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1. Introduction

Pseudo-random sequences are widely used in a lot of fields, in particular for stream ciphers.
Cyclotomy is an old topic of elementary number theory connected with difference sets, sequences,
coding theory and cryptography. The use of cyclotomic classes is one of the important methods for
sequence design [1]. In the past decades, cyclotomic and generalized cyclotomic sequences have been
studied from the viewpoint of cryptography [2].

In this work, we will re-visit the families of new cyclotomic binary sequences of periods pn and 2pn

presented in [3, 4] respectively. Such sequences are defined by using the new generalized cyclotomic
classes from [5]. Recently, Liu et al. [6] studied the correlation of the sequence defined in [4]. We will
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concentrate on the case of pn defined in [3], and give a brief introduction of the case of 2pn in the final
section without proof since it is similar.

We denote by ZN the ring of integers modulo N for a positive integer N, and by Z∗N the multiplicative
group of ZN . Let p be an odd prime and p= e f +1, where e, f are positive integers. Let g be a primitive
root modulo pn.

Let n≥ 2 be a positive integer. For j = 1,2, · · · ,n, denote d j = p j−1 f and define

D(p j)
0 =

{
gtd j (mod p j) : 0≤ t < e

}
, and

D(p j)
i = giD(p j)

0 =
{

gix (mod p j) : x ∈ D(p j)
0

}
, 1≤ i < d j.

(1.1)

By definition we see that
{

D(p j)
0 ,D(p j)

1 , . . . ,D(p j)
d j−1

}
forms a partition of Z∗p j for each integer j ≥ 1.

Also for an integer m≥ 1,

Zpm =
m⋃

j=1

d j−1⋃
i=0

pm− jD(p j)
i ∪{0}.

Let f be an even integer and b be an integer with 0 ≤ b < pn−1 f . Define two families of sets for
m = 1,2, . . . ,n

C
(pm)
0 =

m⋃
j=1

d j−1⋃
i=d j/2

pm− jD(p j)
(i+b) (mod d j)

,

C
(pm)
1 =

m⋃
j=1

d j/2−1⋃
i=0

pm− jD(p j)
(i+b) (mod d j)

∪{0}.

(1.2)

It is obvious that Zpm = C
(pm)
0 ∪C

(pm)
1 and |C (pm)

1 | = (pm + 1)/2. A family of balanced binary

sequences s(m) = (s(m)
0 ,s(m)

1 ,s(m)
2 , . . .) of period pm can thus be defined as

s(m)
i =

{
0, if i (mod pm) ∈ C

(pm)
0 ,

1, if i (mod pm) ∈ C
(pm)
1 .

(1.3)

The linear complexity of s(m) above was studied in [3] for m = 2. Later it was extended to the
case m > 2 in [7, 8], independently. The linear complexity is an important cryptographic measure of
sequences. The linear complexity of a sequence is defined as the length of the shortest linear feedback
shift register that can generate the sequence [9].

In [7], we can see that s(m) has high linear complexity. But high linear complexity is not enough for
its cryptographic applications, what we need is that the linear complexity doesn’t decrease significantly
when k or fewer bits of the sequence is changed in one period. This leads to the notion of k-error linear
complexity. For integer k ≥ 0, the k-error linear complexity over F2 (the finite field of order two) of
a sequence, denoted by LCF2

k (·), is the smallest linear complexity (over F2) that can be obtained by
changing at most k terms of the sequence per period [10].

The k-error linear complexity of s(m) in Eq (1.3) for m = 2 has been studied in [11]. So in this work,
we will contribute to the k-error linear complexity of s(m) for m > 2.
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Finally, we remark that the definition of s(m) in Eq (1.3) is in fact related to Fermat-Euler quotients.
Some studies of this kind have been carried out in the past decade, see for example [12–19] and
references therein.

2. The k-error linear complexity: main results

In this section, we present the main results of this paper.

Theorem 1. Let p = e f +1 be an odd prime with even f and 2 be a primitive root modulo p2. Let s(n)

be a family of generalized cyclotomic binary sequences of period pn defined in Eq (1.3). Then we have
the following results about the k-error linear complexity of s(n).

(i) If p≡ 1 (mod 4), then for k < (pn− pn−1)/2 we have

LCF2
k (s(n)) = pn− pn−1 +LCF2

k (s(n−1)).

(ii) If p≡ 3 (mod 4), then for k < (pn− pn−1)/2 we have

pn− pn−1 +LCF2
k (s(n−1))−1≤ LCF2

k (s(n))≤ pn− pn−1 +LCF2
k (s(n−1))+1.

(iii) For (pn− pn−t)/2≤ k < (pn− pn−t−1)/2, where t = 1,2, . . . ,n−1, we have

pn−t−1(p−1)≤ LCF2
k (s(n))≤ pn−t .

(iv) For k = (pn−1)/2, we have LCF2
k (s(n)) = 1.

(v) For k > (pn−1)/2, we have LCF2
k (s(n)) = 0.

By Theorem 1, we see that these sequences have high linear complexity and the linear complexity
does not decrease dramatically. Thus, such sequences have good stability. It is easy to see that [11,
Theorems 1 and 2] are the special cases of Theorem 1.

3. The proof technique

For m= 1,2, . . . ,n, let S(m)(X) =∑i∈C (pm)
1

X i. That is, S(m)(X) is the generating polynomials of s(m).

Let E(m)(X) = e0 + e1X + · · ·+ epm−1X pm−1 be the error polynomial of s(m). Here ei = 1 if s(m)
i

is changed when we compute the k-error linear complexity of s(m), and otherwise ei = 0 on the same
period of s(m). Then, it is well known that the k-error linear complexity of s(m) over F2 is computed as
follows

LCF2
k (s(m)) = min

0≤wt(E(m)(X))≤k

{
pm−deg

(
gcd
(
X pm
−1,S(m)(X)+E(m)(X)

))}
.

In this section, we will give a recurrence formula for the generating polynomials of our sequences
and prove some auxiliary statements concerning their error polynomials. And the proofs of the main
results will be presented in Subsection 3.3.
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3.1. The generating polynomial: recurrence formula

Denote d( j)
i (X) = ∑

l∈D(p j)
(i+b)( mod d j)

X l , where 0 ≤ b < p j f , j = 1,2, . . . ,m, i = 0,1, . . . ,d j−1. From

Eqs (1.1)–(1.3) we obtain that

S(m)(X) =
m

∑
j=1

d j/2−1

∑
i=0

d( j)
i (X pm− j

)+1. (3.1)

Notice that the subscripts i in d( j)
i (X) are all taken modulo the order d j. In the rest of this paper the

modulo operation will be omitted when no confusion can arise.
The properties of the generalized cyclotomic classes defined in (1.1) are well known, in particular

we cite the following statemetns in [7].

Lemma 2. For D(p j)
i defined as in Eq (1.1), j = 2, . . . ,n and i = 1,2, . . . ,d j−1, we have

(i) D(p j)
i (mod p j−1) = D(p j−1)

i (mod d j−1)
,

(ii) pn− jD(p j)
i (mod pn−1) = pn− jD(p j−1)

i (mod d j−1)
.

Using Lemma 2 and the definitions of d( j)
i (X), i= 1,2, . . . ,d j−1, we can easily obtain the following

statements.

Lemma 3. For d( j)
i (X) defined as above and j = 2, . . . ,n and i = 1,2, . . . ,d j−1, we have

(i) d(1)
i (X pn−1

) = e (mod X pn−1−1),
(ii) d( j)

i (X pn− j
) (mod X pn−1−1) = d( j−1)

i (mod d j−1)
(X pn− j

).

By the Lemmas 2 and 3, we can get the following Proposition 1 .

Proposition 1. Let s(n) be a pn-periodic binary sequence over F2 defined in Eq (1.3). For n ≥ 2 we
have

S(n)(X) (mod X pn−1
−1) =

{
S(n−1)(X), if p≡ 1 (mod 4),

S(n−1)(X)+ X pn−1−1
X−1 , if p≡ 3 (mod 4).

Proof. By Eq (3.1) we have

S(n)(X)≡
n

∑
j=1

d j/2−1

∑
i=0

d( j)
i (X pn− j

)+1 (mod X pn−1
−1).

So, by Lemma 3 we see that

S(n)(X) (mod X pn−1
−1) =

n

∑
j=2

d j/2−1

∑
i=0

d( j−1)
i (X pn− j

)+ ed1/2+1. (3.2)

Further, d j/2 = (p−1)d j−1/2+d j−1/2. Hence

d j/2−1

∑
i=0

d( j−1)
i (X pn− j

) =
p−1

2

d j−1−1

∑
i=0

d( j−1)
i (X pn− j

)+
d j−1/2−1

∑
i=0

d( j−1)
i (X pn− j

). (3.3)
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For p ≡ 1 (mod 4), we can see that p−1
2 ∑

d j−1−1
i=0 d( j−1)

i (X pn− j
) = 0 in Eq (3.3) over F2 and again

by Eq (3.1) we have

S(n)(X) (mod X pn−1
−1) =

n

∑
j=2

d j−1/2−1

∑
i=0

d( j−1)
i (X pn− j

)+1 = S(n−1)(X).

For p≡ 3 (mod 4), from Eq (3.3) we see that

d j/2−1

∑
i=0

d( j−1)
i (X pn− j

) =
d j−1−1

∑
i=0

d( j−1)
i (X pn− j

)+
d j−1/2−1

∑
i=0

d( j−1)
i (X pn− j

).

In this case, from Eq (3.2) we have

S(n)(X) (mod X pn−1
−1) =

n

∑
j=2

d j−1/2−1

∑
i=0

d( j−1)
i (X pn− j

)+
n

∑
j=2

d j−1−1

∑
i=0

d( j−1)
i (X pn− j

).

By Eq (1.2) and the definition of d( j)
i (X), we have

n

∑
j=2

d j−1−1

∑
i=0

d( j−1)
i (X pn− j

) =
pn−1−1

∑
i=1

X i,

it follows that

S(n)(X) (mod X pn−1
−1) = S(n−1)(X)+

pn−1−1

∑
i=0

X i = S(n−1)(X)+
X pn−1−1

X−1
.

�

3.2. The error polynomial: weight estimation

Let Ψ
(t)
m (X) = X (pt−1)pm−t

+ · · ·+X pm−t
+1 for t = 1,2, . . . ,m. In this subsection we study the case

that S(m)(X) can be divided by Ψ
(t)
m (X).

Let C(pm)
0 =

⋃dm−1
i=dm/2 D(pm)

i+b and C(pm)
1 =

⋃dm/2−1
i=0 D(pm)

i+b . According to [12], if ∑i∈C(pm)
1

X i +Em(X) is

divided by Ψ
(1)
m (X), then the least possible weight of Em(X) is equal to pm−1(p− 1)2/2. Using the

same way as in [12] we can obtain a more general statement.
We need the following subsidiary lemmas for this.

Lemma 4. Let v ∈ D(pm−t)
l for m > t and Uv = {v,v+ pm−t , . . . ,v+(pt−1)pm−t}. Then

|Uv∩D(pm)
i |=

{
1, if i≡ l (mod f pm−t−1),

0, otherwise.
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Proof. By the condition v ∈ D(pm−t)
l , i.e., v = gl+hdm−t (mod pm−t) for some h : 0≤ h < e.

Supposing v+ apm−t ∈ D(pm)
i for a : 0 ≤ a ≤ pt − 1, then v+ apm−t ≡ gi+udm (mod pm) for some

u : 0 ≤ u < e. Hence gl+hdm−t ≡ gi+udm (mod pm−t) and l +hdm−t ≡ i+udm (mod (p−1)pm−t−1).
Since p−1 = e f and dm−t = pm−t−1 f , it follows that i− l ≡ 0 (mod f pm−t−1). Thus, |Uv∩D(pm)

i |= 0
for i . l (mod f pm−t−1).

Further, suppose that v+apm−t ∈ D(pm)
i and v+bpm−t ∈ D(pm)

i , where a , b, a,b = 0,1, . . . , pt−1;
then v+apm−t ≡ gi+udm (mod pm) and v+bpm−t ≡ gi+zdm (mod pm) for some u,z : 0≤ u,z < e. In
this case, u f pm−1 ≡ z f pm−1 (mod (p−1)pm−t−1). This is impossible for u , z : 0≤ u,z < e.

So, we see that |Uv ∩ D(pm)
i | ≤ 1 for i ≡ l (mod f pm−t−1). Since |Uv| = pt and |{i |i ≡

l (mod f pm−t−1) and i = 0,1, . . . , pm−1 f − 1}| = pt , it follows that |Uv ∩ D(pm)
i | = 1 for i ≡ l

(mod f pm−t−1). �

Corollary 5. With notations as above for m > t.

|Uv∩
(

D(pm)
i ∪D(pm)

i+pm−t ∪·· ·∪D(pm)
i+(pt−1)pm−t

)
|=

{
pt , if i≡ l (mod f pm−t−1),

0, otherwise.

Lemma 6. Let v ∈ D(pm−t)
l for m > t. Then we have

(i) |Uv∩C(pm)
0 |= (pt−1)/2 and |Uv∩C(pm)

1 |= (pt +1)/2 for l < pm−t−1 f/2: and

(ii) |Uv∩C(pm)
0 |= (pt +1)/2 and |Uv∩C(pm)

1 |= (pt−1)/2 for l ≥ pm−t−1 f/2.

Proof. If l < pm−t−1 f/2 then l + i f pm−t−1 < f pm−1/2 for i = 0,1, . . . ,(pt − 1)/2 since l +
pt−1

2 f pm−t−1 < f pm−1/2 in this case. Thus, this statement follows from Lemma 4 and Corollary 5. �

The following statement was proved in [12] for m = t−1.

Lemma 7. Let Em(X) such that ∑i∈C(pm)
1

X i + Em(X) divisible by Ψ
(t)
m (X) for m > t > 0. Then,

minwt(Em(X)) = pm−t−1(p−1)(pt−1)/2.

Proof. By the condition we have

∑
i∈C(pm)

1

X i +Em(X) = (X (pt−1)pm−t
+ · · ·+X pm−t

+1)F(X),

where degF(X)< pm−t and F(X) = X t1 +X t2 + · · ·+X th , 0 < t j < pm−t , j = 1,2, . . . ,h and h < pm−t .
It is clear that we can not consider cases when t j is congruent to 0 modulo p.

Hence

Em(X) =
h
∑

i=1

(
X ti +X ti+pm−t

+ · · ·+X ti+(pt−1)pm−t
)
+∑i∈C(pm)

1
X i

=
h
∑

i=1

(
X ti +X ti+pm−t

+ · · ·+X ti+(pt−1)pm−t
)

+∑
i∈C(pm−t )

1
∑l∈Ui∩C(pm)

1
X l +∑

i∈C(pm−t )
0

∑l∈Ui∩C(pm)
1

X l,
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where, as earlier, Ui = {i, i+ pm−t , . . . , i+(pt−1)pm−t}. Here we use that
⋃

i∈Z∗
pm−t

Ui = Z
∗
pm.

Let I = {t1, t2, . . . , th} and J = Z∗pm−t \ I. Using these denotations we obtain

Em(X) = ∑
i∈I∩C(pm−t )

1
∑l∈Ui∩C(pm)

0
X l +∑

i∈J∩C(pm−t )
1

∑l∈Ui∩C(pm)
1

X l

+∑
i∈I∩C(pm−t )

0
∑l∈Ui∩C(pm)

0
X l +∑

i∈J∩C(pm−t )
0

∑l∈Ui∩C(pm)
1

X l.
(3.4)

Denote z = |I ∩C(pm−t)
1 |, then |J ∩C(pm−t)

1 | = pm−t−1(p− 1)/2− z, |I ∩C(pm−t)
0 | = h− z and |J ∩

C(pm−t)
0 |= pm−t−1(p−1)/2−h+ z. Thus, by Lemma 6 and Eq (3.4), we obtain

wt(Em(X)) = z(pt−1)/2+(pm−t−1(p−1)/2− z)(pt +1)/2+(h− z)(pt +1)/2

+(pm−t−1(p−1)/2−h+ z)(pt−1)/2

or wt(Em(X)) = pm−1(p−1)/2+h−2z.
Supposing h−2z <−pm−t−1(p−1)/2, then pm−t−1(p−1)/2− z < z−h≤ 0. This is impossible

and wt(Em(X))≥ pm−1(p−1)/2− pm−t−1(p−1)/2.
Now we show that there exists Em(X) with a weight equal to the estimates obtained. We choose I =

C(pm−t)
1 for m> t, in this case h= z= pm−t−1(p−1)/2 and wt(Em(X)) = pm−1(p−1)/2− pm−t−1(p−

1)/2 for
Em(X) = ∑

i∈C(pm−t )
1

∑
l∈Ui∩C(pm)

0

X l + ∑
i∈C(pm−t )

0

∑
l∈Ui∩C(pm)

1

X l.

Then

∑
i∈C(pm)

1

X i +Em(X) = ∑
i∈C(pm−t )

1

∑
l∈Ui∩C(pm)

0

X l + ∑
i∈C(pm−t )

1

∑
l∈Ui∩C(pm)

1

X l

and we see that

∑
i∈C(pm)

1

X i +Em(X)≡ 0 (mod X (pt−1)pm−t
+ · · ·+X pm−t

+1).

�

Proposition 2. Let S(m)(X)+E(m)(X)≡ 0 (mod Ψ
(t)
m (X)) for t = 1,2, . . . ,m. Then we have

minwt(E(m)(X)) = (pm− pm−t)/2.

Remark 1. For m = 2 it was first proved in [11].

Proof. First, we consider the case when m = t. In this case we have that sum S(m)(X) +E(m)(X)

is divisible by X (pm−1)+ · · ·+X + 1. It is clear that wt(E(m)(X)) ≥ (pm− 1)/2 and we can choose
E(m)(X) = X pm−1+S(m)(X).

Let m > t. From Eq (3.1) we get

AIMS Mathematics Volume 7, Issue 5, 7997–8011.
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S(m)(X) =
dm/2−1

∑
i=0

d(m)
i (X)+S(m−1)(X p) = ∑

i∈C(pm)
1

X i +S(m−1)(X p). (3.5)

So, we will prove this statement by mathematical induction.
Step 1. For m = 1, we have only one case m = 1, t = 1, i.e., S(1)(X)+E(1)(X) ≡ 0 (mod X p−1 +

· · ·+X +1). It is clear that minwt(E(1)(X)) = (p−1)/2.
Step 2. Assume this proposition is true for S(m)(X), i.e. there exists E(m)(X) with wt(E(m)(X)) =

(pm− pm−t)/2 such that S(m)(X) +E(m)(X) is divisible by Ψ
(t)
m (X). Then S(m)(X p) +E(m)(X p) is

divided by Ψ
(t)
m (X p) = Ψ

(t)
m+1(X) and minwt(E(m)(X p)) = (pm− pm−t)/2.

By Lemma 7 there exists Em+1(X) such that ∑
i∈C(pm+1)

1
X i +Em+1(X) is divisible by Ψ

(t)
m+1(X) and

minwt(Em+1(X)) = pm−t(p−1)(pt−1)/2. Let E(m+1)(X) = Em+1(X)+E(m)(X p). Then

wt(E(m+1)(X)) = pm−t(p−1)(pt−1)/2+(pm− pm−t)/2 = (pm+1− p(m+1)−t)/2

and by Eq (3.5) we see that S(m+1)(X)+E(m+1)(X) is divisible by Ψ
(t)
m+1(X).

Now we will show that (pm+1− p(m+1)−t)/2 is the least possible weight of E(m+1)(X).
Suppose S(m+1)(X)+E(m+1)(X) is divisible by Ψ

(t)
m+1(X) for m+ 1 > t. Then there exists R(X)

such that
S(m+1)(X)+E(m+1)(X) =

(
X (pt−1)pm+1−t

+ · · ·+X pm+1−t
+1
)

R(X) (3.6)

and degR(X)< pm−t+1.
Let E(m+1)(X) = ∑

pm+1−1
i=0 eiX i and R(X) = ∑

pm+1−t−1
i=0 riX i. Denote E0 = {ei |ei , 0 and ei ≡ 0

(mod p)}, E1 = {ei |ei , 0 and ei . 0 (mod p)}, R0 = {ri |ri , 0 and ri ≡ 0 (mod p)} and R1 =
{ri |ri , 0 and ri . 0 (mod p)}. Let us introduce subsidiary polynomials F0(X p) =∑pi∈E0 X pi,F1(X) =

∑i∈E1 X i,R0(X p) = ∑pi∈R0 X pi and R1(X) = ∑i∈R1 X i.
Thus, by Eqs (3.5) and (3.6) we get

∑
i∈C(pm+1)

1

X i +F1(X)+S(m)(X p)+F0(X p)

=
(

X (pt−1)pm+1−t
+ · · ·+X pm+1−t

+1
)

R1(X)

+
(

X (pt−1)pm+1−t
+ · · ·+X pm+1−t

+1
)

R0(X p).

Then
∑

i∈C(pm+1)
1

X i +F1(X) =
(

X (pt−1)pm+1−t
+ · · ·+X pm+1−t

+1
)

R1(X)

and
S(m)(X p)+F0(X p) =

(
X (pt−1)pm+1−t

+ · · ·+X pm+1−t
+1
)

R0(X p).

So, by Lemma 7 and induction supposition, we have

wt(F1(X))≥ pm(p−1)/2− pm−t(p−1)/2
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and
wt(F0(X p))≥ (pm− pm−t)/2.

Finally, wt(E(m+1)(X))≥ wt(F1(X))+wt(F0(X p)) = (pm+1− p(m+1)−t)/2.
�

3.3. Proofs of main results

Proof of Theorem 1.
Let Φ0(X) = X −1, Φ j(X) = 1+X p j−1

+X2p j−1
+ . . .+X (p−1)p j−1

, j = 1,2, . . . ,n. Therefore, we
can get that

X pn
−1 = Φ0(X)Φ1(X) . . .Φn(X).

If 2 is the primitive root modulo p2, then Φ0(X),Φ1(X), . . . ,Φn(X) are irreducible polynomials over
F2 [20].

(i), (ii) First, we consider k < (pn− pn−1)/2. We note by Proposition 2 that in this case, Φn(X) -
(S(n)(X)+E(n)(X)) for any E(n)(X) with wt(E(n)(X)) = k < (pn− pn−1)/2. By Proposition 1, the
study of LCF2

k (s(n)) is reduced to considering LCF2
k (s(n−1)).

If S(n−1)(X) + E(n)(X) is divided by a polynomial G(X) satisfying G(X)|(X pn−1 − 1), then by
Proposition 1 we see that G(X) divides S(n)(X)+E(n)(X) for p ≡ 1 (mod 4) and vice versa. This
proves (i).

Let G(X) divide S(n)(X) + E(n)(X) for p ≡ 3 (mod 4) and LCF2
k (s(n)) = pn − degG(X). By

Proposition 1 we have gcd(G(X),Φn(X)) = 1 and G(X) divides

S(n−1)(X)+E(n)(X)+(X pn−1
−1)/(X−1).

Let G1(X) = G(X)/gcd(G(X),X−1). Then S(n−1)(X)+E(n)(X) is divided by G1(X) and

LCF2
k (s(n−1)) ≤ pn−1−degG1(X)

≤ pn−1−degG(X)+1 = pn−1 +1−
(

pn−LCF2
k (s(n))

)
.

So, LCF2
k (s(n))≥ pn− pn−1 +LCF2

k (s(n−1))−1.
Now we will prove in the similar way the right inequality in (ii).
Let H(X) divides S(n−1)(X)+E(n−1)(X) for p≡ 3 (mod 4) and LCF2

k (s(n−1)) = pn−1−degH(X).
Denote H1(X) = H(X)/gcd(H(X),X − 1). Then H1(X) divides (X pn−1 − 1)/(X − 1). Thus, by
Proposition 1 H1(X) divides

S(n)(X)+E(n−1)(X) = S(n−1)(X)+E(n−1)(X)+(X pn−1
−1)/(X−1).

Hence

LCF2
k (s(n)) ≤ pn−degH1(X)

≤ pn−degH(X)+1 = pn +1−
(

pn−1−LCF2
k (s(n−1))

)
and we see that

LCF2
k (s(n))≤ pn− pn−1 +LCF2

k (s(n−1))+1.

AIMS Mathematics Volume 7, Issue 5, 7997–8011.



8006

(iii) Let (pn− pn−t)/2≤ k < (pn− pn−t−1)/2 for t = 1,2, . . . ,n−1.
Then, by Proposition 2 LCF2

k (s(n)) ≤ pn−t . Further, again by Proposition 2 we see that S(n)(X)+

E(n)(X) is not divisible by

X (pt+1−1)pn−t−1
+ · · ·+X pn−t−1

+1 = (X pn
−1)/(X pn−t−1

−1).

Thus,
(X (pt−1)pn−t

+ · · ·+X pn−t
+1)

(
X pn−t

−1
)

is the polynomial with the greatest possible degrees that can divide S(n)(X)+E(n)(X) for k < (pn−
pn−t−1)/2.

Hence
LCF2

k (s(n))≥ pn− (pn−t(pt−1)+ pn−t−1) = pn−t−1(p−1).

The statements (iv) and (v) are clear. �
Thus, we see that these sequences are stable.
We further run a program to confirm our theorems. The experimental data are listed below, and the

results are consistent with Theorem 1.

Example 1. Let p = 3,b = 0. Then, by definition we see that
s(2) = (1,1,1,1,1,0,0,0,0)
and
s(3) = (1,1,1,1,1,1,1,0,1,1,1,0,1,1,0,0,1,0,0,0,1,0,0,0,0,0,0) per period.

The calculations show that

LCF2
k (s(2)) =



9, if k = 0,
6, if k = 1,2,
2, if k = 3,
1, if k = 4,
0, if k = 5.

and LCF2
k (s(3)) =



26, if k = 0,
25, if k = 1,
24, if k = 2,
21, if k = 3,
18, if 4≤ k ≤ 8,
9, if k = 9,
6, if k = 10,11,
2, if k = 12,
1, if k = 13,
0, if k ≥ 14.

Hence, in Theorem 1 (ii) all three cases are possible.

4. Conclusions and final remarks

We have re-examined the k-error linear complexity of the generalized cyclotomic binary sequences
of periods pn proposed in [3]. A progress is made in determining the k-error linear complexity of these
sequences. We establish a recursive relation and estimate for the k-error linear complexity of these
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sequences. From the results, it follows that the k-error linear complexity of this family of sequences
does not decrease dramatically for k < (pn− pn−1)/2.

Further, using similar techniques, we can also discuss the k-error linear complexity of a new family
of binary sequences with period 2pn presented in [4] whose construction was based on the generalized
cyclotomic classes from [5]. In the following part, we recall the definition of generalized cyclotomic
sequences proposed in [4] and then give the k-error linear complexity of it without a concrete proof.

It is well known [21] that an odd number g or g+ pn is also a primitive root modulo 2p j for each
integer j ≥ 1, where g is a primitive root modulo pn. Hence, we can assume in this case that g is an
odd number.

For j = 1,2, · · · ,n, define

D(2p j)
0 =

{
gt·d j (mod 2p j) |0≤ t < e

}
, and

D(2p j)
i = giD(2p j)

0 =
{

gix (mod 2p j) : x ∈ D(2p j)
0

}
, 1≤ i < d j.

(4.1)

It is clear that
{

D(2p j)
0 ,D(2p j)

1 , . . . ,D(2p j)
d j−1

}
forms a partition of Z∗2p j for each integer j ≥ 1 and for

an integer m≥ 1,

Z2pm =
m⋃

j=1

pm− j
d j−1⋃
i=0

(
D(2p j)

i ∪2D(2p j)
i

)
∪{0}∪{pm}.

Define four sets

D
(2pm)
0 =

⋃m
j=1
⋃d j−1

i=d j/2 pm− j
(

D(2p j)
(i+b) (mod d j)

∪2D(2p j)
(i+b) (mod d j)

)
∪{pm},

D
(2pm)
1 =

⋃m
j=1
⋃d j/2−1

i=0 pm− j
(

D(2p j)
(i+b) (mod d j)

∪2D(2p j)
(i+b) (mod d j)

)
∪{0},

D̃
(2pm)
0 =

⋃m
j=1 pm− j

(⋃d j/2−1
i=0 2D(2p j)

(i+b) (mod d j)
∪
⋃d j−1

i=d j/2 D(2p j)
(i+b) (mod d j)

)
∪{pm},

D̃
(2pm)
1 =

⋃m
j=1 pm− j

(⋃d j/2−1
i=0 D(2p j)

(i+b) (mod d j)
∪
⋃d j−1

i=d j/2 2D(2p j)
(i+b) (mod d j)

)
∪{0}.

It is obvious that
Z2pm = D

(2pm)
0 ∪D

(2pm)
1 = D̃

(2pm)
0 ∪ D̃

(2pm)
1

and
|D (2pm)

i |= |D̃ (2pm)
i |= pm, i = 0,1.

Families of balanced binary sequences u(m) = (u(m)
0 ,u(m)

1 ,u(m)
2 , . . .) and ũ(m) = (ũ(m)

0 , ũ(m)
1 , ũ(m)

2 , . . .)
of period 2pm can thus be defined as in [4], i.e.,

u(m)
i =

{
0, if i (mod 2pm) ∈D

(2pm)
0 ,

1, if i (mod 2pm) ∈D
(2pm)
1 ,

(4.2)

and

ũ(m)
i =

{
0, if i (mod 2pm) ∈ D̃

(2pm)
0 ,

1, if i (mod 2pm) ∈ D̃
(2pm)
1 .

(4.3)
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Ouyang et al. [4] examined the linear complexity of these sequences for f = 2r, where r is a positive
integer (see also [22]). The results in [4] show that u(m) and ũ(m) have high linear complexity.

In this case, if H(pm) =
⋃dm/2−1

i=0

(
D(2pm)
(i+b) (mod dm)

∪2D(2pm)
(i+b) (mod dm)

)
, then

∑
i∈H(pm)

X i ≡
dm/2−1

∑
i=0

d(pm)
i (X)+

dm/2−1

∑
i=0

d(pm)

i+ind(pm)
g (2)

(X) (mod X pm
−1),

where ind(pm)
g (2) (mod dm) is the least number ` such that 2≡ g` (mod pm). Thus, the k-error linear

complexity of u(m) and ũ(m) depends on ind(pm)
g (2) (mod dm). We need the following denotations.

Let Tm = min
(

ind(pm)
g (2) (mod dm),dm− ind(pm)

g (2) (mod dm)
)

,

A1 =

{
2eT1 +1, if 1≤ T1 < f/4,
p−1−2eT1, if f/4≤ T1 ≤ f/2,

and

Am =


2eTm, if 1≤ Tm ≤ pm−2(p−1) f/4,
pm−2(p−1)2/2, if pm−2(p−1) f/4≤ Tm ≤ pm−2(p+1) f/4,
pm−1(p−1)−2eTm, if pm−2(p+1) f/4≤ Tm < pm−1 f/2,

for m > 1.
Using the method discussed in Theorem 1, it is easy to get the k-error linear complexity of the

sequences with period 2pn in [4]. Therefore, omitting the proof, we only present the results of it below.

Theorem 8. Let p = e f + 1 be an odd prime with even f . Let 2 be a primitive root modulo p2. Let
u(n) be a family of generalized cyclotomic binary sequences of period 2pn defined in Eq (4.2). Then we
have the following results about ther k-error linear complexity of u(n).

(i) If p≡ 1 (mod 4), then for k < ∑
n
i=1 Ai we have

LCF2
k (u(n)) = 2pn−2pn−1 +LCF2

k (u(n−1)).

(ii) If p≡ 3 (mod 4), then for k < ∑
n
i=1 Ai we have

2pn−2pn−1 +LCF2
k (u(n−1))−1≤ LCF2

k (u(n))≤ 2pn−2pn−1 +LCF2
k (u(n−1))+1.

(iii) For ∑
n
i=1 Ai ≤ k < pn−1(p−1), we have pn− pn−1 ≤ LCF2

k (u(n))≤ pn + pn−1.

(iv) For pn− pn−t ≤ k < pn− pn−t−1, where t = 1,2, . . . ,n−1 we have

2pn−t−1(p−1)≤ LCF2
k (u(n))≤ 2pn−t .

(v) For k = pn−1, we have LCF2
k (u(n)) = 2.

(vi) For k ≥ pn, we have LCF2
k (u(n)) = 0.

Thus, the k-error linear complexity of u(n) depends on the values of Ti. In this case, we can have a
significant drop of the linear complexity when Ti are small.
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Example 2. Let p = 5,n = 2, f = 4,b = 0 and g = 27. By Eq (4.2), we see that

u(2) = (1,1,1,1,1,1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,1,0,0,0,1,0,0,1,1,1,0,1,
1,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0)

and u(1) = (1,1,1,0,1,0,0,1,0,0) per period. In this case, A1 = A2 = 2 and

LCF2
k (u(1)) =


10, if k = 0,
8, if k = 1,
6, if k = 2,
4, if k = 3.

and LCF2
k (u(2)) =


50, if k = 0,
48, if k = 1,
46, if k = 2,
44, if k = 3.

But LCF2
4 (u(2)) = 30 and LCF2

5 (u(2)) = 24.

Moreover, it can show that if g = 2+ pn then LCF2
k (s(n)) ≤ pn for k ≥ 2n(p− 1)/ f + 1. Now, we

consider another example.

Example 3. Let p = 5,n = 2, f = 4,b = 0 and g = 3. Here

u(2) = (1,1,1,1,1,1,1,0,1,1,1,1,1,0,0,1,1,0,1,0,0,0,1,0,1,0,0,1,0,1,1,1,
0,1,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,0)

and A1 = 2,A2 = 6. Then

LCF2
k (u(1)) =



10, if k = 0,
8, if k = 1,
6, if k = 2,
4, if k = 3,
2, if k = 4,
0, if k = 35.

and LCF2
k (u(2)) =



50, if k = 0,
48, if k = 1,
46, if k = 2,
44, if k = 3,
42, if k = 4,
40, if k = 5.

Further, LCF2
8 (u(2)) = 30 and LCF2

9 (u(2)) = 24.

So, such sequences have good stability when values of Tm and pm−2(p−1) f/4 are close.
The statements of Theorem 8 are also true for the k-error linear complexity of ũ(n).

5. Conclusions

In this paper, we derived the k-error linear complexity generalized binary cyclotomic sequences
with period pn. This paper generalizes the results obtained earlier for sequences of length p2. Our
study shows that these sequences have good stability, i.e., their linear complexity does not decrease
significantly with changing a few bits of sequence per period. A recursive relation was used to
estimate the k-error linear complexity. At the end of the paper, we discussed the generalized cyclotomic
sequences with period 2pn and also estimated their k-error linear complexity. In this case, the stability
of sequences depends on the choice of their parameters. In will be interesting to study the k-error of
new generalized cyclotomic sequences with other periods.
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