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1. Introduction

The fractional calculus is an important branch of mathematics and it has wide applications to many
fields of science and engineering. We know that the fractional calculus is a wonderful technique to
understand of memory and hereditary properties of materials and processes. Some contributions to
fractional calculus have been carried out, see the monographs [1-3], and the references cited therein.

The theory of generalized fractional calculus was proposed by Kiryakova in [4]. One of the
proposed generalizations of the fractional calculus operators is the y-fractional operator which has
wide applications, some properties of this operator could be found in [5-10]. The Gronwall inequality
plays an important role in the study of qualitative and qualitative properties of solution of fractional
differential and integral equations [11-18]. In order to work with continuous dependence of differential
equations via y-Hilfer fractional derivative, the generalized Gronwall inequality by means of the
fractional integral with respect to another function i was first given and proved by Vanterler et al.
in [19]. Indeed, they obtained the theorem given below.
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Theorem 1.1 [19]. Let u,v be two integrable functions and g continuous, with domain [a, b]. Let
¥ € C'la, b] be an increasing function such that /' (t) # 0, ¥t € [a, b]. Assume that

(1) u and v are nonnegative;

(2) g is nonnegative and nondecreasing.

If
u(t) < v(1) + g(1) f W @W(0) — ()™ u()dr,
then )
' — r
u(t) < v(t) + f Z %w’(ﬂ(gﬁ(ﬂ — () W(r)dr, Vtea,bl.
a k=1

The Hilfer version of the fractional derivative with another function called y-Hilfer FDO has been
presented by Sousa et al [20]. Recently, the existence and uniqueness of the solution of a nonlinear
Y-Hilfer fractional differential equations with different kinds of initial and boundary conditions and the
Ulam-Hyers stabilities of its solutions have been investigated [21-25].

The Ulam stability, which can be considered as a special type of date dependence was initiated by
Ulam [26,27]. Since then, there are many development of this field, we refer the reader to [28-32] and
the references therein.

The main objective of this paper is to extend Theorem 1.1 to the generalized coupled Gronwall
inequality by the implementation of y-fractional operator. As applications, we prove the existence
and uniqueness of solutions for the following nonlinear delay coupled y-Caputo fractional differential
system

WD x(t) = F(t,y(t),y(t = 1)), 1€ [t 1],

CDLy(1) = Gt x(t), x(t = 1)), 1 € [0, 11], (1.1)

x(t) = ¢(n), y()=06@t), 1€ to—T1,10l,
where F,G € C([ty, ;] X R%,R), ¢,60 € C[ty — T, to], and ngx(t) is the left Caputo fractional derivative
of x of order @, 0 < @ < 1 with respect to the continuous function  with ¥/'(t) > 0, t € [t,t;]. The
meaning of g wy(t) (0 < B < 1) is the same as ngx(t). Moreover, we investigate the Ulam-Hyers
stability of solutions for (1.1). Our results extend the main results of [33].

This paper is organized as follows: In Section 2, we give some notations, definitions and
preliminaries. Section 3 is devoted to proving a new generalized coupled Gronwall inequality. In
Section 4, the existence and uniqueness of the solution of system (1.1) are given and proved, and the
Ulam-Hyers stability theorem of (1.1) is obtained. In Section 5, an example is given to illustrate our
theoretical result. Finally, the paper is concluded in Section 6.

2. Preliminaries

In this section, we provided some basic definitions and lemmas which are used in the sequel.

Definition 2.1 [10,34]. Let @ > 0, f be an integrable function defined on [a, b] and € C!([a, b]) be
an increasing function with /(¢) # 0 for all 7 € [a, b]. The left -Riemann-Liouville fractional integral
operator of order « of a function f is defined by

1

(t()[((;f)(t) = @

f W) — W)™ (W ()ds. @1
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Definition 2.2 [10,34]. Letn — 1 < @ < n, f € C"([a,b]) and ¥ € C"([a, b]) be an increasing function
with /() # O for all ¢ € [a, b]. The left y-Caputo fractional derivative of order o of a function f is
defined by

1 t
e f W () = w(s)"™ ™ ) (s)ds, (2.2)

C na _ n—a g[n] —
(o Dy @) = G Ly f)(0) = T

where n = [a] + 1 and f1(r) := (;454)" f(2) on [a, b].

Lemma 2.1 [34]. Leta > 0 and 8 > 0, then

. o' -1 _ F(ﬁ) _ +a—1
D L) = Y1) () = = o) = i)

e ] r(p)
(i) GDGW() = W)™ (1) = FE— o WO vy,

(iii) e DG (W (s) —Y(t)' () =0, n—-1<a<n, k=0,1,.,n—1.

In the following, we will give the combinations of the fractional integral and the fractional
derivatives of a function with respect to another function.

Lemma 2.2 [34]. Let f € C"([a,b]) andn — 1 < @ < n. Then we have
(D DS IS f (1) = f(0);

=l k) g

@) W I55D5 (@) = f(B) = ! k(! o)

k=0

W(0) — Y1)
In particular, given a € (0, 1), one has

WIGSDS () = () = f(to).

Let X = C([ty) — 7,t;],R) N C'([ty, 1], R), then the space X is a Banach space with respect to the
norm defined by ||ul| = maXes—r., (2l

The following definition of Ulam stability of (1.1) is similar to the definition stated in [35].

Definition 2.3. System (1.1) is said to be Ulam-Hyers stable if there exists a real number ¢ such that
for all € > 0 and for each (u,v) € X X X with (u(z), v(¢)) = (¢(2), 6(t)) for t € [ty — 7, 1o] satisfying the
inequalities

| DGu(r) = F(t,v(0), vt = D) < €, 1€ [to,11], (2.3)

DOV = Gt u(t),u(t = 1) < €, €[ty 1], (2.4)

there exists a solution (x,y) € X X X of (1.1) satisfying
lu—xl| <ce, |lv—yl < ce (2.5)
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3. A generalized coupled Gronwall inequality

Now we state and prove a new generalized coupled Gronwall inequality as follows.

Theorem 3.1. Assume that x,y, and a; (i = 1, 2) are integrable and nonnegative functions, and b; (i =
1,2) are continuous, nonnegative and nondecreasing functions, with domain [ty,t;]. Let y € C'[ty, t;]
be an increasing function such that y'(t) # 0, Vt € [y, 11].

If

X(t)<al(t)+b1(t)f W ()W) — () y(s)ds,
(3.1)

y(1) < ax(1) + ba(1) f W ()W) — Y()) " x(s)ds,
then )
()< al®)+bi(D) | W (OWD - w(s)*  ax(s)ds

' TH@TB) s o
¥ f ;mblmbg(r)w (WD) ~ () (3.2)

- (al(S) +bi(s) f Y (OW(s) - l//(T))a_laz(T)dT) ds,

and

YO < a®) +by(1) | W (W)~ () ai(s)ds

) f ©, ) (B)
| 24Tk + B)

-(az(S) + by(s) f Y (OW(s) - lﬁ(T))ﬂ_lm(T)dT) ds.

DY (OB5 W ()W (1) = ()P (3.3)

Proof. Let .
Ay(t) = b (1) f, W ()W) — ()" y(s)ds,
and Ot
Bx(1) = by(1) f; W (W) ~ Y ()P x(s)ds.
Then from system (3.1), one has 0
x(t) < ai(t) + Ay(r), y() < ax(t) + Bx(¢). (3.4)
By (3.4) and the monotonicity of the operators A and B, we obtain

x(t) < a(t) + A(a(t) + Bx(1)) = a,(t) + Aay(t) + ABx(¢)
< ai(t) + Aay(t) + ABla;(t) + Aar(t) + ABx(1)]
= a,(f) + ABa,(t) + Aay(t) + ABAay(t) + (AB)*x(?).
Thus, through iteration, for n € N, one has

n—1 n—1

x(t) < ) (ABYai(d) + Y (AB)*Aax(®) + (ABY'x(1), t € [1o,11]. 3.5)

k=0 k=0
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Similarly, we have
n—1 n—1

¥(0) < ) (BAYax(t) + ) (BAYBay(t) + (BAY'y(1), 1 € [1o,1], (3.6)
k=0 k=0

where (AB)a,(f) = a;(¢) and (BA) ay(f) = ax(2).

In the following, we will prove that

l—‘n l—‘n t
AByx(t) < OB iy f W (W) — Y P x(s)ds,
- .
n ()™ n n t ’ _ n(a+p)-1 '
(BAYYO) = o e S OH0 f WS — b)) By (s)ds,
where t € [1y, t;], and
lim(AB)"x(t) =0, lim(BA)"y(t) = 0. (3.8)

We know that (3.7) is true for n = 1. In fact, one has

ABX(t) = A(Bx(1) = by (1) f W (S)WD — w(5)" bals) f W (OW(s) — p(@OF x(Ddsdr
< b)) f WS — ()" f W OWs) — WP (s

= by (D)by(1) f ¥ (0)x(r)dt f W ()W) = ()™ W(s) — ()Y ds.

Introducing a change of variables v = ‘Z((f;:z((:)) and using the definition of beta function, we obtain

f W ()W) = () W(s) — () ds

Y(s) — Y(7)

a-1
_ -4
) = W)] W (s) = y(@))ds

=fLV(S)(l/'(t)—lﬂ(T))"_1 [1—

1
= () -y fo (1= vV

= (@) — w1 L@LB)
- W) —uioy L,
Thus . .
ABx0 < G O [ W0 - we) atede
Similarly, one has
') !
BAY0) = L Bh0b) | @00 - b0 e
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Now, by using mathematical induction, for n = k and ¢ € [ty, #;], we obtain
T (a\T*

0 < ()™ (B)

I'(k(a +B))

) ()
k
BOYD < e+ )

Forn = k+ 1 and t € [ty, 1], we get by using the nondecreasing of functions b;(¢) and b,(t), and the
induction hypothesis that

(AB)*x B (DD5(1) f W ()W) = () P x(s)ds,
(3.9)

———~bj(Ob5(0) f W ()W(1) = ()P y(s)ds.

(AB*"' x(t) = AB((AB)*x(1))

F(a,)r(ﬁ) t ’ _ a+p-1
< F b Ob) [ 0w - v
—Fk(a)rk(ﬂ) k k(a+B)-1
Tk(a +B)) ! bi(s)by(s )f Y (@)W (s) — Y(7)) x(t)dtds

- l'*k+l (a,)l“k+1 (ﬁ)
- Ia+ Pk +p)

bllc+l (l,)b/§+l (l,)

: f ¥ (0)x(r)dt f W ()W) = () P W(s) — ()P ds (3.10)

I"k+1 (CL’)Fk+1 (ﬁ) iol il

“Tarpraa@+py @70

et D)= Ll + BT (k(a + B))
['((k + D(a +B))

: f ¥ (D)W@) — (1)

_ T B) i " (k+1)(@+p)-1
= T+ Da+ ﬁ))bl Dby (1) L Y (@)W (@) — (1) x(7)dr.
Similar to the proof of (3.10), we can obtain
Fk+l (a)Fk+ 1 (ﬁ)

(BAY*'y() <

NGt Dt ﬁ))b’f”(t)b’é”(t) f W (@OW() — p@) By dr.(3.11)

That is, (3.7) is proved. Now we prove that (3.8) holds. Since b, and b, are two continuous functions
on [y, t;], there exists a constant M > 0 such that b;(#) < M and b,(¢t) < M for t € [ty, t;]. Thus, we

have
2 n t
(ABY'x(1) < % f W @O0 — WD) P x(dr.
Consider the series

i (M’L(@)L(B))"
(@ +p)

Using the ratio test to the series and the asymptotic approximation [36], we obtain

L To@+p)
n—eo ['(n(a + B) + a + B)
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Hence, the series converges and we conclude that

x(1) < ai (1) + bl(t)f W ()W) = Y(5))* ax(s)ds

r Fk Fk
+ ) e B stk e - uo)

, Z4 T(k(a + B)

'(a1(5)+b1(s)f W (@OW(s) = ()" ax(r)dr | ds

Similarly, we can obtain that (3.3) holds.

Corollary 3.2. Under the hypotheses of Theorem 3.1, assume that a,(t) and a,(t) are two nondecreasing
functions fort € [ty, t;]. Then

x(1) < (al(t) bi( ) 2y )(l//(l) l//(fo))a) Eoipg(D1 (Db (DT ()T (B) (Y (2) - Y1), (3.12)
and
by(Day (1) atB
() < |ax(®) + g W () — Y1)y Eoig(D1(0)b2(OT ()T (B) W (1) — Y(10))"™). (3.13)

Proof. Since a, is nondecreasing, one has

f W (@W(s) = ()" ax(1)dr < as(s) f Y (@)W (s) — (1) dr

az(s)

W (s) — y(10))". (3.14)

Thus, from (3.2) and (3.14), we get

bi(t)ax(1)
a

x() < (al(l) + (o) - w(to))“)

t Fk(a’)l—‘k(ﬁ) k k , Kertf)1
'{“ ft . Tkta + gy 1 0L (W0 — 4(s) ds

_ (a1 0+ 1(t)az(t)

W(1) - w(to))")

Fk(a)[‘k(ﬁ) k k k(a+B)
{ Z C(k(a +B) + b 1(Oby (D)W (1) — (i)

_ (m(r) (’) 20 e) - wito))” ) Eorpb1 (0020 T(@TBYW0) — (1)),

Similarly, we obtain (3.13) holds.
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4. Main results

By Lemma 2.2, we can easily show that the following lemma holds.
Lemma 4.1. (x(2), y(¢)) satisfies (1.1) if and only if (x(t), y(t)) satisfies the coupled integral system
X(t) = ¢(t0) + toIaF(t’ y(t)’ )’(t - T)), re [IO’ tl],

(@) = 0(t) + 1,1, G(t, x(1), x(t = 7)), 1€ [fo, 1],
x(t) = (1),  y(1) = 6(0), te [ty —7,10].

The product space X X X is a Banach space with norm [|(«, v)|| = ||u|| + ||v|]|. Now we give and prove
the existence uniqueness theorem.

Theorem 4.2. Let
(H1) F,G € C([ty,t] x R%,R) and ¢, 6 € C[ty — 7, ty];
(H2) there exist two positive constants L, and L, such that
|F(2, x1, x2) = F(2,y1,y2)| < Li(|x1 = y1| + |[x2 = y2),

IG(t, x1, x2) — G(t, y1,¥2)| < Lo(x; — yil + [x2 = y2l);

2L (y(t1) — Y(to))® 2La((ty) — y(to) P <1
Ta+l)  T@+1) '

(H3) M = max{

Then the system (1.1) has a unique solution in X X X.
Proof. Define the operator T'(x, y)(¢) := (T x(t), T>y(t)) as follows :

Tﬂn:{¢@’ t € [ty — T, 10),
1 $(to) + oIS F (£, y(0), y(t = 7)), 1 € [19,11],

Toy(@) = { 0(1), , t€ [ty — T, 1],
0(t0) + 4,1, G(1, x(1), x(t — 7)), 1 € [to, 11].
For t € [ty — 7, t0], we have |Tx(t) — T1u(t)] = 0 and |T,y(¢) — Tov(t)| = 0 if (x,y), (u,v) € C([ty —
7,4],R) X C([t) — 7,11],R). For ¢ € [ty, t;], one has

IT\x(0) = Tyu@)| = |y Ly F (&, y(0), (& = 7)) = 1, Ly F (2, v(0), (2 — )|
< oIy (F @, y(0), y(t — 1)) = F(t,v(0), v(t — T))I)
< oy (Laly@) = vl + Lily(t = 7) = v(t = 7))
< Ll( max |y(t) —v(1)| + Omax y(t = 1) = v(t = DDy 51 4.1

2L1<z//(r> wo»“” .

Fga/+ 1)
< 2L (Y (1) l//(lo))“” ]
=T T+ v

Similarly, we can obtain

2L,(y(1y) — y(tp))

TG+ 1) [[x = ul|. 4.2)

Toy(1) — Tov(n)] <

AIMS Mathematics Volume 7, Issue 5, 7728=7741.
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Thus, by (4.1) and (4.2), we have

1T (x,y) = T(u, I =|Tx—=Tull+ T2y — Tl ’
2L (Y(t) — Y(10)* 2L, (Y(t) — Y(to)
Smax{ el 77y }(||x—u||+||y—v||>

= M||(x — u,y = v)|| = M||(x,y) = (u, V)|l

which implies that the operator 7 is a contraction by (H3). Thus 7 has a unique fixed point by Banach
fixed point theorem.

Theorem 4.3. Under the hypotheses of Theorem 4.2, system (1.1) is Ulam-Hyers stable.

Proof. Let (u(t), v(t)) € X X X be a solution of the inequalities (2.3) and (2.4), and let (x(¢), y(¢)) be the
unique solution of system (1.1) satisfying the conditions

x(t) = u(®) = ¢(0),  y(®) =v(@®) =0@), te€lto—711]

Thus we have

() = { u(?), t €[ty — 1 10],
| ulto) +  IGF(,y(®), ¥t — 1)), t€ [t 1],

_ (1), telty— 1,1,
D=\ wto) + o 2G( 200, 21 = 1), 1€ [10,11].

Which is guaranteed by Theorem 4.2. Obviously, (u(t), v(¢)) satisfies (2.3)-(2.4) if and only if there
exist two functions (), h,(t) € Clty, t;] such that |h;(r)| < € (i = 1,2) and

gD:;u(t) - F(t,v(@®),v(t—1)) =hi (1), tE€lty,tl], 4.3)

CDLv(t) = G(t,u(n), u(t = 1)) = (1), 1 € [to,11]. (4.4)
Applying the y-fractional integral (2.1) to both sides of (4.3) and using Lemma 2.2 we obtain

|u(t) — u(to) — I, F (1, V(lz, V((l; - T)()| )=) lio Ly P (D)
« a Y(t) — y(1))"
< t01¢|hl(t)| < tolzpe < WE (45)
< W (t,) — Y1)
= €.
I'a+1)

Similarly, we get

W) — Y)Y
V() = v(to) = LG, u(t), u(t = 7)| < we. (4.6)
For t € [ty — 7, 1], we have |x(¥) — u(?)| = 0 and |y(¢) — v(¥)| = 0. For t € [#, tp + 7], one has
u(®) = x(O] = u(t) — ulto) — 1 I F (1, (1), y(t = )|
< |u(®) = uto) = Ly F (2, v(0), v(t = 7))l
Hi Ly F (1, (1), v(t = 7)) = [ F (2, (1), y( = 7)) @7

< |u() = u(to) — 4 I F (2, v(0), v(t = 7))|
+io Ly (1F (1, v(0), v(t = 7)) = F(£, y(1), y(t = T))])
< u(®) = u(to) = o Ly F (2, v(0), v(t = D) + Ly - 1 Ly ([v(2) = y(D))).

AIMS Mathematics Volume 7, Issue 5, 7728-7741.
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Similarly, for t € [#y, y + 7], we get
v(#) = y(@)| < [v(1) — v(tp) — rolﬁG(t, u(t), u(t = 7)) + Lo - zolg(lu(t) — x(D)]). (4.8)
Using (4.5) and (4.7), (4.6) and (4.8), respectively, we obtain

(1) — (1) Ly " a1
|u(t) — x(2)| < Ta+ D) €+ M@ J, ()W) — ()™ [v(s) — y(s)lds, 4.9)

W) — Y1)y L (", 1
TG+ 1) €+ r® J, W ()W) — () uls) — x(s)lds. (4.10)

By using Corollary 3.2, we get from (4.9) and (4.10) that

W (1) — Y(10))"€e N L () —y(t)Ye
I'a+1) INa+1) re+1)

Therefore, for any ¢ € [ty, ty + 7], one has

W (1) — Y(1)” N L () —y(t))
T(a + 1) Ta+1) T@+1)

(@) — y(@)] <

Ju(?) = x(1)] < ( )E(HB (L1 La(w(r) — w(20))"*).

|u(r) = x()] < (

Easp (LiLaW(to + T) = (20))"*) €.

Similarly, we have

W (1) — Y(to)) L, (Y(t) —y(to)”
) =yl < ( T@+1) T@+1) L@+ )
Easp (LiLalty + ) = W(10))" P ) €, Vit € [tg, 19 + 7],
For t € [#y + 7, 1], we adopt the similar steps as above, we may have

W (1)) — Y(10))* L ("

’ a—1
) =0 < I s | W60 - w6 ) - (slds .
L ! .
tes | OO = ws) v = 1) = y(s = Dlds,
(@) fo+T
and
— L !
V(D) -y < W?Zﬁ fl(;(’))ﬁe T Y OWO v s - xtonas .
+FL—(;) - W ()W (0) = w(s)Pu(s — ) — x(s — 7)lds.

Let z(r) = rr[la)%] lu(t + r) — x(t + r)| and w(r) = n[lau(()] [v(t + r) — y(t + r)|, then we obtain by (4.11)
re[-T, re[-r,
and (4.12) that
— @ d
W@ ) L

’ a—1
S P P mws)(w(t)—w(s)) w(s)ds
L !
+# W ()W) — ()™ w(s)ds (4.13)
@) fo+T

< W) — ) - 2L '

4 a-1
fa+D) ' T J, VOO w6 wls)ds,
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and
(l//(fl)—lﬁ(fo))ﬁe_i_ 2L, (¥
r@e+1) @) J;,

By utilizing Corollary 3.2, for any ¢ € [t + 7, t;], we get by (4.13) and (4.14) that

w(r) < W ()W) = ()Y 2(s)ds. (4.14)

W (1) — Y(t0))” 2L, () — v(to)) aip
z() S( Tar D + fa+D T@E+D) )Ea+ﬁ (2L1L2(l//(f1) — Y(to)) )6,
and ’
(W (1) — y(io) 2L, (Y(t) — ¥(1)” wip
w(t) S( TG ) + TG+D Ta+)) )E<z+,6 (2L1Lz(l//(f1)—%0(fo)) )6-

Since |u(t) — x(t)| < z(¢) and |[v(¢) — y(¢)| < w(t), for each t € [ty + 7,1;], we have

W) =)  2L1  @p(t) - ()Y

_ a+f
Ta+1) L@+ T@E+1) )E“+ﬁ(2L1L2(‘”(“) W)™ €.

lu(r) = x()] < (

and

W(r) — y(to)f N 2L,  (Y(t) — Y(1p))”
TG+1)  T@+1) Ta+h

v(®) =yl < ( )an (2L1Lz(¢(f1) - lﬂ(fo))‘Hﬂ) €.

5. Example
Example 5.1. Consider the following coupled delay y-Caputo fractional differential system

ICD%%x(t) = %(arctan(y(t)) + sin(y(t — 1))), 1 €[1,6],

3 .
(D% y(0) = Y (sina(0) +x(1 = 1), € [1,6], SRy
x() =1, y() = sin(50), te[0,1].
Here
In(z t
F(t,u,v) = %)(arctan(u(t)) +sin(v())), G(t,u,v) = ?\/_(sin(u(t)) + v(1)).
It is easy to know that F is continuous with the Lipschitz constant L; = %, and G is continuous with

the Lipschitz constant L, = g. Since ¥(t) = Vi, a = % and 8 = %, we have
2L(Y(t) — ¢(5))”  In6 1

T(a+ 1) = TF%)(\/E— \/I)i =0.8674 < 1,

and
2W(t) — () 2V6 1
E R r(%)(‘/@ V)i = 09162 < 1.

Thus, all the conditions of Theorem 4.3 are satisfied. Hence (5.1) is Ulam-Hyers stable.
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6. Conclusions

In this paper, we introduced and proved a new generalized coupled Gronwall inequality. We
examined the validity and applicability of our results by considered the existence and uniqueness of
solutions of nonlinear delay coupled y-Caputo fractional differential system. Moreover, some result
to verify sufficient conditions has been provided in this paper to determine the Ulam-Hyers stability
of solutions for the considered system. Finally, a example is given to illustrate the effectiveness and
feasibility of our criterion.

In the future, we will consider the nonlinear delay coupled -Hilfer fractional differential systems,
and we will study the existence and multiplicity of solutions, and the Ulam-Hyers and Ulam-Hyers-
Rassias stabilities for there systems.
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