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1. Introduction

Let D be unit disk in the complex plane C and dA(z) = 1
π
rdrdθ be normalized Lebesgue area

measure on D. Let L2(D, dA) denote the Hilbert space of all square integrable functions on D with the
inner product

〈 f , g〉 =

∫
D

f (z)g(z)dA(z), f , g ∈ L2(D, dA).

Let H(D) be the set of analytic functions on D. The Bergman space L2
a(D) = L2(D, dA) ∩ H(D) is the

closed subspace of L2(D, dA). For nonnegative integer n, set en(z) =
√

n + 1zn, z ∈ D. Then {en}n≥0 is
an orthonormal basis of L2

a(D). The Bergman space is a reproducing Hilbert space with the reproducing
kernel Kz(w) = 1

(1−zw)2 , z,w ∈ D. Let P be orthogonal projection from L2(D, dA) onto Bergman space
L2

a(D). For f ∈ L2(D, dA), it has the reproducing formula

P( f )(z) = 〈 f ,Kz〉 =

∫
D

f (w)
(1 − zw̄)2 dA(w). (1.1)

For φ ∈ L∞(D), the multiplication operator Mφ is defined by Mφ( f ) = φ f . The Toeplitz operator
Tφ : L2

a(D)→ L2
a(D) and the Hankel operator Hφ : L2

a(D)→ L2
a(D) are defined respectively by

Tφ = PMφ, Hφ = PMφJ,
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where J : L2
a(D) → L2

a(D) is defined by J(en) = en+1 (n ≥ 0). It is clear that Tφ and Hφ are bounded
operators on the Bergman space L2

a(D).
Let L2

h(D) be a set of all harmonic functions in L2(D, dA). The operator K : L2
a(D) → L2

h(D) is
defined by

K(e2n) = en, K(e2n+1) = en+1, n = 0, 1, 2, · · · .

Obviously K is bounded on L2
a(D), ‖K‖ = 1 and its adjoint operator K∗ : L2

h(D)→ L2
a(D) is given by

K∗(en) = e2n, K∗(en+1) = e2n+1, n ≥ 0.

For φ ∈ L∞(D), the H-Toeplitz operator Bφ : L2
a(D)→ L2

a(D) is defined by

Bφ = PMφK.

It is easy to see that
B∗φ = K∗PhMφ̄,

where Ph is the orthogonal projection from L2(D, dA) onto L2
h(D).

It is noted that the H-Toeplitz operator is closely related to the Toeplitz and Hankel operators. In
fact, for each nonnegative integer n, we have

Bφ(e2n) = PMφK(e2n) = PMφ(en) = Tφ(en) (1.2)

and
Bφ(e2n+1) = PMφK(e2n+1) = PMφJ(en) = Hφ(en). (1.3)

It is known that Tφ = 0 if and only if φ = 0, whence Bφ = 0 if and only if φ = 0.
Recently, lots of study about Toeplitz and Hankel operators have been done on the Bergman space

(see [1, 6, 7, 9, 11, 13–15]). Various generalizations of Toeplitz and Hankel operators on spaces of
analytic functions have been studied by many mathematicians. In 2007, Arora and Paliwal [2] have
introduced and studied H-Toeplitz operators on the Hardy space, where they have clubbed the notion
of Toeplitz and Hankel operators together. The importance of this notion is that it is associated with
a class of Toeplitz operators and a class of Hankel operators on the Hardy space where the original
operators are neither Toeplitz nor Hankel. Moreover, it can also be observed that an n × n H-Toeplitz
matrix has 2n − 1 degree of freedom rather than n2 and therefore for large n, it is comparatively easy
to solve the system of linear equations where the coefficient matrix is an H-Toeplitz matrix.

In 1964, Brown and Halmos [4] showed that on the Hardy space, two bounded Toeplitz operators Tφ

and Tψ commute if and only if: (i) Both φ and ψ are analytic, or (ii) both φ̄ and ψ̄ are analytic, or (iii) one
is a linear function of the other. In [3] Axler and Cuckovic proved that if the two symbols are bounded
harmonic functions, then the same result is also true for Toeplitz operators on the Bergman space. The
situation with a general symbol is rather more complicated. Let φ, ψ ∈ L∞(D) be radial functions, i.e.,
φ(z) = φ(|z|), z ∈ D. It is well known and easy to see that two Toeplitz operators with radial symbols
commute. In [10] Louhichi and Zakariasy showed that if p and s are integers such that ps ≤ 0, then the
Toeplitz operators with symbols eipθφ and eisθψ commute only in certain trivial cases. This result is not
true if both of the integers p and s satisfy ps > 0. There are lots of examples of functions of positive
quasihomogeneous degree which are the symbols of commuting Toeplitz operators (see [5]).
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The H-Toeplitz operator on the Bergman space was first studied recentely by [8], where the
commutativity of H-Toeplitz operators with analytic or harmonic symbols is discussed. Motivated
by these works, in this paper we will characterize the commuting H-Toeplitz operators with
quasihomogeneous symbols, nonharmonic ones.

The organisation of paper is as follows. In Section 2, we shall collect some notations and results
as preliminaries. In Section 3, we will first discuss when the product of two H-Toeplitz operators with
quasihomogeneous symbols is still an H-Toeplitz operator (see Theorem 3.1), as a byproduct, we get
the characterization of semi-commuting H-Toeplitz operators with quasihomogeneous symbols (see
Corollary 3.2). The remaining of Section 3 will characterize the commuting H-Toeplitz operators
with quasihomogeneous symbols in terms of different degrees and same degrees respectively (see
Theorems 3.4 and 3.6 respectively).

2. Preliminaries

Let R be the space of functions which are square integrable in [0, 1] with respect to the measure
rdr. By using the fact that the trigonometric polynomials are dense in L2(D, dA) and that for k1 , k2,
eik1θR is orthogonal to eik2θR, one sees that

L2(D, dA) =
∑
k∈Z

eikθR.

Thus, each function φ ∈ L2(D, dA) can be written as (see [5])

φ(reiθ) =
∑
k∈Z

eikθϕk(r), ϕk ∈ R.

Moreover, if φ ∈ L∞(D) ⊂ L2(D, dA), then for each r ∈ [0, 1),

|ϕk(r)| =
∣∣∣∣ 1
2π

∫ 2π

0
φ(reiθ)e−ikθdθ

∣∣∣∣ ≤ sup
z∈D
|φ(z)|, k ∈ Z.

Hence, the functions ϕk are bounded in the disk. We call every function in eikθR to be
quasihomogeneous function of degree k.

The following lemma will be used frequently.

Lemma 2.1. Let p be an integer and ϕ a bounded radial function. Then for each nonnegative integer n,

Beipθϕ(z2n) =

2
√

n+1
2n+1 (n + p + 1)ϕ̂(2n + p + 2)zn+p, n + p ≥ 0,

0, n + p < 0

and

Beipθϕ(z2n+1) =

2
√

n+2
2n+2 (p − n)ϕ̂(p + 2)zp−1−n, n + 1 ≤ p,

0, n + 1 > p.
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Proof. Note that Kz(w) =
∑∞

j=0(1 + j)z̄ jw j, it follows from the reproducing formula (1.1) that, when
n + p ≥ 0,

Beipθϕ(z2n) = PMeipθϕK(z2n) =

√
2n + 2
4n + 2

PMeipθϕ(zn)

=

√
n + 1
2n + 1

∫
D

eipθϕ(w)wn
∞∑
j=0

(1 + j)w jz jdA(w)

=

√
n + 1
2n + 1

∞∑
j=0

∫ 1

0

∫ 2π

0
ei(p+n− j)θϕ(r)rn+ j+1(1 + j)z j 1

π
dθdr

=

√
n + 1
2n + 1

(2n + 2p + 2)zn+p
∫ 1

0
ϕ(r)r2n+p+1dr

= 2

√
n + 1

2n + 1
(n + p + 1)ϕ̂(2n + p + 2)zn+p.

When n + p < 0, the above calculation also shows Beipθϕ(z2n) = 0. Similarly, when n + 1 ≤ p,

Beipθϕ(z2n+1) = PMeipθϕK(z2n+1) =

√
2n + 4
4n + 4

PMeipθϕ(zn+1).

=

√
n + 2

2n + 2

∫
D

eipθϕ(w)wn+1
∞∑
j=0

(1 + j)w jz jdA(w)

=

√
n + 2

2n + 2

∞∑
j=0

∫ 1

0

∫ 2π

0
ei(p−n−1− j)θϕ(r)rn+2+ j(1 + j)z j dθdr

π

=

√
n + 2

2n + 2
(2p − 2n)zp−1−n

∫ 1

0
ϕ(r)rp+1dr

= 2

√
n + 2

2n + 2
(p − n)ϕ̂(p + 2)zp−1−n.

When n + 1 > p, the above computation also gives Beipθϕ(z2n+1) = 0. The proof is complete. �

An operator that will arise in our study of H-Toeplitz operators is the Mellin transform, which is
defined for any function ϕ ∈ L1([0, 1], rdr), by the formula

ϕ̂(z) =

∫ 1

0
ϕ(r)rz−1dr.

It is clear that ϕ̂ is analytic in the half right plane {z : Re z > 2}. It is important and helpful to know
that the Mellin transform is uniquely determined by its value on an arithmetic sequence of integers. In
fact, we have the following classical theorem (see [12], p. 102).

Lemma 2.2. Suppose that ϕ is a bounded analytic function on {z : Re z > 0}. If ϕ vanishes at the
pairwise distinct points {zk : k = 1, 2, . . .}, where inf{|zk|} > 0 and

∑∞
k=1 ( 1

zk
) = ∞, then ϕ = 0.
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As a simple application of the above lemma, we have the following fact which we will use frequently
to prove our main results.

Corollary 2.3. For ϕ ∈ L1([0, 1], rdr), if there exists a sequence of positive integers {nk}, such that∑
k 1/nk = ∞ and ϕ̂(nk) = 0 for all k, then ϕ = 0.

3. The main results and the proofs

In this section, we will characterize the commutativity of two H-Toeplitz operators with
quasihomogeneous symbols.

In order to prove the semi-commuting H-Toeplitz operators, we first give the result for when the
product of two H-Toeplitz operators with quasihomogeneous symbols is still an H-Toeplitz operator.

Theorem 3.1. Let p, s be integers and φ1, φ2 two bounded radial functions. If there is φ ∈ L∞(D) such
that Beipθφ1 Beisθφ2 = Bφ, then either φ1 = φ = 0 or φ2 = φ = 0.

Proof. Now for φ ∈ L∞(D), write
φ(reiθ) =

∑
k∈Z

eikθϕk(r),

where each ϕk is bounded radial function. We show the conclusion by considering two cases.
Case 1. We assume s = 2` for some integer `. Then using Lemma 2.1, direct calculations give that

for nonnegative integer n, when n + ` ≥ 0 and n + ` + p ≥ 0,

Beipθφ1 Beisθφ2(z
4n) = A′n,`,pφ̂2(4n + 2` + 2)φ̂1(2n + 2` + p + 2)zn+`+p, (3.1)

where

A′n,`,p = 4

√
(2n + 1)(n + ` + 1)

(4n + 1)(2n + 2` + 1)
(2n + 2` + 1)(n + ` + p + 1),

and

Bφ(z4n) =

∞∑
k=0

2

√
2n + 1
4n + 1

(k + 1)ϕ̂k−2n(k + 2n + 2)zk. (3.2)

Since Beipθφ1 Beisθφ2(z
4n) = Bφ(z4n), then (3.1) and (3.2) give that

ϕ̂k−2n(k + 2n + 2) = 0, k , n + ` + p. (3.3)

Let j = k−2n, so k = j+2n. For each fixed interger j, when n > `+ p− j, then k = j+2n > n+`+ p.
Hence, for each integer j, there is N j, when n ≥ N j, the Eq (3.3) implies

ϕ̂ j( j + 4n + 2) = 0.

Obviously
∑∞

n=N j
1/( j + 4n + 2) = ∞, so by Corollary 2.3, we get ϕ j = 0 for every integer j, to obtain

that φ = 0.
The above has shown that Beipθφ1 Beisθφ2 = 0. Now the Eq (3.1) gives that there is an integer N0 > 0,

φ̂2(4n + 2` + 2)φ̂1(2n + 2` + p + 2) = 0, n ≥ N0. (3.4)
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Set
E1 = {n ≥ N0 : φ̂1(2n + 2` + p + 2) = 0},

E2 = {n ≥ N0 : φ̂2(4n + 2` + 2) = 0}.

If
∑

n∈E1
1/n < ∞, then

∑
n∈E2

1/n = ∞, thus by Corollary 2.3, we get φ2 = 0; similarly, if
∑

n∈E2
1/n <

∞, then it must be φ1 = 0.
Case 2. We suppose s = 2` + 1 for some integer `. Then making use of Lemma 2.1, we get that for

nonnegative integer n, when n + ` + 1 ≥ 0 and n + ` + 1 + p ≥ 0,

Beipθφ1 Beisθφ2(z
4n+2) = A′′n,`,pφ̂2(4n + 2` + 5)φ̂1(2n + 2` + p + 4)zn+`+1+p,

where

A′′n,`,p = 4

√
(2n + 2)(n + ` + 2)

(4n + 3)(2n + 2` + 3)
(2n + 2` + 3)(n + ` + p + 2),

and

Bφ(z4n+2) =

∞∑
k=0

2

√
2n + 2
4n + 3

(k + 1)ϕ̂k−2n−1(k + 2n + 3)zk.

Using same arguments as done in Case 1, it follows from Beipθφ1 Beisθφ2(z
4n) = Bφ(z4n) that the conclusion

holds too. The proof is complete. �

Note that the authors showed an example in [8] that BzBz , Bz2 . The following corollary is quickly,
which answers that two H-Toeplitz operators with quasihomogeneous symbols semi-commute only in
trivial case.

Corollary 3.2. Let p, s be integers and φ1, φ2 two bounded radial functions. Then the following are
equivalent:

(a) Beipθφ1 Beisθφ2 = Bei(p+s)θφ1φ2;
(b) Beipθφ1 Beisθφ2 = 0;
(c) φ1 = 0 or φ2 = 0.

Theorem 3.1 also helps us to identify the H-Toeplitz operators which are idempotents. The
following corollary is an immediate consequence.

Corollary 3.3. Let φ be a bounded quasihomogeneous function. Then B2
φ = Bφ if and only if φ = 0.

Now we start to characterize when two H-Toeplitz operators with quasihomogeneous symbols
commute. The first coming theorem tells that two H-Toeplitz operators with quasihomogeneous
symbols such that the signs of their quasihomogeneous degrees are different commute only in the
trivial case. Notice that in [8], the authors ever presented an example that BzBz̄ , Bz̄Bz.

Theorem 3.4. Let p, s be two distinct integers and φ1, φ2 two bounded radial functions. Then
Beipθφ1 Beisθφ2 = Beisθφ2 Beipθφ1 if and only if φ1 = 0 or φ2 = 0.

Proof. The sufficiency is obvious. We now show the necessity. Suppose that BeipθφBeisθψ = BeisθψBeipθφ

and we deduce the conclusion by the following cases.

AIMS Mathematics Volume 7, Issue 5, 7898–7908.
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Case 1. p = 2q and s = 2` for some integers q and `, where q , `. Then when n + ` ≥ 0 and
n + ` + 2q ≥ 0, we have the Eq (3.1); and similarly, when n + q ≥ 0 and n + q + 2` ≥ 0, we have

Beisθφ2 Beipθφ1(z
4n) = A′n,q,sφ̂1(4n + 2q + 2)φ̂2(2n + 2q + s + 2)zn+q+s, (3.5)

where

A′n,q,s = 4

√
(2n + 1)(n + q + 1)

(4n + 1)(2n + 2q + 1)
(2n + 2q + 1)(n + q + s + 1),

Note that n + ` + p , n + q + s, thus by the Eqs (3.1) and (3.5), we conclude that there is an integer
N0 > 0, the Eq (3.4) holds for all n ≥ N0. Thus done as the argument in Theorem 3.1 we may conclude
that φ1 = 0 or φ2 = 0.

Case 2. p = 2q + 1 and s = 2` for some integers q and `. For any nonnegative integer n,

Beipθφ1 Beisθφ2(z
4n) = Beisθφ2 Beipθφ1(z

4n).

The left side of the above is (3.1) when n+` ≥ 0 and n+`+p ≥ 0, while the right side of the above is zero
when n ≥ N for large enough positive integer N. It follows that (3.4) holds for N0 = max(N, |`| + |p|).
So as discussed in Case 1, we see that φ1 = 0 or φ2 = 0.

Case 3. p = 2q and s = 2` + 1 for some integers q and `. This case is similar to Case 2.
Case 4. p = 2q + 1 and s = 2` + 1 for some integers q and ` with q , `. This case is similar to

Case 1 when applying the equality

Beipθφ1 Beisθφ2(z
4n+2) = Beisθφ2 Beipθφ1(z

4n+2)

for nonnegtive integer n. The detail is omitted and we finish the proof. �

For the commuting of two H-Toeplitz operators with same degree quasihomogenous symbols, the
situation becomes quite hard. We first give the following lemma.

Lemma 3.5. Let p be an integer and φ1, φ2 two bounded radial functions. Assume Beipθφ1 Beipθφ2 =

Beipθφ2 Beipθφ1 .

(a) If p = 2q for some integer q, then for any Re z > max(0,−2p),

r̂p+2φ1(2z)r̂p+2φ2(z + p) = r̂p+2φ2(2z)r̂p+2φ1(z + p). (3.6)

(b) If p = 2q + 1 for some integer q, then for any Re z > max(0,−2p − 1),

r̂p+4φ1(2z)r̂p+4φ2(z + p − 1) = r̂p+4φ2(2z)r̂p+4φ1(z + p − 1). (3.7)

Proof. (a) Suppose p = 2q for some integer q. So using

Beipθφ1 Beipθφ2(z
4n) = Beipθφ2 Beipθφ1(z

4n),

together with (3.1) and (3.5) where s = p and integer n ≥ N = max(0,−3q), it follows that

φ̂1(4n + p + 2)φ̂2(2n + 2p + 2) = φ̂2(4n + p + 2)φ̂1(2n + 2p + 2) (3.8)
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when n ≥ N, or equivalently,

r̂p+2φ1(4n)r̂p+2φ2(2n + p) = r̂p+2φ2(4n)r̂p+2φ1(2n + p)

when n ≥ N. Set
Φ(z) = r̂p+2φ1(2z)r̂p+2φ2(z + p) − r̂p+2φ2(2z)r̂p+2φ1(z + p).

It is easy to see that Φ is a bounded analytic function in the right half plane {z : Re z > max(0,−2p)}.
The Eq (3.8) tells that Φ(2n) = 0 when n ≥ N. Thus by Lemma 2.2 it concludes that Φ ≡ 0 in the right
half plane {z : Re z > max(0,−2p)}, which gives (3.6).

(b) Suppose p = 2q + 1 for some integer q. Similar to the previous case, it follows from

Beipθφ1 Beipθφ2(z
4n+2) = Beipθφ2 Beipθφ1(z

4n+2)

that for big enough integer N, when n ≥ N,

φ̂1(4n + p + 4)φ̂2(2n + 2p + 3) = φ̂2(4n + p + 4)φ̂1(2n + 2p + 3),

or equivalently,
r̂p+4φ1(4n)r̂p+4φ2(2n + p − 1) = r̂p+4φ2(4n)r̂p+4φ1(2n + p − 1)

when n ≥ N. Hence same arguments used in (a) will give (3.7). The proof is complete. �

Now we can characterize the commuting H-Toeplitz operators with same nonnegative degree
quasihomogeneous symbols.

Theorem 3.6. Let p be a nonnegative integer and φ1, φ2 two bounded radial functions. Then
Beipθφ1 Beipθφ2 = Beipθφ2 Beipθφ1 if and only if there exist α, β ∈ C, |α| + |β| , 0 such that αφ1 + βφ2 = 0.

Proof. We first show the sufficiency. If αφ1 + βφ2 = 0 for α, β, not all zero, we may assume α , 0,
then φ1 = cφ2, where c = −β/α. Hence Beipθφ1 = cBeipθφ2 , and so clearly Beipθφ1 Beipθφ2 = Beipθφ2 Beipθφ1 .

Now we show the necessity using Lemma 3.5. First consider the case p is even. Without loss of
generality, we assume φ2 , 0. Put

E = {z : Re z > 0, r̂p+2φ2(z) = 0}.

By (3.6) we get that for Re z > 0,

r̂p+2φ1(2z)

r̂p+2φ2(2z)
=

r̂p+2φ1(z + p)

r̂p+2φ2(z + p)
, z + p, 2z < E. (3.9)

Case 1. Suppose p is positive. We claim that, there is z0 ∈ (1 + p, 2 + p) such that for any integer
k ≥ 0,

z0 − p
2k + 2p < E. (3.10)

In fact, on the one hand, we note that { z0−p
2k + 2p : k ≥ 0} is a bounded sequence since

2p <
z0 − p

2k + 2p ≤ z0 + p < 2p + 2.

AIMS Mathematics Volume 7, Issue 5, 7898–7908.
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On the other hand, it is easy to check that for z1, z2 ∈ (1 + p, 2 + p) with z1 , z2,{z1 − p
2k + 2p : k ≥ 0

}⋂{z2 − p
2k + 2p : k ≥ 0

}
= ∅.

Now, if the claim is not true, then for each z ∈ (1 + p, 2 + p), there is a nonnegative integer kz such that
z−p
2kz + 2p ∈ E. It follows that the bounded infinite set{z − p

2kz
+ 2p : z ∈ (1 + p, 2 + p)

}
⊂ E,

which implies that the analytic function r̂p+2φ2 ≡ 0, and so φ2 = 0 by Corollary 2.3, a controdiction.
Hence the claim holds.

Now we fix a z0 ∈ (1 + p, 2 + p) such that (3.10) holds for each integer k ≥ 0. By (3.9), we have

r̂p+2φ1

r̂p+2φ2

(z0 − p
2k + 2p

)
=

r̂p+2φ1

r̂p+2φ2

(
2 ·

(z0 − p
2k+1 + p

))
=

r̂p+2φ1

r̂p+2φ2

(z0 − p
2k+1 + 2p

)
, k ≥ 0.

It induces that
r̂p+2φ1

r̂p+2φ2

(z0 − p
2k + 2p

)
=

r̂p+2φ1

r̂p+2φ2

(
z0 + p

)
=: c, k ≥ 0.

Notice that z0−p
2k + 2p→ 2p as k → ∞, so the above implies that the analytic function

r̂p+2φ1

r̂p+2φ2

(z) ≡ c, Re z > 0,

which means that the Mellin transformation of rp+2(φ1 − cφ2) is identically zero in the right half plane
{z : Re z > 0}, hence we get that φ1 = cφ2 by Corollary 2.3, as desired.

Case 2. Suppose p = 0. In this case, (3.6) becomes

φ̂1(2z + 2)φ̂2(z + 2) = φ̂2(2z + 2)φ̂1(z + 2), Re z > 0.

Replacing z by z − 1 in the above we get

φ̂1(2z)φ̂2(z + 1) = φ̂2(2z)φ̂1(z + 1), Re z > 1.

Applying the same arguments done in Case 1, we will obtain the desired conclusion.
When p is positive and odd, the proof is similar by using (3.7). We omit the detail and finish the

proof. �

We don’t know whether the previous theorem is true when p is negative. But for special symbols,
it is still the case.

Theorem 3.7. Let j, k, s, t be integers. Then Bz j z̄k Bzs z̄t = Bzs z̄t Bz j z̄k if and only if j = s and k = t.

AIMS Mathematics Volume 7, Issue 5, 7898–7908.
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Proof. The sufficiency is clear. Now we show the necessity. Let φ1 = z jz̄k = r j+kei( j−k)θ and φ2 = zsz̄t =

rs−tei(s−t)θ. Since φ1 , 0 and φ2 , 0, so Theorem 3.4 tells that j − k = s − t := p. It is left to show that
j + k = s + t.

We only consider the case when p = 2q for some integer q (the case p = 2q + 1 is similar).
So by (3.6) we have

̂rp+2r j+k(2z) ̂rp+2rs+t(z + p) = ̂rp+2rs+t(2z) ̂rp+2r j+k(z + p)

when Re z > max(0,−2p). By the definition of the Mellin transformation, the above yields that

(p + 2 + j + k + 2z)(2p + 2 + s + t + z) = (p + 2 + s + t + 2z)(2p + 2 + j + k + z)

when Re z > max(0,−2p). Thus it is easy to get that j + k = s + t, and which together with j− k = s− t
induces j = s and k = t. The proof is complete. �

4. Conclusions

In this research, it obtains the following characterizations for the commuting H-Toeplitz operators
with quasihomogeneous symbols on the Bergman space.

(1) Let p, s be two distinct integers and φ1, φ2 two bounded radial functions. Then Beipθφ1 Beisθφ2 =

Beisθφ2 Beipθφ1 if and only if φ1 = 0 or φ2 = 0.
(2) Let p be a nonnegative integer and φ1, φ2 two bounded radial functions. Then Beipθφ1 Beipθφ2 =

Beipθφ2 Beipθφ1 if and only if there exist α, β ∈ C, |α| + |β| , 0 such that αφ1 + βφ2 = 0.
(3) Let p, s be integers and φ1, φ2 two bounded radial functions. Then Beipθφ1 Beisθφ2 = Bei(p+s)θφ1φ2 if and

only if φ1 = 0 or φ2 = 0.
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