution U(t, τ)uτ = u(t) into

U(t, τ)uτ = U1(t)uτ + K(t)uτ, (3.13)

where U1(t)uτ = v(t) and K(t)uτ = w(t) are solutions to the following equations respectively:
vt − ∆vt − ∆v + g(u) − g(w) + µv = 0, x ∈ Ω, t > τ,
v|∂Ω = 0, t > τ,
v|t=τ = uτ(x), x ∈ Ω,

(3.14)

and 
wt − ∆wt − ∆w + g(w) + µw = f (t) + µu, x ∈ Ω, t > τ,
w|∂Ω = 0, t > τ,
w|t=τ = 0, x ∈ Ω.

(3.15)

First, we prove the higher regularity of the solution w.
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Lemma 3.4. Assume f ∈ L2
loc(R; H) satisfies∫ t

−∞

eα1 s| f (s)|22ds < +∞, for any t ∈ R, (3.16)

then

‖w(t)‖21 + ‖w(t)‖22 ≤ C
(
1 + e−α1t

∫ t

−∞

eα1 s| f (s)|22ds
)
, t ∈ R. (3.17)

Proof. Multiplying (3.15) by −∆w and integrating over Ω, we get

1
2

d
dt

(‖w‖21 + ‖w‖22) + ‖w‖22 +

∫
Ω

g(w)(−∆w)dx + µ‖w‖21

=

∫
Ω

f (−∆w)dx + µ

∫
Ω

u(−∆w)dx. (3.18)

Integrating by parts over Ω in (3.18) and applying the Young’s inequality to (3.18), we derive

d
dt

(‖w‖21 + ‖w‖22) + ‖w‖22 + 2(µ − `)‖w‖21 ≤ | f |
2
2 + 2µ2|u|22,

which implies
d
dt

(‖w‖21 + ‖w‖22) + α1(‖w‖21 + ‖w‖22) ≤ | f |22 + 2µ2|u|22. (3.19)

Applying Lemma 3.3 and the Gronwall’s inequality [50–52] to (3.19), we find

‖w(s)‖21 + ‖w(s)‖22 ≤ e−α1t
∫ t

τ

eα1 s(| f (s)|22 + 2µ2|u(s)|22)ds

≤ e−α1t
∫ t

τ

eα1 s
(
| f (s)|22 + 2µ2R(s)

)
ds

≤ e−α1t
∫ t

−∞

eα1 s| f (s)|22ds +
2µ2

α1
R(t)

≤ C
(
1 + e−α1t

∫ t

−∞

eα1 s| f (s)|22ds
)

< +∞, for any fixed t ∈ R, (3.20)

where we have used the fact w(0) = 0. The proof is now complete. �
Finally, we prove the dissipation of the solutions v.

Lemma 3.5. For any v(τ) ∈ B, there exists a positive constant α2 = min{2(µ − `), 2} such that

|v(t)|22 + ‖v(t)‖21 ≤ (|v(τ)|22 + ‖v(τ)‖21)e−α2(t−τ). (3.21)

Proof. Multiplying (3.14) by v(t) and integrating the resulting equation over Ω, we attain

1
2

d
dt

(|v(t)|22 + ‖v(t)‖21) +

∫
Ω

(g(u) − g(w))vdx + ‖v(t)‖21 + µ|v|22 ≤ 0. (3.22)
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Using the assumption (2.2), we have∫
Ω

(g(u) − g(w))vdx ≥ −`|v|22. (3.23)

Inserting (3.23) into (3.22), we obtain

1
2

d
dt

(|v(t)|22 + ‖v(t)‖21) + (µ − `)|v|22 + ‖v‖21 ≤ 0.

Letting α2 = min{2(µ − `), 2}, we get

d
dt

(|v(t)|22 + ‖v(t)‖21) + α2(|v|22 + ‖v‖21) ≤ 0. (3.24)

Applying the Gronwall’s inequality ( [50–52]) to (3.24), we conclude

|v(t)|22 + ‖v(t)‖21 ≤ (|v(τ)|22 + ‖v(τ)‖21)e−α2(t−τ), (3.25)

which completes the proof. �
Proof of Theorem 3.1. Combining Lemmas 3.2–3.5, we can get the desired result.
The proof is thus complete. �

4. Finite fractal dimension of pullback attractors

In this section, we shall use the finite fractal dimension theorem given in [6,53] to obtain the fractal
dimension of pullback attractors for a nonclassical reaction diffusion Eq (1.1) is finite.

Theorem 4.1. The fractal dimension of the pullback attractors A for the process U(·, ·) generated
by (1.1) is finite.

Proof. Let u(t) and v(t) be two weak solutions to the non-autonomous nonclassical reaction diffusion
Eq (1.1) belonging to the pullback attractors A. Let us define w(t) = u(t) − v(t), then w(t) solves the
following equation

wt − ∆wt − ∆w + g(u) − g(v) = 0, x ∈ Ω, t > τ. (4.1)

Multiplying (4.1) by w(t) and integrating it over Ω, we get

1
2

d
dt

(|w(t)|22 + ‖w(t)‖21) + ‖w(t)‖21

= −

∫
Ω

(g(u) − g(v))wdx

= −

∫
Ω

g′(η)w2dx

≤ `|w|22, (4.2)

with η = θ1u + (1 − θ1)v, where θ1 is a constant and θ1 ∈ [0, 1].
Then

d
dt

(|w(t)|22 + ‖w(t)‖21) ≤ 2`(|w|22 + ‖w‖21) ≤ µ1(|w|22 + ‖w‖21), (4.3)
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with µ1 = 2`.
Therefore, applying the Gronwall inequality to (4.3), we conclude

|w(t)|22 + ‖w(t)‖21 ≤ (|w(τ)|22 + ‖w(τ)‖21)eµ1(t−τ), t > τ, (4.4)

and
‖w(t)‖21 ≤ (1 + λ−1

1 )‖w(τ)‖21eµ1(t−τ), t > τ. (4.5)

Let {ωN} be an orthonormal basis of HN which consists of eigenvectors of A = −∆. λk denote the
corresponding eigenvalues, k = 1, 2, ... and 0 < λ1 ≤ λ2 ≤ · · · ≤ λ j ≤ · · · → +∞ as j → +∞. Then
{ωN} is also an orthonormal basis of V1. We write HN = span{ω1, · · ·, ωN} and PN : V1 → HN is the
orthogonal projection.
Let w = PNw + QNw, where PNw ∈ HN , then

‖PNw(t)‖21 ≤ (1 + λ−1
1 )‖w(τ)‖21eµ1(t−τ), t > τ. (4.6)

Multiplying (4.1) by QNw := (I − PN)w, we get

1
2

d
dt

(|QNw(t)|22 + ‖QNw(t)‖21) + ‖QNw(t)‖21

= −

∫
Ω

(g(u) − g(v))QNwdx

≤

∫
Ω

|(g(u) − g(v))||QNw|dx. (4.7)

Next, for dealing with (4.7), we divide into the following two cases that p ≥ 2, n ≤ 2 and 2 ≤ p ≤ 2n−2
n−2 ,

n ≥ 3.
Case 1: p ≥ 2, n ≤ 2. We know that both v and u lie inA, they are bounded in L∞ (u, v ∈ V1 ↪→ L∞),

and
|(g(u) − g(v))|2 ≤ C|v(t) − u(t)|2 = C|w(t)|2. (4.8)

Thus,
1
2

d
dt

(|QNw(t)|22 + ‖QNw(t)‖21) + ‖QNw(t)‖21 ≤ C|w|2|QNw(t)|2. (4.9)

Utilizing the inequality
|QNω|2 ≤ λ

−1/2
N+1 ‖QNω‖1, ω ∈ (HN)⊥, (4.10)

and combining (4.9) with (4.10), and using the Young inequality, we attain

d
dt

(|QNw(t)|22 + ‖QNw(t)‖21) + λ1|QNw(t)|22 + ‖QNw(t)‖21

≤ 2λ−1/2
N+1 |w|2‖QNw‖1

≤ λ−1/2
N+1 |w|

2
2 + λ−1/2

N+1 ‖QNw‖21. (4.11)

Thus,
d
dt

(|QNw(t)|22 + ‖QNw(t)‖21) + λ1|QNw(t)|22 + (1 − λ−1/2
N+1 )‖QNw(t)‖21 ≤ λ

−1/2
N+1 |w|

2
2. (4.12)
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Let us choose N large enough, so that 1 − λ−1/2
N+1 > 0 and let

α3 = min{λ1, 1 − λ
−1/2
N+1 }.

Inserting (4.5) into (4.12) implies

d
dt

(|QNw(t)|22 + ‖QNw(t)‖21) + α3(|QNw(t)|22 + ‖QNw(t)‖21)

≤ λ−1/2
N+1 λ

−1
1 (1 + λ−1

1 )‖w(τ)‖21eµ1(t−τ), t > τ. (4.13)

Integrating the above inequality, we derive

eα3t(|QNw(t)|22 + ‖QNw(t)‖21)
≤ eα3τ(|QNw(τ)|22 + ‖QNw(τ)‖21)

+λ−1/2
N+1 λ

−1
1 (1 + λ−1

1 )‖w(τ)‖21(α3 + µ1)−1e−µ1τ(e(µ1+α3)t − e(µ1+α3)τ)
≤ eα3τ(1 + λ−1

N+1)‖QNw(τ)‖21
+λ−1/2

N+1 λ
−1
1 (1 + λ−1

1 )‖w(τ)‖21(α3 + µ1)−1e−µ1τ(e(µ1+α3)t − e(µ1+α3)τ), t > τ,

i.e.,

‖QNw(t)‖21 ≤ e−α3(t−τ)(1 + λ−1
N+1)‖w(τ)‖21

+Cλ−1/2
N+1 ‖w(τ)‖21eµ1(t−τ), t > τ. (4.14)

Let us choose again N large enough and t − τ = T0 =
ln2(1+λ−1

N+1)
α3

such that

‖QNw(t)‖21 ≤
(1
2

+ Cλ−1/2
N+1 (1 + λ−1

N+1)
µ1
α3

)
‖w(τ)‖21. (4.15)

Since λN+1 → +∞, 1
2 + Cλ−1/2

N+1 (1 + λ−1
N+1)

µ1
α3 < 1 when N is sufficiently large. Clearly,

‖PNw(t)‖21 ≤ L‖w(τ)‖21 and ‖QNw(t)‖21 ≤ δ1‖w(τ)‖21, (4.16)

where L = (1 + λ−1
1 )eµ1T0 and δ1 = 1

2 + Cλ−1/2
N+1 (1 + λ−1

N+1)
µ1
α3 .

Therefore, we conclude the estimate of the fractal dimension of the pullback attractorA by Lemma 2.4
for p ≥ 2, n ≤ 2,

dimF(A(t)) ≤ dimP · log
(
1 +

8L
1 − δ1

)[
log

( 2
1 + δ1

)]−1
.

Case 2: 2 ≤ p ≤ 2n−2
n−2 , n ≥ 3. Using the Sobolev embedding theorem (V1 ↪→ L

2n
n−2 ), we infer∫

Ω

|g(u) − g(v)|22dx =

∫
Ω

|g′(u + θ(v − u))|2|u − v|2dx

≤ C
∫

Ω

(1 + |u|2(p−2) + |v|2(p−2))|u − v|2dx

≤ C
(
1 + |u|2(p−2)

L
2n

n−2
+ |v|2(p−2)

L
2n

n−2

)
|w|2

L
2n

n−2
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≤ C
(
1 + ‖u‖2(p−2)

1 + ‖v‖2(p−2)
1

)
‖w‖21. (4.17)

Inserting (4.17) into (4.7) and using (4.5), we have

d
dt

(|QNw(t)|22 + ‖QNw(t)‖21) + 2‖QNw(t)‖21

≤ Cλ−1/2
N+1

(
1 + ‖u‖2(p−2)

1 + ‖v‖2(p−2)
1

)
‖w‖21 + λ−1/2

N+1 ‖QNw(t)‖21. (4.18)

Thus,

d
dt

(|QNw(t)|22 + ‖QNw(t)‖21) + λ1|QNw(t)|22 + (1 − λ−1/2
N+1 )‖QNw(t)‖21

≤ C
(
1 + ‖u‖2(p−2)

1 + ‖v‖2(p−2)
1

)
‖w‖21

≤ Cλ−1/2
N+1 (1 + λ−1

1 )‖w(τ)‖21
(
1 + ‖u‖2(p−2)

1 + ‖v‖2(p−2)
1

)
eµ1(t−τ), t > τ. (4.19)

Integrating (4.19), we lead to

eα3t(|QNw(t)|22 + ‖QNw(t)‖21)
≤ eα3τ(1 + λ−1

N+1)‖QNw(τ)‖21

+Cλ−1/2
N+1 (1 + λ−1

1 )‖w(τ)‖21

∫ t

τ

(
1 + ‖u(s)‖2(p−2)

1 + ‖v(s)‖2(p−2)
1

)
eα3 seµ1(s−τ)ds

t > τ,

i.e.,

(|QNw(t)|22 + ‖QNw(t)‖21)
≤ e−α3(t−τ)(1 + λ−1

N+1)‖w(τ)‖21

+Cλ−1/2
N+1 (1 + λ−1

1 )‖w(τ)‖21e−α3t
∫ t

τ

(
1 + ‖u(s)‖2(p−2)

1 + ‖v(s)‖2(p−2)
1

)
eα3 seµ1(s−τ)ds

t > τ. (4.20)

We now deal with the right-side terms in (4.20) as follows. For the first term, taking t − τ = T0 =
ln2(1+λ−1

N+1)
α3

, we have

e−α3T0(1 + λ−1
N+1)‖w(τ)‖21 ≤

1
2
‖w(τ)‖21. (4.21)

For the second term, let us choose N large enough such that

Cλ−1/2
N+1 (1 + λ−1

1 )‖w(τ)‖21e−α3t
∫ t

τ

eα3 seµ1(s−τ)ds

≤ Cλ−1/2
N+1 (1 + λ−1

1 )‖w(τ)‖21(α3 + µ1)−1eµ1T0

≤ Cλ−1/2
N+1 (1 + λ−1

N+1)
µ1
α3 ‖w(τ)‖21. (4.22)

For the remaining two terms, we only build the estimate to the third term and choose N large enough
such that

Cλ−1/2
N+1 (1 + λ−1

1 )‖w(τ)‖21e−α3t
∫ t

τ

‖u(s)‖2(p−2)
1 eα3 seµ1(s−τ)ds
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≤ Cλ−1/2
N+1 (1 + λ−1

1 )‖w(τ)‖21e−α3t
∫ t

τ

(
1 + e−α1 s

∫ s

τ

eα1r| f (r)|22dr
)(p−2)

eα3 seµ1(s−τ)ds

≤ Cλ−1/2
N+1 (1 + λ−1

1 )‖w(τ)‖21e−α3t
∫ t

τ

(
1 +

∫ s

τ

| f (r)|22dr
)(p−2)

eα3 seµ1(s−τ)ds

≤ Cλ−1/2
N+1 (1 + λ−1

1 )‖w(τ)‖21e−α3t
∫ t

τ

eα3 seµ1(s−τ)ds

≤ Cλ−1/2
N+1 (1 + λ−1

1 )‖w(τ)‖21(α3 + µ1)−1eµ1T0

≤ Cλ−1/2
N+1 (1 + λ−1

N+1)
µ1
α3 ‖w(τ)‖21. (4.23)

Thus, let us choose N large enough and t − τ = T0 =
ln2(1+λ−1

N+1)
α3

such that

‖QNw(t)‖21 ≤
(1
2

+ Cλ−1/2
N+1 (1 + λ−1

N+1)
µ1
α3

)
‖w(τ)‖21. (4.24)

Since λN+1 → +∞, 1
2 + Cλ−1/2

N+1 (1 + λ−1
N+1)

µ1
α3 < 1 when N is sufficiently large.

Obviously,

‖PNw(t)‖21 ≤ L‖w(τ)‖21 and ‖QNw(t)‖21 ≤ δ2‖w(τ)‖21, (4.25)

where L = (1 + λ−1
1 )eµ1T0 and δ2 = 1

2 + Cλ−1/2
N+1 (1 + λ−1

N+1)
µ1
α3 .

Consequently, we conclude the estimate of the fractal dimension of the pullback attractor A by
Lemma 2.4 for 2 ≤ p ≤ 2n−2

n−2 , n ≥ 3

dimF(A(t)) ≤ dimP · log
(
1 +

8L
1 − δ2

)[
log

( 2
1 + δ2

)]−1
.

The proof is finally complete. �

5. Conclusions

This paper mainly study the pullback attractors for the nonclassical diffusion equations, including
the following two results: (i) the pullback attractors for the nonclassical diffusion equations with
arbitrary polynomial growth nonlinearity is obtained by operator decomposition method. (ii) the
fractal dimensional of pullback attractors is finite. Besides, the method in this article can also be
used to investigate other evolution equations.
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