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1. Introduction

Impulsive differential equations can be used to describe a class of discontinuous dynamic systems.
The impulse is a discrete jump that occurs in many evolutionary processes. Since impulses widely exist
in finance, population dynamics, optimal control model [7,8,38,39], mechanics problems [1,17,23] and
chaos theory, it is of practical significance to study differential equations with pulses. However in some
practical situations, such as mechanics, pulses occur randomly and duration of impulses is negligible in
comparison with the entire phenomenon, that is, random impulse points are random variables. Owing
to the characteristic of random impulse, we can tell the solution of the random impulse differential
equation is a random process, which is different from the corresponding fixed impulse differential
equation, whose solutions is a piecewise continuous function. Quite a few scholars have studied the
fixed impulse differential equation [3, 4, 9, 19, 20, 26, 29, 33, 34], while the random pulse differential
equation has not been involved by many people [14, 21, 30–32, 38, 39]. So we’re going to expand our
work from random impulsive differential equations(RIDE).

Many scholars pay attention to the existence, uniqueness and stability of solutions. Most of results
of the existence of solutions obtained using various fixed point theory [4, 10, 15, 16, 21, 27]. For
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example, by using Schaeffer′s theorem, Li and Nieto have proved new existence theorems for a
nonlinear periodic boundary value problem of first-order differential equations with impulses in the
literature [15]: 

u′(t) + λu(t) = f (t, u(t)), t ∈ J, t , tk, k = 1, . . . p.
u(t+

k ) = u(t−k ) + Ik(u(tk)), k = 1, . . . p.
u(0) = u(T ) = 0

where λ ∈ R and λ , 0, J = [0,T ],T > 0, 0 = t0 < t1 < t2 < · · · < tp < tp+1 = T, Ik ∈ C(R,R), k =

1, . . . , p, and f : J ×R→ R is continuous at every point (t, u) ∈ J0 ×R, J0 = J − {t1, . . . , tp}, f (t+
k , u) and

f (t−k , u) exist, f (t−k , u) = f (t+
k , u). And Niu et al. [21] have investigated the existence and Hyers-Ulam

stability of solution for second order random impulsive differential equations by fixed point:
x′′(t) = f (t, x(t)), t ∈ J, t , ξk,

x(ξk) = bk(τk)x(ξ−k ), k = 1, 2, . . . ,
x(0) = x0, x′(0) = x1.

where τk is random variable. Upper and lower solution method also has be used to study impulsive
differential equations [13, 28, 33]. In the literature [13], Lee and Liu have established criteria of the
existence of extremal solutions by using the method of upper and lower solutions and the monotone
iterative: 

u′′(t) + f (t, u(t)) = 0, t ∈ (0, 1), t , t1

4u|t=t1 = I(u(t1))
4u′|t=t1 = N(u(t1), u′(t1))
u(0) = a, u(1) = b.

where a, b ∈ R,4u|t=t1 = u(t+
1 ) − u(t1),4u′|t=t1 = u′(t+

1 ) − u′(t−1 ) and f : D ⊂ (0, 1) × R → R, I : R →
R,N : R×R→ R are continuous. And Li et al [36] have studied the boundary value problem of second
order random impulsive differential equation using upper and lower solution method:

−x′′(t) = f (t, x(t), x′(t)), t ∈ J′

x(ξ+
k ) = bk(τk)x(ξ−k ), k = 1, 2, . . . ,

α0x(0) − α1x′(0) = x0,

β0x(1) + β1x′(1) = x∗0.

where f : J × R × R → R is a continuous mapping. x(t) is a stochastic process taking values in the
Euclidean space(R, ‖ · ‖). And τk is random variable defined from Ω to Ek := (0, dk), with 0 < dk < 1
for every k ∈ N+.

As we all known, solving a RIDE consists not only in obtaining its solution, which is a stochastic
process, but also its main probabilistic properties [39]. Besides, some solutions are explicitly obtained
by using the method of statistical analysis via the first probability density function. In the paper [38],
Juan C. Cortés et al had studied a randomized version of the following exponential growing/decaying
model, which is controlled/pumped by an infinite sequence of instantaneous impulses modeled by the
Dirac delta function, δ(·), at the time instants Ti > 0,i = 1, 2, 3 . . . ,
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{ dx(t)
dt = αx(t) − γ

∑∞
i=1 δ(t − Ti)x(t), t > 0,

x(0) = x0,

where x0 denotes the initial condition and α, γ ∈ R.
And the aim of Juan C. Cortés et al in [39] is to advance in the realm of RDEs whose right-hand

side is discontinuous without restricting the probability distributions, they had tackled the study of non-
homogeneous linear RDEs of exponential growth/decay controlled by an infinite sequence of square
pulses of time duration, τ,

ẋ(t) = αx(t) + β − γx(t)
∞∑

n=1

(H(t − (nT − τ)) − H(t − nT )), x(0) = x0.

where H(t) is the Heaviside function:

H(t) =

{
1, if t < 0 ,
0, if t ≥ 0 .

In recent years, variational method has been used by many scholars to study the solutions of
differential equations. In fact, it’s very difficult to get a strong solution to a differential equation, and
the general approach is to turn the differential equation into an integral equation, and then to get the
corresponding energy functional. In this way we can use variational method and critical point theory
to study differential equations. Many scholars have done a lot of works in differential equations by
means of variational methods and critical point theory such as [6, 11, 12, 18, 22, 24, 25], for the case
of differential equations with fixed impulses see [3, 19, 20, 29, 34, 35]. Inspired by [19], we obtain the
variational structure of damped ordinary differential equations:

−u′′(t) + g(t)u′(t) + λu(t) = f (t, u(t)).

We usually considers the position u and the velocity u̇. In the motion of spacecraft one has to consider
instantaneous impulses depending on the position that results in jump discontinuties in velocity, but
with no change in position [1, 2, 17, 23]. Therefore, it is reasonable to supplement such an impulse
condition: u′(ξ+

j ) − u′(ξ−j ) = b j(τ j)u(ξ j), where τ j is a random variable.
Hence, we consider the existence of solutions to the damped random pulse Dirichlet boundary value

problem: 
−u′′(t) + g(t)u′(t) + λu(t) = f (t, u(t)), t ∈ [0,T ]\{ξ1, ξ2, · · · },

∆u̇(ξ j) = u̇(ξ+
j ) − u̇(ξ−j ) = b j(τ j)u(ξ j), ξ j ∈ (0,T ), j = 1, 2, · · · ,

u(0) = u(T ) = 0,
(1.1)

where f : [0,T ]×R→ R is continuous; τ j : Ω→ F j, where F j := (0, d j) is a random variable, 0 < d j <

+∞, and τi, τ j are mutually independent when i , j, i, j = 1, 2, · · · ; b j : F j → R, ∀ j = 1, 2, · · · . Set
ξ j+1 = ξ j+τ j. {ξ j} is a sequence of strictly increasing random variable and also a random process defined
on Ω, i.e. 0 < ξ1 < ξ2 < · · · < ξk < · · · < ξ∞ = sup

k∈N+

{ξk} ≤ T . Define u̇(ξ+
j ) = lim

t→ξ+
j

u̇(t), u̇(ξ−j ) = lim
t→ξ−j

u̇(t)

in sense of sample orbit. The above definitions are reasonable because that {ξk} can be regard as a
sequence of fixed points under the realization of each sample orbit. We suppose {N(t) : t ≥ 0} be a
simple counting process generated by {ξk}, that is, {N(t) ≥ n} = {ξn ≤ t}, and denote ψt the σ-algebra
generated by {N(t), t ≥ 0}.
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2. Preliminaries

Let (Ω, ψ, P) be a probability space. Let Lq([0,T ] × Ω,R) be the collection of all strongly
measurable, qth-integrable, ψt-measurable R-valued random process: u : [0,T ]×Ω→ R with the norm

‖u‖q =
( ∫ T

0
E|x|q

) 1
q , where Eu =

∫
Ω

udP. Next, define the Banach space S = S
(
[0,T ], L2(Ω,R)

)
:={

u(t) : u(t) = u(t, ω) is random process, u(t, ·) ∈ L2(Ω,R), u(·, ω) is continuous and diffrentiable on

[0,T ]\{ξ1, ξ2, · · · } and continuous on [0,T ], u̇(ξ+
j ), u̇(ξ−j ) exist, j = 1, 2, · · · ; u(0) = u(T ) = 0

}
, with the

norm ‖u‖S =
( ∫ T

0
E|u|2

) 1
2
+
( ∫ T

0
E|u̇|2

) 1
2 . For convenience, we denote Lq([0,T ]×Ω,R) := Lq([0,T ]×Ω).

Lemma 2.1 (The norm inequality). Denote ‖u‖1,2 =
( ∫ T

0
E|u̇|2

) 1
2 , ‖u‖∞ = sup

t∈[0,T ]

(
E|u|

)
. Then the

following inequalities hold:

∃ C1 > 0 satisfies ‖u‖S ≤ C1‖u‖1,2; (2.1)
‖u‖S ≥ ‖u‖1,2; (2.2)
∃ C2 > 0 satisfies ‖u‖∞ ≤ C2‖u‖s. (2.3)

Proof. For (2.1), by Poincáre inequality, i.e. ∃ C0 > 0, satisfying
( ∫ T

0
|u|2

) 1
2
≤ C0

( ∫ T

0
|u̇|2

) 1
2 ,

⇒ E
( ∫ T

0
|u|2

)
≤ C2

0E
( ∫ T

0
|u̇|2

)
,

⇒
( ∫ T

0
E|u|2

) 1
2
≤ C0

( ∫ T

0
E|u̇|2

) 1
2
.

Let C1 = C0 + 1 > 0. From the definition of ‖ · ‖S :

‖u‖S =
( ∫ T

0
E|u|2

) 1
2

+
( ∫ T

0
E|u̇|2

) 1
2

≤ (C0 + 1)
( ∫ T

0
E|u̇|2

) 1
2

= C1‖u‖1,2.

For (2.2), it is easy to get the result by the definition of ‖ · ‖S .
For (2.3), under the meaning of one given sample orbit, since |u| ∈ C[0,T ], then E|u| ∈ C[0,T ].

There exists a θ ∈ [0,T ], s.t. 1
T

∫ T

0
|u(s)|ds = |u(θ)|. Hence for arbitrary t ∈ [0,T ],

|u(t)| ≤
∣∣∣∣u(θ) +

∫ t

θ

Eu̇(s)ds
∣∣∣∣ ≤ |u(θ)| +

∫ T

0
|u̇(s)|ds =

1
T

∫ T

0
|u|ds +

∫ T

0
|u̇|ds.

⇒ E|u(t)| ≤
1
T

∫ T

0
E|u|ds +

∫ T

0
E|u̇|ds.
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Then by Cauchy-Schwarz inequality,

E|u(t)| ≤
1
√

T

( ∫ T

0
E|u|2ds

) 1
2

+
√

T
( ∫ T

0
E|u̇|2ds

) 1
2
. (2.4)

On one hand,

(2.4) =
√

T
( 1
T

( ∫ T

0
E|u|2ds

) 1
2

+
( ∫ T

0
E|u̇|2ds

) 1
2
)
≤
√

T‖u‖S , T ≥ 1;

and on the other hand,

(2.4) =
1
√

T

(( ∫ T

0
E|u|2ds

) 1
2

+ T
( ∫ T

0
E|u̇|2ds

) 1
2
)
≤

1
√

T
‖u‖S , T ≤ 1.

So, E|u(t)| ≤ (
√

T + 1
√

T
)‖u‖S := C2‖u‖S .

⇒ sup
t∈[0,T ]

E|u(t)| ≤ C2‖u‖S , i.e. ‖u‖∞ ≤ C2‖u‖S .

�

Lemma 2.2 (Embedding theorem [37]). [0,T ] is a bounded interval, for each q > 0, W1,2
0 ([0,T ]) ↪→

Lp([0,T ]), then there exists an constant C = C(q) > 0, such that
( ∫ T

0
|u|q

) 1
q
≤ C

( ∫ T

0
|u̇|2

) 1
2 , for all

u ∈ W1,2
0 ([0,T ]) hold.

Remark 2.3. Under the sense of Lebesgue-integration, W1,2
0 ([0,T ]) is different from the S space only

in zero measure set. Then, there exists C = C(q) > 0, s.t.
( ∫ T

0
|u|q

) 1
q
≤ C

( ∫ T

0
|u̇|2

) 1
2 , ∀u ∈ S .

Remark 2.4. An embedding operator defined by A : W1,2
0 ([0,T ]) → Lq([0,T ]),∀q > 0, is a

continuous compact operator. Then by Remark 2.3 and completeness of S space, we know A|S :
S → Lq([0,T ]),∀q > 0 is a continuous compact operator.

Lemma 2.5. ( [37]) Let ϕ is a function in Banach space E, u ∈ E. If ϕ has linear bounded Gâteaux
differential in a neighborhood and its Gâteaux derivatives Dϕ(u) is continuous at u, then ϕ is Fréchet
differentiable at u, and Dϕ(u) = ϕ′(u).

Remark 2.6 (Gâteaux derivatives and differential [37]). For arbitrary u, v ∈ E, we call ϕ is differentiable
in u if limx→0

ϕ(u+xv)−ϕ(u)
x exists and denote the value by Dϕ(u, v). If there is a linear bounded function

B ∈ E∗, satisfying Dϕ(u, v) =< B, v >, we denote by B = Dϕ(u) the Gâteaux derivatives of ϕ at u.

Lemma 2.7. ( [37]) If function f (t, u) satisfies Carathéodory condition on [0,T ] × R, i.e.

1. For almost every t ∈ [0,T ], f (t, u) is continuous in u;
2. For each given u ∈ R, f (t, u) is measurable in t.

And for each (t, u) ∈ [0,T ] × R, we set | f (t, u)| ≤ a + b|u|r, where a, b > 0, r > 0. Then operator
A : u(t)→ f (t, u(t)) is a bounded continuous operator mapping from Lr+1([0,T ]) to L

r+1
r ([0,T ]).
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Theorem 2.8 (Minimax principle [18]). E is a Banach space and ϕ is Fréchet differential in E, ϕ ∈
C1(E,R). If ϕ has a lower bound in E and satisfies P.-S. condition. Then ϕ exists a critical point,
c = inf

x∈E
ϕ(x) is a critical value of ϕ.

Remark 2.9 (P.-S. condition [18]). Suppose ϕ ∈ C1(E,R). If {ϕ(uk)} is bounded and ϕ′(uk)→ 0 in E∗ as
k → ∞, which can be deduced that each {uk} is sequentially compact set in E. Then we call ϕ satisfies
P.-S. condition.

Theorem 2.10 (Mountain pass lemma [18]). E is a Banach space, ϕ ∈ C1(E,R), if ϕ satisfies

1. ϕ(0) = 0, ∃ ρ > 0, s.t. ϕ∂Bρ(0) ≥ α > 0;
2. ∃ e ∈ E\Bρ(0), s.t. ϕ(e) ≤ 0;
3. the P.-S. condition is fulfilled,

then, ϕ exists a critical point u satisfying ϕ′(u) = 0 and ϕ(u) > max{ϕ(0), ϕ(e)}.

Remark 2.11. In the equation (1.1), we set g(t) be a Riemannian integrable function, then G(t), eG(t)

is continuous on [0,T ], where G(t) = −
∫ t

0
g(s)ds. By the boundedness of continuous functions in a

closed interval, it is easy to see, there exist constants µ1, µ2 which are only associated with g, satisfying
0 < µ1 ≤ eG(t) ≤ µ2.

Now, we present some important conclusions that will be used in the next section.

Result 1: Define the function ∀u ∈ S

ϕ(u) = E
[1
2

∫ T

0
eG|u̇|2dt +

λ

2

∫ T

0
eG|u|2dt

+

∞∑
k=1

( k∑
j=1

(eG(ξ j)b j(τ j)u2(ξ j)
2

)
IA({ξ j}

k
j=1)

)
−

∫ T

0
F(t, u)dt

]
, (2.5)

where G(t) = −
∫ t

0
g(s)ds, F(t, u) =

∫ u

0
f (t, s)eG(t)ds.

IA(x) =

{
1, if x ∈ A ,
0, if x < A ,

here A represent the set consisting of all sample orbits, and {ξ j}
k
j=1 is a sample orbit.

We can prove that ϕ(u) ∈ C1(S ,R) and for every u, v ∈ S ,

(ϕ′(u), v) = E
[ ∫ T

0
eGu̇v̇dt + λ

∫ T

0
eGuvdt

+

∞∑
k=1

( k∑
j=1

(
eG(ξ j)b j(τ j)u(ξ j)v(ξ j)

)
IA({ξ j}

k
j=1)

)
−

∫ T

0
eG f (t, u)vdt

]
. (2.6)

Detailed proof of these will be given in Section 3.
Result 2: The mild solution u of the random impulsive differential equation (1.1) is a critical point

of ϕ(u). That is to say (ϕ′(u), v) = 0,∀v ∈ S . Conversely, if u ∈ S , u is a critical point of ϕ(u), then u is
a mild solution of the equation (1.1).

AIMS Mathematics Volume 7, Issue 5, 7685–7705.



7691

Proof. Suppose 0 < t1 < t2 < · · · < tk < T , where t1, t2, · · · , tk is a sample orbit. {ti}
k
i=1 ∈ A. Let u ∈ S is

a mild solution of (1.1). If u ∈ C2(J′)∩S , then u is the solution of (1.1), here J′ := [0,T ]\{t1, t2, · · · , tk}.
u satisfies

−u′′(t) + g(t)u′(t) + λu(t) = f (t, u(t)).

We multiply both sides of above equation by eG(t) and v ∈ S , where G(t) = −
∫ t

0
g(s)ds. Then we get

−(eGu′)′v + λeGuv = eG f (t, u)v.

After integration on [0,T ], we have

−

∫ T

0
(eGu′)′vdt + λ

∫ T

0
eGuvdt =

∫ T

0
eG f (t, u)vdt, u ∈ C2(J′) ∩ S , (2.7)

where ∫ T

0
(eGu′)′vdt

=

k−1∑
i=1

∫ ti+1

ti
(eGu′)′vdt +

∫ t1

0
(eGu′)′vdt +

∫ T

tk
(eGu′)′vdt

=

k−1∑
i=1

[
eGu′v

∣∣∣∣ti+1

ti
−

∫ ti+1

ti
eGu′v′dt

]
+ eGu′v

∣∣∣∣t1
0

−

∫ t1

0
eGu′v′dt + eGu′v

∣∣∣∣T
tk
−

∫ T

tk
eGu′v′dt

= −

k∑
j=1

eG(t j)(∆u′(t j))v(t j) −
∫ T

0
eGu′v′dt. (2.8)

Then putting (2.8) into (2.7) and according to the impulsive condition in (1.1), we obtain that

(
∫ T

0
eGu′v′) + (λ

∫ T

0
eGuv) +

k∑
j=1

eG(t j)b j(τ j)u(t j)v(t j)

−

∫ T

0
eG f (t, u)vdt = 0, u ∈ S , ∀{t j}

k
j=1 ∈ A. (2.9)

From (2.6) we know (ϕ′(u), v) = 0, i.e. u is a critical point of ϕ(u).
Conversely, suppose u ∈ S is critical point of ϕ, i.e. (ϕ′(u), v) = 0. ∀v ∈ S ,∫ T

0
eGu′v′dt + λ

∫ T

0
eGuvdt

+

k∑
j=1

eG(t j)b j(τ j)u(t j)v(t j) −
∫ T

0
eG f (t, u)vdt = 0, v ∈ S . (2.10)
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Since v ∈ S , we know v(t+
j ) = v(t−j ), j = 1, 2, 3, · · · . and v(0) = v(T ) = 0. When u ∈ S ∩ C2(J′), we

will prove u is the solution of (1.1):

k−1∑
j=1

∫ t j+1

t j

eGu′v′dt +

∫ t1

0
eGu′v′dt +

∫ T

tk
eGu′v′dt + λ

∫ T

0
eGuvdt

+

k∑
j=1

eG(t j)b j(τ j)u(t j)v(t j) −
∫ T

0
eG f (t, u)vdt = 0

For the convenience, let t0 = 0, tk+1 = T and v(t0) = v(tk+1) = 0,

k∑
j=0

[eGu′v
∣∣∣t j+1

t j
−

∫ t j+1

t j

(eGu′)′vdt]

+

k∑
j=1

eG(t j)b j(τ j)u(t j)v(t j) +

∫ T

0
eGv[λu − f (t, u)]dt = 0

⇒ −

k∑
j=0

∫ t j+1

t j

(eGu′)′vdt +

∫ T

0
eGv[λu − f (t, u)]dt

+

k∑
j=1

eG(t j)v(t j)[b j(τ j)u(t j) − (∆u′(t j))] = 0

⇒

∫ T

0
eGv[−u′′ + g(t)u′ + λu − f (t, u)]dt

+

k∑
j=1

eG(t j)v(t j)[b j(τ j)u(t j) − (∆u′(t j))] = 0 (2.11)

Set a j := eG(t j)v(t j)[b j(τ j)u(t j) − ∆u′(t j)], j = 1, 2, · · · , k. And:

δ j(t) =

{
1, if t = t j ,
0, if t , t j ,

Then (2.11) can be written as:∫ T

0

{
eG(t)v(t)[−u′′(t) + g(t)u′(t) + λu(t) − f (t, u)] +

k∑
j=1

a jδ j(t)
}
dt = 0 (2.12)

then we know u ∈ S is the mild solution of the equation

−u′′(t) + g(t)u′(t) + λu(t) = f (t, u(t)), t ∈ J′

and (2.12) imply that the random impulsive condition: ∆u′(t j) = b j(τ j)u(t j), j = 1, 2, · · · , k hold.
Thus, u is a mild solution of (1.1), u ∈ S . �
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3. Results

Theorem 3.1. When f (t, u), b j(τ j) satisfy the following assumptions respectively:
(H1) ∀(t, u) ∈ [0,T ] × R, | f (t, u)| ≤ a + b|u|r holds, where a, b > 0, r > 0.
(H2) Let B = E

(∑∞
k=1

(∑k
j=1 |b j(τ j)|

)
IA({ξ j}

k
j=1)

)
< +∞.

Then the ϕ(u) defined in (2.5) fulfills ϕ ∈ C1(S ,R) and satisfies (2.6).

Proof. We divide the proof into several parts.
1. Let J1(u) = 1

2

∫ T

0
eG(E|u̇|2)dt. we will prove that J1(u) ∈ C1(S ,R).

For arbitrary u, v ∈ S , we have

J1(u + v) =
1
2

∫ T

0
eGE|u̇|2dt +

1
2

∫ T

0
eGE|v̇|2dt +

∫ T

0
eG(Eu̇)(Ev̇)dt.

Since 0 ≤ 1
2

∫ T

0
eGE|v̇|2dt ≤ µ2

2 ‖v‖
2
S ⇒ lim‖v‖S→0

1
2

∫ T
0 eGE|v̇|2dt
‖v‖S

= 0. It follows that

(J′1(u), v) =

∫ T

0
eG(Eu̇)(Ev̇)dt.

For fixed u, J′1(u) is a linear functional with respect to v. By Cauchy-Schwarz inequality, we have∣∣∣∣ ∫ T

0
eG(Eu̇)(Ev̇)dt

∣∣∣∣ ≤ ( ∫ T

0
|eGEu̇|2dt

) 1
2
( ∫ T

0
|Ev̇|2dt

) 1
2

≤
( ∫ T

0
|eGEu̇|2dt

) 1
2
( ∫ T

0
E|v̇|2dt

) 1
2

≤
( ∫ T

0
|eGEu̇|2dt

) 1
2
‖v‖S ,

where (
∫ T

0
|eGEu̇|2dt

) 1
2 is independent of v, therefore J′1(u) is a bounded functional in S .

2. Let J̃2(u) =
∫ T

0
eGE|u|2dt, J2(u) = λ

2

∫ T

0
eGE|u|2dt. We will prove that J2(u), J̃2(u) ∈ C1(S ,R).

∀u, v ∈ S ,

J̃2(u + v) =

∫ T

0
eGE|u|2dt +

∫ T

0
eGE|v|2dt + 2

∫ T

0
eGEuEvdt.

Since 0 ≤
∫ T

0
eGE|v|2dt ≤ µ2‖v‖2S ,⇒ lim‖v‖S→0

∫ T
0 eGE|v|2dt
‖v‖S

= 0, then

(J̃′2(u), v) = 2
∫ T

0
eGEuEvdt ⇒ (J′2(u), v) = λ

∫ T

0
eGEuEvdt.

When u fixed, J′2(u) is linear functional w.r.t. v.

|(J′2(u), v)| = |λ
∫ T

0
eGEuEvdt| ≤ |λ|

( ∫ T

0
|eGEu|2dt

) 1
2
( ∫ T

0
|Ev|2dt

) 1
2

≤ |λ|
( ∫ T

0
|eGEu|2dt

) 1
2
( ∫ T

0
E|v|2dt

) 1
2
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≤ |λ|
( ∫ T

0
|eGEu|2dt

) 1
2
‖v‖S ,

where |λ|
( ∫ T

0
|eGEu|2dt

) 1
2 is independent of v. Then, J′2(u) is a bounded functional in S .

3. Let J3(u) =
∑∞

k=1

(∑k
j=1 E

( eG(ξ j)b j(τ j)u2(ξ j)
2

)
IA({ξ j}

k
j=1)

)
. We will prove that J3(u) ∈ C1(S ,R).

∀u, v ∈ S ,

|J3(u + v) − J3(u) −
∞∑

k=1

k∑
j=1

E
(
eG(ξ j)b j(τ j)u(ξ j)v(ξ j)

)
IA({ξ j}

k
j=1)|

= |

∞∑
k=1

k∑
j=1

E
(
eG(ξ j)b j(τ j)

v2(ξ j)
2

)
IA({ξ j}

k
j=1)|

≤
µ2B

2
‖v‖2∞ ≤

µ2BC2
2

2
‖v‖2S

⇒ (J′3(u), v) =

∞∑
k=1

k∑
j=1

E
(
eG(ξ j)b j(τ j)u(ξ j)v(ξ j)

)
IA({ξ j}

k
j=1).

When u is fixed, J′3(u) is a linear functional with respect to v. And

|(J′3(u), v)| ≤ µ2B‖u‖∞‖v‖∞ ≤ µ2BC2‖u‖∞‖v‖S ,

which implies that J′3(u) is a bounded functional in S .
4. Let J4(u) =

∫ T

0
E(F(t, u))dt, where F(t, u) =

∫ u

0
f (t, s)eG(t)ds. Now, we will show that J4(u) ∈

C1(S ,R), (J′4(u), v) =
∫ T

0
eG f (t, u)vdt, v ∈ S and J′4(u) : S → S ∗ is continuous compact operator by

several steps:
Step (1). We first prove that J4 has Gâteaux differential in a neighborhood of u.

DJ4(u, v) = lim
x→0

J4(u + xv) − J4(u)
x

= lim
x→0

∫ T

0
E
(1

x
[F(t, u + xv) − F(t, u)]

)
dt

By mean value theorem, there exist a θ ∈ (0, 1), where θ = θ(u, v, t, x). Therefore,

DJ4(u, v) = lim
x→0

∫ T

0
E
(
eG f (t, u + θxv)v

)
dt. (3.1)

We may assume that |x| < 1, and by Young inequality, we have

E
∣∣∣∣eG f (t, u + θxv)v

∣∣∣∣ ≤ E
∣∣∣∣µ2(a + b|u + θxv|r)|v|

∣∣∣∣
≤ E

∣∣∣∣µ2
r

r + 1
(a + b|u + θxv|r)

r+1
r + µ2

1
r + 1

|v|r+1
∣∣∣∣

≤ E
∣∣∣∣µ2

r
r + 1

(a + b · 2r(|u|r + |θx|r|v|r))
r+1

r + µ2
1

r + 1
|v|r+1

∣∣∣∣
≤ E

∣∣∣∣µ2
r

r + 1

(
a + b · 2r(|u|r + |v|r)

) r+1
r

+ µ2
1

r + 1
|v|r+1

∣∣∣∣,
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which is a constant independent on x. Then put it into (3.1), and apply the Control convergence
theorem, we obtain

(3.1) =

∫ T

0
E
(

lim
x→0

eG f (t, u + θxv)v
)
dt

=

∫ T

0
E
(
eG f (t, u)v

)
dt

=

∫ T

0
eG(E f (t, u))(Ev), u, v ∈ S .

This implies that its limit exists.
Step (2). we will prove DJ4(u, v) is a linear bounded functional with respect v when u is fixed.
Obviously, DJ4(u, v) =

∫ T

0
eG(E f (t, u))(Ev)dt is linear about v.

|DJ4(u, v)| = |
∫ T

0
eG(E f (t, u))(Ev)dt|

≤ µ2

( ∫ T

0
|E f (t, u)|2

) 1
2
( ∫ T

0
|Ev|2dt

) 1
2

≤ µ2

( ∫ T

0
|E f (t, u)|2

) 1
2
‖v‖S .

Hence, DJ4(u, v) is bounded about v. Then < DJ4(u), v >= DJ4(u, v), ∀v ∈ S .
Step (3). Now, we only need to prove that DJ4(u) : S → S ∗ is continuous in u and is a compact

operator.
i) ∀v, u, φ ∈ S , by Hölder inequality and Embedding theorem we have

| < DJ4(u) − DJ4(v), φ > | =
∫ T

0
eGE| f (t, u) − f (t, v)|E|φ|dt

≤ µ2

( ∫ T

0
E| f (t, u) − f (t, v)|

r+1
r
) r

r+1
( ∫ T

0
(E|φ|)r+1dt

) 1
r+1

≤ µ2C(r + 1)
( ∫ T

0
E| f (t, u) − f (t, v)|

r+1
r
) r

r+1
( ∫ T

0
E|φ̇|r+1dt

) 1
r+1

≤ µ2C(r + 1)‖ f (t, u) − f (t, v)‖ r+1
r
‖φ‖S .

Thus,

‖DJ4(u) − DJ4(v)‖S ∗ := sup
φ∈S ,‖φ‖S,0

| < DJ4(u) − DJ4(v), φ > |
‖φ‖S

≤ µ2C(r + 1)‖ f (t, u) − f (t, v)‖ r+1
r
.

Let T1 : f (t, u)→ DJ4(u). From above we can deduce that T1 : L
r+1

r ([0,T ] ×Ω)→ S ∗ is continuous.
ii) Since f (t, u) is continuous on [0,T ] × R and satisfies Carathédory condition. By the Lemma 2.7

and Combining with assumption (H1), we know there exists T2 : u → f (t, u), which is a bounded and
continuous operator on Lr+1([0,T ] ×Ω)→ L

r+1
r ([0,T ] ×Ω).

iii) By Remark 2.4, we can get that there exists T3|S : S → Lr+1([0,T ] × Ω) and is a continuous
compact operator.
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From i)∼iii), we obtain that DJ4 = T1 ◦ T2 ◦ T3|S : S → S ∗ is a continuous compact operator. From
Step (1)∼(3) and Lemma 2.5 we have J4 ∈ C1(S ,R). At last, from parts 1.∼4., we can conclude that
ϕ ∈ C1(S ,R). This proof is completed. �

Theorem 3.2. When f (t, u) satisfies
(H1-1) ∀(t, u) ∈ [0,T ] × R, | f (t, u)| ≤ a + b|u|r holds, where a, b > 0, r > 0, and we set 0 < r < 1;
b j(τ j) satisfy
(H2-1) B := E

(∑∞
k=1

(∑k
j=1 |b j(τ j)|

)
IA({ξ j}

k
j=1)

)
< +∞, and 0 < B < µ1λ

µ2C2
2(λ+1) , λ > 0.

Then ϕ(u) satisfies P.-S. condition.

Proof. We divide into two steps to prove this result.
Step 1: we first show that {uk} is a bounded sequence in S , and ϕ′(uk)→ 0, k → ∞ in S ∗, then {uk}

is a sequential compact set on S .
Because of the boundedness of {uk}, there exists a M0 > 0 satisfying ‖uk‖S < M0, k = 1, 2, · · · . From

Theorem 3.1 we know J′4(u) : S → S ∗ is a compact operator. Then {J′4(uk)} is a sequential compact set
on S ∗. So ∃{uki} ⊂ {uk}, such that J′4(uki)→ J′(u) on S ∗ as i→ ∞.

We know

ϕ(u) =
1
2

∫ T

0
eGE|u̇|2dt +

λ

2

∫ T

0
eGE|u|2dt

+

∞∑
k=1

( k∑
j=1

E
(eG(ξ j)b j(τ j)u2(ξ j)

2

)
IA({ξ j}

k
j=1)

)
− J4(u),

(ϕ′(u), v) =

∫ T

0
eGEu̇Ev̇dt + λ

∫ T

0
eGEuEvdt

+

∞∑
k=1

( k∑
j=1

E
(
eG(ξ j)b j(τ j)u(ξ j)v(ξ j)

)
IA({ξ j}

k
j=1)

)
− < J′4(u), v > .

Consider

< ϕ′(uki) − ϕ
′(uk j), uki − uk j > =

∫ T

0
eGE|(uki − uk j)

′|2dt + λ

∫ T

0
eGE|uki − uk j |

2dt

+

∞∑
k=1

( k∑
l=1

E
(
eG(ξl)bl(τl)|uki(ξl) − uk j(ξl)|2

)
IA({ξl}

k
l=1)

)
− < J′4(uki) − J′4(uk j), uki − uk j > . (3.2)

When i, j→ ∞,

| < ϕ′(uki) − ϕ
′(uk j), uki − uk j > | ≤

(
‖ϕ′(uki)‖S ∗ + ‖ϕ′(uk j)‖S ∗

)
· 2M0 → 0,

| < J′4(uki) − J′4(uk j), uki − uk j > | ≤ ‖J
′
4(uki) − J′4(uk j)‖S ∗ · 2M0 → 0.

By Cauchy-Schwarz inequality,∫ T

0
eGE|(uki − uk j)

′|2dt + λ

∫ T

0
eGE|uki − uk j |

2dt ≥
µ1λ

λ + 1
‖uki − uk j‖S .
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And ∣∣∣∣ ∞∑
k=1

( k∑
l=1

E
(
eG(ξl)bl(τl)|uki(ξl) − uki(ξl)|2

)
IA({ξl}

k
l=1)

)∣∣∣∣
≤ µ2B‖uki − uk j‖

2
∞ ≤ µ2BC2

2‖uki − uk j‖
2
S .

Substituting above formula into (3.2) and by 0 < B < µ1λ

µ2C2
2(λ+1) , λ > 0, when i, j→ ∞, we get

0 ≤
( µ1λ

λ + 1
− µ2BC2

2

)
‖uki − uk j‖

2
S

≤
[
‖ϕ′(uki)‖S ∗ + ‖ϕ′(uk j)‖S ∗ + ‖J′4(uki) − J′4(uk j)‖S ∗

]
· 2M0 → 0.

From this we know {uki} is a Cauchy sequence in S , due to the completeness of S , then {uki} is
convergent in S . Thus {uk} is a sequential compact set.

Step 2: Next, we will prove that {uk} is a bounded set in S provided {ϕ(uk)} is a bounded set and
ϕ′(uk)→ 0 in S ∗ as k → ∞.

Since ∣∣∣∣ ∫ T

0
F(t, u)dt

∣∣∣∣ ≤ ∫ T

0
|F(t, u)|dt

≤ µ2

∫ T

0

( ∫ |u|

0
| f (t, s)|ds

)
dt

≤ µ2

∫ T

0
dt

∫ |u|

0

(
a + b|s|r

)
ds

≤ µ2

∫ T

0

(
a|u| +

b
r + 1

|u|r+1
)
dt,

then ∣∣∣∣ ∫ T

0
E(F(t, u))dt

∣∣∣∣ ≤ ∫ T

0
E|F(t, u)|dt

≤ µ2

∫ T

0

(
aE|u| +

b
r + 1

E|u|r+1
)
dt

= µ2Ta‖u‖∞ +
bT

r + 1
µ2‖u‖r+1

∞

≤ µ2TaC2‖u‖S +
bTµ2Cr+1

2

r + 1
‖u‖r+1

S , (0 < r < 1).

And ∣∣∣∣ ∞∑
k=1

( k∑
l=1

E
(
eG(ξl)bl(τl)

u2(ξl)
2

)
IA({ξl}

k
l=1)

)∣∣∣∣
≤
µ2B

2
‖u‖2∞ ≤

µ2BC2
2

2
‖u‖2S .
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putting above formulas into ϕ(u) yields

ϕ(u) ≥
1
2

∫ T

0
eGE|u̇|2dt +

λ

2

∫ T

0
eGE|u|2dt

−

∣∣∣∣ ∫ T

0
E(F(t, u))dt

∣∣∣∣ − ∣∣∣∣ ∞∑
k=1

( k∑
j=1

E
(eG(ξ j)b j(τ j)u2(ξ j)

2

)
IA({ξ j}

k
j=1)

)∣∣∣∣
≥

( µ1λ

2(λ + 1)
−
µ2BC2

2

2

)
‖u‖2S − aTµ2C2‖u‖S −

bTµ2Cr+1
2

r + 1
‖u‖r+1

S , 0 < r < 1.

Let K1 := µ1λ

2(λ+1) −
µ2BC2

2
2 > 0 and replace {uk} with u on the above formula. Because of the

boundedness of {ϕ(uk)}, we have

+∞ > |ϕ(uk)| ≥ K1‖uk‖
2
S − aTµ2C2‖uk‖S −

bTµ2Cr+1
2

r + 1
‖uk‖

r+1
S , 0 < r < 1.

If {uk} is unbounded, then there is subsequence {uki} ⊂ {uk}, such that ‖uki‖S → ∞, so then the right end
of the above formula tends to infinity, which is contradict with the boundedness of {ϕ(uk)}.

From above, we can deduce ϕ satisfies P.-S. condition on S . �

Theorem 3.3. Let all the hypotheses listed in Theorem 3.2 be fulfilled, and f (t, u) satisfies:
(H3) u f (t, u) ≤ 0,∀(t, u) ∈ [0,T ] × R.
By the Minimax principle, one can deduce ϕ(u) has a critical point in S , i.e. equation (1.1) has at

least a mild solution.

Proof. By the results in Theorem 3.1 and Theorem 3.2, we have known ϕ(u) ∈ C1(S ,R) and fulfills
P.-S. condition. Next, we only need to show ϕ(u) has a lower bound on S .

By (H3):
∫ T

0
dt

∫ u

0
eG(t) f (t, s)ds ≤ 0⇒

∫ T

0
E(F(t, u))dt ≤ 0. ∀u ∈ S , we have

ϕ(u) =
1
2

∫ T

0
eGE|u̇|2dt +

λ

2

∫ T

0
eGE|u|2dt

+

∞∑
k=1

( k∑
j=1

E
(eG(ξ j)b j(τ j)u2(ξ j)

2

)
IA({ξ j}

k
j=1)

)
−

∫ T

0
E(F(t, u))dt

≥
( µ1λ

2(λ + 1)
−
µ2BC2

2

2

)
‖u‖2S ≥ 0 (by (H2)),

thus ϕ(u) has lower bound on S , and then ϕ(u) has a critical point on S , i.e. equation (1.1) has at least
a mild solution by using Minimax principle. �

Theorem 3.4. Suppose that
(H1-2) f (t, u) ≤ â + b̂|u|r,∀(t, u) ∈ [0,T ] × R hold, where â, b̂ > 0, r > 1, and â, b̂ satisfies

â + b̂ < µ1λ(r+1)
1
r

2(λ+1)TC2
2
;

(H2-2) B = E
(∑∞

k=1

(∑k
j=1 |b j(τ j)|

)
IA({ξ j}

k
j=1)

)
< +∞, b j(·) > 0,∀ j = 1, 2, · · · ;

(H4) There are β > 2, r1 > 0. For ∀t ∈ [0,T ], |u| ≥ r1, have 0 < βF(t, u) ≤ u f (t, u).
Then ϕ(u) ∈ C1(S ,R) and ϕ(u) satisfies P.-S. condition in S . By Mountain pass lemma, we can get

ϕ has a critical point, i.e. Equation (1.1) has at least a mild solution in S .
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Proof. (1) By hypothesis (H1-2),(H2-2) and using similar approach with Theorem 3.1, we can prove
that ϕ(u) ∈ C1(S ,R).

(2) we next prove ϕ(u) satisfies P.-S. condition in E:
1) We will prove if {ϕ(uk)} is a bounded set and ϕ(uk)→ 0, k → ∞ in S ∗, then {uk} is a bounded set

in S .
Since

ϕ(uk) =
1
2

∫ T

0
eGE|u̇k|

2dt +
λ

2

∫ T

0
eGE|uk|

2dt

−

∫ T

0
E(F(t, uk))dt +

∞∑
l=1

( l∑
j=1

E
(eG(ξ j)b j(τ j)u2

k(ξ j)
2

)
IA({ξ j}

l
j=1)

)
,

taking the above formula into (H5) yields

2ϕ(uk) − 2
∞∑

l=1

( l∑
j=1

E
(eG(ξ j)b j(τ j)u2

k(ξ j)
2

)
IA({ξ j}

l
j=1)

)
+

2
β

∫ T

0
E
(

f (t, uk)ukeG(t)dt
)
≥

∫ T

0
eGE|u̇k|

2dt + λ

∫ T

0
eGE|uk|

2dt. (3.3)

(ϕ′(uk), uk) =

∫ T

0
eGE|u̇k|

2dt + λ

∫ T

0
eGE|uk|

2dt

+

∞∑
l=1

( l∑
j=1

E
(
eG(ξ j)b j(τ j)u2

k(ξ j)
)
IA({ξ j}

l
j=1)

)
−

∫ T

0
E(eG f (t, uk)uk)dt. (3.4)

Putting (3.4)× 2
β

into (3.3), we get

2ϕ(uk) +

∞∑
l=1

( l∑
j=1

E
(
eG(ξ j)b j(τ j)u2

k(ξ j)
)
IA({ξ j}

l
j=1)

)
(
2
β
− 1) −

2
β

(
ϕ′(uk), uk

)
≥ (1 −

2
β

)
( ∫ T

0
eGE|u̇k|

2 + λ

∫ T

0
eGE|uk|

2
)
.

By β > 2 and Cauchy-Schwarz inequality,

⇒ 2ϕ(uk) −
2
β

(
ϕ′(uk), uk

)
≥ (1 −

2
β

)
µ1λ

λ + 1
‖uk‖

2
S ≥ 0.

Because {ϕ(uk)} is bounded and ϕ′(uk)→ 0 in S ∗ as k → ∞, then {uk} is bounded in S .
2) Then we will prove {uk} is a bounded set in S . Since ϕ′(uk) → 0 k → ∞ in S ∗, then {uk} is a

sequential compact set in S . We consider that

< ϕ′(uki) − ϕ
′(uk j), uki − uk j > =

∫ T

0
eGE|(uki − uk j)

′|2dt + λ

∫ T

0
eGE|uki − uk j |

2dt
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+

∞∑
k=1

( k∑
l=1

E
(
eG(ξl)bl(τl)|uki(ξl) − uk j(ξl)|2

)
IA({ξl}

k
l=1)

)
−

∫ T

0
E
(
eG(t)( f (t, uki) − f (t, uk j))(uki − uk j)

)
dt. (3.5)

In addition, because {uk} is bounded in S , then there is {uki} ⊂ {uk} satisfying

⇒

{
uki → u is strong converge in C([0,T ]);
uki ⇀ u is weak converge in S .

⇒

∫ T

0
E
(
eG(t)( f (t, uki) − f (t, uk j))(uki − uk j)

)
dt → 0, as i, j→ ∞. (3.6)

Rewrite (3.7) and note that < ϕ′(uki) − ϕ
′(uk j), uki − uk j >→ 0, (i, j→ ∞).

⇒< ϕ′(uki) − ϕ
′(uk j), uki − uk j > +

∫ T

0
E
(
eG( f (t, uki) − f (t, uk j))(uki − uk j)dt

≥
µ1λ

(λ + 1)
‖uki − uk j‖

2
S . (3.7)

From this, when i, j → 0, ⇒ ‖uki − uk j‖S → 0, we have {uki} is a Cauchy sequences in S , and by the
completeness of S , we further get {uki} is convergent in S . Then {uk} is a sequential compact in S .

By 1),2) we know ϕ(u) satisfies P.-S. condition on E.
(3) At last, we verify whether ϕ(u) fulfills the conditions of Mountain pass lemma.
a) It is obvious that ϕ(0) = 0.

ϕ(u) =
1
2

∫ T

0
eGE|u̇|2dt +

λ

2

∫ T

0
eGE|u|2dt

+

∞∑
k=1

( k∑
j=1

E
(eG(ξ j)b j(τ j)u2(ξ j)

2

)
IA({ξ j}

k
j=1)

)
−

∫ T

0
E
(
F(t, u)

)
dt

≥
µ1λ

2(λ + 1)
‖u‖2S − â

∫ T

0
E|u|dt −

b̂
r + 1

∫ T

0
E|u|r+1dt

≥
µ1λ

2(λ + 1)
‖u‖2S − âTC2‖u‖S −

b̂
r + 1

TCr+1
2 ‖u‖

r+1
S .

Take ρ =
(r+1)

1
r

C2
> 0, u ∈ ∂Bρ(0), then ‖u‖S = ρ, then

ϕ(u) ≥
( µ1λ

2(λ + 1)
−

âTC2

ρ

)
‖u‖2S +

( âTC2

ρ
‖u‖2S − âTC2‖u‖S

)
−

b̂
r + 1

TCr+1
2 ‖u‖

r+1
S

= ‖u‖2S
[( µ1λ

2(λ + 1)
−

âTC2

ρ

)
−

b̂
r + 1

TCr+1
2 ‖u‖

r−1
S

]
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= ρ2
[ µ1λ

2(λ + 1)
−

TC2
2

(r + 1)
1
r

(â + b̂)
]
> 0.

Here we used the assumption (H1-2).
b) By assumption (H4), ∃ β > 2, r1 > 0, 0 < βF(t, u) ≤ u f (t, u).
∀t ∈ [0,T ], when |u| ≥ r1,

⇒

 β

u ≤
f (t,u)
F(t,u) , u ≥ r1,

β

u ≥
f (t,u)
F(t,u) , u ≤ −r1.

Integrate both sides of the above two formulas on [r1, u] and [u,−r1] respectively,

⇒

 βln u
r1
≤ ln F(t,u)

F(t,r1) , u ≥ r1,

βln−r1
u ≥ ln F(t,−r1)

F(t,u) , u ≤ −r1.

⇒

 F(t, u) ≥ F(t, r1)
(

u
r1

)β
, u ≥ r1,

F(t, u) ≥ F(t,−r1)
(

u
−r1

)β
, u ≤ −r1.

Let
K := |r1|

−β{ min
t∈[0,T ]

{F(t, r1)}, min
t∈[0,T ]

{F(t,−r1)}
}
> 0,

⇒ F(t, u) ≥ K|u|β, when |u| ≥ r1, β > 2.

Now, we consider

ϕ(u) =
1
2

∫ T

0
eGE|u̇|2dt +

λ

2

∫ T

0
eGE|u|2dt

+

∞∑
k=1

( k∑
j=1

E
(eG(ξ j)b j(τ j)u2(ξ j)

2

)
IA({ξ j}

k
j=1)

)
−

∫ T

0
E
(
F(t, u)

)
dt

≤
µ2(λ + 1)

2
‖u‖2S +

µ2β

2
‖u‖2∞ − K

∫ T

0
E|u|βdt (β > 2)

≤
µ2

2

(
(λ + 1) + BC2

2

)
‖u‖2S − K

∫ T

0
E|u|βdt.

Here, we fix u ∈ S and take ‖u‖S = 1. Then consider when e = tu, we get

ϕ(tu) ≤
t2µ2

2

(
(λ + 1) + BC2

2

)
‖u‖2S − tβK

∫ T

0
E|u|βdt (β > 2).

Thus, when t → +∞, ϕ(tu) → −∞. Then there is t0 > ρ such that ϕ(t0u) ≤ 0 hold. Let e = t0u,
‖e‖S = ‖t0u‖S = |t0|‖u‖S = t0 > ρ, so e ∈ E\Bρ(0), and ϕ(e) ≤ 0.

From a),b) and becase ϕ(u) ∈ C1(S ,R) satisfies P.-S. condition, by using Mountain pass lemma, we
can obtain ϕ has a critical point, i.e. equation (1.1) has at least a mild solution in S . This completes
the proof. �
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4. Conclusions

In this paper, we mainly study sufficient conditions for the existence of solutions of a class of
damped random impulsive differential equations under Dirichlet boundary value conditions, in which
the variational method plays a key role. We conclude that the solution of the RIDE is equivalent
to that of the energy functional obtained by the variational method, thus transforming the problem
into a critical point problem for solving the energy functional. Finally, sufficient conditions for the
existence of mild solutions of the studied equations are obtained by using the Minimax principle and
the Mountain pass lemma. Although our equations are relatively limited, it is a pioneering attempt to
study RIDEs by using variational method and critical point theory. Furthermore, we can also consider
using topological degree and Hamiltonian system to study the behavior of solutions of corresponding
RIDEs. We will continue to delve into this fascinating field with newer and broader results in the
future.
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