AIMS Mathematics, 7(5): 7657-7684.
DOI:10.3934/math.2022430
ATMS Mathematics Received: 01 December 2021
Revised: 19 January 2022

Accepted: 24 January 2022
http://www.aimspress.com/journal/Math Published: 16 February 2022

Research article

Weighted composite asymmetric Huber estimation for partial functional
linear models

Juxia Xiao'?, Ping Yu”? and Zhongzhan Zhang'-*

! Faculty of Science, Beijing University of Technology, Beijing 100124, China
2 School of Mathematics and Computer Science, Shanxi Normal University, Taiyuan 030000, China

* Correspondence: Email: zzhang @bjut.edu.cn.

Abstract: In this paper, we first investigate a new asymmetric Huber regression (AHR) estimation
procedure to analyze skewed data with partial functional linear models. To automatically reflect
distributional features as well as bound the influence of outliers effectively, we further propose a
weighted composite asymmetric Huber regression (WCAHR) estimation procedure by combining the
strength across multiple asymmetric Huber loss functions. The slope function and constant coefficients
are estimated through minimizing the combined loss function and approximating the slope function
with principal component analysis. The asymptotic properties of the proposed estimators are derived.
To realize the WCAHR estimation, we also develop a practical algorithm based on pseudo data.
Numerical results show that the proposed WCAHR estimators can well adapt to the different error
distributions, and thus are more useful in practice. Two real data examples are presented to illustrate
the applications of the proposed methods.
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1. Introduction

Functional data analysis (FDA) (e.g., [1]) has drawn considerable attention over recent years, owing
to a great deal of flexibilities and universal applications in handling high-dimensional data sets. A
fundamental and important tool for FDA is functional linear models.

There are a lot of researches in literature on the inference of functional linear models and their
extensions, see, among others, [2—4] for earlier works, and [5—10] for recent works. As is well known,
in the estimation of regression models, the choice of loss function is essential to obtain a highly efficient
and robust estimator. Most of earlier works employed the square loss function and obtained ordinary
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least squares (OLS) estimators. In recent years, many other loss functions have been considered
in the estimation of functional linear models and their extensions. Kato [6], Tang and Cheng [11]
studied the quantile regression (QR) with functional linear models and partial functional linear models,
respectively. Yu et al. [12] proposed a robust exponential squared loss estimation procedure (ESL) and
established the asymptotic properties of the proposed estimators. Cai et al. [13] introduced a new
robust estimation procedure by employing a modified Huber function, whose tail function is replaced
by the exponential squared loss (H-ESL) in the partial functional linear model.

It is well known that the square loss function pays attention to reflect the distributional features
of the entire distribution, whereas QR, ESL and H-ESL methods focus on bounding the influence of
outliers when the data are heavy-tailed, respectively. Thus, developing a method, which can both
reflect distributional features and bound outliers effectively, is highly desirable in data analysis. We
note that, in the context of principal component analysis (PCA), Lim and Oh [14] proposed a new
approach using a weighted linear combination of asymmetric Huber loss functions to demonstrate the
distributional features of data as well as keep robust to outliers. The asymmetric Huber loss functions
are defined as

(t—=D(u+0.5¢) foru < —c¢*

(W) = 0.5(1 — Du?/c* for —c*<u<0 (1.1)
prlit) = 0.5tu?/c* forO<u<c* ‘
7(u —0.5¢%) for ¢* < u,

with ¢* = 1.345, and 7 € (0, 1) being a parameter to control the degree of skewness. The function p.(-)
is equivalent to the Huber loss function (see, [15]) when 7 is equal to 0.5 and is most exactly the same
as the quantile loss function when ¢* is small enough.

Motivated by the appealing characteristics of the asymmetric Huber functions, in this paper, we first
investigate a new asymmetric Huber regression (AHR) estimation procedure to analyse skewed data for
the partial functional linear model, based on the functional principal component analysis. To improve
the estimation accuracy for single AHR estimation, we develop a weighted composite asymmetric
Huber regression (WCAHR) estimation by combining the strength across multiple asymmetric Huber
regression models. A practical algorithm for WCAHR estimators based on pseudo data is developed
to implement the estimation method. The asymptotic properties of the proposed estimators are also
derived. Extensive simulations are carried out to show the superiority of the proposed estimators.

Finally, we apply the proposed methods to two data sets. In the first example, we analyze the
electricity data. Figure 1 presents the estimated density of the residuals and the residual diagnostic
plot obtained by fitting the model (4.1) in Section 4.1 via the OLS method. The distribution of the
residuals is skewed, bimodal, and there are some outliers in the dataset. Given that the WCAHR can
effectively manage such data, we use the proposed method to conduct an analysis to this data set.
Another example in Section 4 considers the Tecator data set. Similarly, Figure 2 presents the density
of the residuals and the residual diagnostic plot obtained by fitting the model (4.2) in Section 4.2 via
the OLS method, which demonstrates that the distribution of the residuals is skewed and far from
normality. Undoubtedly, WCAHR regression is applicable to analyzing this data set on account of its
appealing features.
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Figure 1. (a) The density of estimated errors for Electricity data; (b) the residual plot for
Electricity data.

(a) Density of error (b) Residual plot
Residuals vs Fitted
~
© o
© |
o
o
v
o
< 0 o
o © I
< 3
= u_u; OO o
™ o o o
o 7 @
< | %o
I ° o
(ST o
o
o
© _| 1820
- [
S
O2g
o
o 7 o _|
T T T T T ! T T T T T
-6 -4 -2 0 2 -10 0 10 20 30
A )
e Fitted values

Figure 2. (a) The density of estimated errors for Tecator data; (b) the residual plot for Tecator
data.

To our knowledge, it is the first to discuss the asymmetric Huber regression problems under
functional models framework. The proposed WCAHR method possesses advantages that include the
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robustness to outliers as well as reflecting the relationships between potential explanatory variables
and the entire distribution of response. It retains the advantages in analysing skewed data and the
obtained estimators rely on the shape of the entire distribution rather than merely on the data nearby a
specific quantile level or skewness level of the asymmetric Huber loss, thereby avoiding the limitations
of these methods. These advantages are revealed by both theoretical conclusions and numerical results.
The relevant algorithm is data-adaptive, and capable of reflecting the distributional features of the data
without prior information, and is robust to outliers.

The rest of this paper is organized as follows. In Section 2, we formally describe the estimation
procedures, and develop a new algorithm. We also establish the asymptotic behaviors of the proposed
estimators as well as a list of technical assumptions needed in the theoretical research. In Section 3, the
finite performances of the proposed estimators are evaluated through simulations. Section 4 illustrates
the use of the proposed methods in the analyses of electricity data and Tecator data. Brief conclusions
on the proposed methods are made in Section 5. All technique proofs are provided in Section A.

2. Methodology and main results

2.1. Proposed methods

Let Y be a real value random variable, Z = (Z;,---, Z[,)T be a p dimensional random vector with
zero mean and finite second moment. Let {X(¢) : t € 7} be a zero mean, second-order stochastic
process with sample paths in L,(.7"), which consists of square integrable functions with inner product
(x,y) = f , X(t)y(t)dt and norm ||x|| = (x, x)'/, respectively, here .7 is a bounded closed interval.
Without loss of generality, we suppose .7 = [0, 1] throughout the paper. The dependence between Y
and (X, Z) is expressed by the partial functional linear regression as following,

1
Y=Z"a+ f BOX(t)dt + e. (2.1)
0

Here, random error e is assumed to be independent of Z and X, @ = (a, - ,cxp)T 18 an unknown
p-dimensional parameter vector, and the slope function 5(-) is an unknown square integrable function
on [0, 1].

Let (Z;, X;(-), Y;),i = 1,--- ,n, be independent observations generated by model (2.1) and let ¢; =
Y - Zl.Ta/ - fol BOXi(t)dt,i = 1,--- ,n. The covariance and empirical covariance functions for X(-) are
defined as cx(t, s) = Cov(X(2), X(s)), &x(t,s) = 1 1 Xi(H)Xi(s) respectively. Based on the Mercer’s

n
Theorem, cx and ¢y can be represented as following,

ex(t,$) = ) Awiovls),  ex(t,9) = Y Adi(ni(s),
i=1

i=1

where 4, >, >--->0 and 4, > > - > /Al,,+1 = ... = ( are each the ordered eigenvalue
sequences of the covariance operator Cx and its estimator Cy with kernels ¢y and &y, which are defined

by Cxf(s) = fo‘ cx(t, $)f(H)dt and Cx f(s) = fo‘ ¢x(t, s)f(t)dt with Cx being assumed strictly positive,
and {v;(-)} and {P;(-)} are the corresponding orthonormal eigenfunction sequences. Besides, (¥;(-), /Al,-) 1S
treated as an estimator of (v;(+), A;).
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Similarly, we can define cyx(-) = Cov(Y, X(+)), ¢z = Var(Z) = E[ZZ"], czy = Cov(Z,Y), czx(*) =
Cov(Z,X(-)) = (czx(), - ,chX(-))T. And the corresponding empirical counterparts defined below
can be used as their estimators,

=i e =1y zan
i=1 i=1

! Z‘Z% box = Zzixi.

By the Karhunen-Loe¢ve representation, X;(¢) and 3(¢) can be expanded into

Czy

By =Yy, X =) Ewin,  i=1,m, (2.2)

j=1 j=1

1
here y; = (B(), v;(-)) = J(‘) Bv(H)dt, and &; = (X;(-),v;(-)).
Owing to the orthogonality of {v,(-), ..., v,,(-)} and Eq (2.2), Model (2.1) can be transformed into

Y, =Zla+ Zng,-j +e=Zla+Uly+e, i=1,---,n,
=1
where U; = (&1, . Ein)s ¥ = (V1seon Ym)'> € = X301 Vi€ij + €i» and the tuning parameter m may
increase with the sample size n.
Replacing v;(-) with its estimator 9;(-), the 7th AHR estimators @ and B = Z’J’.’zl ¥;9i(t) can be
obtained by minimizing the loss function over e, ¥ and b, as follows:

(_’ a, ’}_/) = argmin ZpT(Yl - bT - Z’zra’ - l/\];F,y),
(brey) 4o
where the asymmetric Huber loss function p.(«) is defined in (1.1), and ﬁ,- = (S,»l, ‘.- ,Sim)T with
$,~ i = (Xi(+), V;(-)). Here the true value of b, is defined as the solution that minimizes the loss function
E {p.(e — 0)} over 6 € R, and we call it the 7th number of e with respect to (1.1).

Remark 1. In model (2.1), we suppose the intercept term is zero. In fact, if there is an intercept,
we then may absorb it into the distribution of e. Thus, the main impact of model (2.1) is finding the
contribution of the predictors to the response, and the zero mean assumption for e is not needed.

Noting that the regression coefficients are the same across different skewness asymmetric Huber
regression models, and being inspirited by [14] and [16], we combine the strength across multiple
asymmetric Huber regression models and propose a WCAHR method. Specifically, the WCAHR
estimators & and 3(f) = 2=1%,9;(#) can be obtained by minimizing the following loss function with
respect to (b, @, y):

n K
Oulb,a,y) = 3" wip (Vi - by - ZTa - Uly),
i=1 k=1
where {7;}r, are predetermined levels over (0,1), b, = b,, for brevity, b = (by,---,bx)", and
the weights wy,...,wg, which control the contribution of each loss function, are positive constants

satisfying >, wy = 1.
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Remark 2. Generally speaking, one can choose the equidistant levels as 7, = k/(K + 1) for
k=1,2,...,K for a given K, similar to what often has been done in composite quantile regression.
Although one can also apply data-adaptive methods, such as cross validation, to select K, we do
not pursue this topic here. As for the weights, we consider two choices. The first is using the
equal weights wy = --- = wg = 1/K. The obtained estimators are called composite asymmetric
Huber regression (CAHR) estimators. As the second choice in this study, to preferably describe the
distribution information of the data, we consider a K-dimensional weight vector (wy,--- ,wg) =
(f(bor), - -~ ,f(bOK))/ S K f(boy), where by = (bgy,--- ,bog) is the true value vector of b, and f(-)
is the density function of the random error. In practice, we estimate f(-) by kernel density estimation
method.

Denote S = {(¥;,Z;,X;(*)) : 1 < i < n}, and given a new copy of (Z, X), namely the predictor
variables (Z,1, X,+1(-)), once we gain the estimated @ and S(f), the mean squared prediction error
(MSPE) can be obtained, take asymmetric Huber regression for example,

s],

MSPE gz
_ 1 1 2
=E { (b + ZLlc‘x + f B(t)X,m(t)dt) - (b, + ZZHa/O + f ,BO(t)Xn+1(t)dt)}

0 0
where @ and B(t) are the true values of @ and S(¢), respectively. The MSPEs of CAHR and WCAHR
have analoguos definitions, and denoted by MSPEc4pr and MSPEy cagr, respectively.

2.2. Computational algorithm

Note that the minimization problems for AHR and CAHR estimators are special cases of WCAHR
method. Here, we just present the practical algorithm for WCAHR based on pseudo data. A similar
argument can be found in [14] to implement the data-adaptive principal component analysis. The
algorithm is simply described as following.

Step 1. Given initial estimators & and © for @, and vy, respectively.
Step 2. Iterate, until convergence, following these three steps for L =0, 1, ...

(a) Compute the residuals as éEL) =Y,-ZTaY - UT9®. (b) Calculate the empirical pseudo data vector
GD = (G(IL) oo+, G in the element-wise way, GEL) =ZTa® + UT9Y + > F, wkwfk(égm - b,(CL)), for
given weights (wy,--- ,wg) and b;{” = argminy 21 P (égL) - ,u) at each k. Here 4 (1) = p, (u) =

(e — DI(u < =c*) + U;—f")ul(—c* Su<0)+ 2ul(0 <u<c)+1d(u>c). (c) Obtain next iterative
estimates @**) and $**" by using the OLS method for response variable ¥; = G\" and covariates
z,U.

2.3. Asymptotic properties

In this section, we will establish the asymptotic properties of the estimators defined in the previous
section. We shall first present some notations, suppose ¥ = (Yo1, ..., Yom) is the true values of y, F(-)
is the cumulative distribution function of the random error. In addition, the notation || - || represents the
£? norm of a function or the Euclidean norm of a vector, and a,, ~ b, indicates that a,/b, is bounded
away from zero and infinity as n — oo. For simplicity, in this paper, C represents a generic positive
constant whose value may change from line to line. Next, to obtain the asymptotic properties, some
technical assumptions are listed as follows.

AIMS Mathematics Volume 7, Issue 5, 7657-7684.
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CI1. The random process X(-) and score &; = (X(-), v;(-)) satisfy the following condition: E|IX()|* < oo
and E[.f}‘] < C/l?, j=1

C2. The eigenvalues of Cx and the score coeflicients fulfil the conditions below:
(a) There exist constants C and @ > 1 such that C™'j* < A; < Cj ;= ;5 2 Cj*, j>1;
(b) There exist constants C and b > a/2 + 1 such that |y;| < Cj?, j>1.

C3. The random vector Z satisfies E||Z||* < co.

C4. There is some constant C such that | (czx,v,) |< Cj P [=1,---,p, j>1.

C5. Let gy = Zy — (g1, X;) with g; = Zl /lj_'l<CZzXan>Vj, and n; = (1, ,mip)", then qy, -+ ,q, are
J:

a.s.

i.i.d random vectors. We further assume that E[#;|X;] = 0, E[5;n,"|X;] =X is a constant positive
definite matrix.

C6. b, is the unique solution of E [p/ (e — b;)] = 0, and h.(b;) = (1 = 1) f(b; — ¢*) + %(F(bT) - F(b, -
) + Z(F(b: + ¢) = F(by)) + 7f(b: + ¢*) is continuous at b,. Furthermore, we suppose that

h.(b;) > 0.
C6'. by is the unique solution of E o}, (e; = bot)| = 0, he,(boi) = (1 = 1) f(box. — €*) + =2 (F(by) -
F(bo,—c*)+ %(F(b()k +c*)—F(bo))+ 71 f (bor+c”) 1s continuous at by, k = 1, - - -, K. Furthermore,

there exist some positive constants C;, C, such that0 < C; < 1n}<il}< he, (bor) < lmka)li( he (bor) < Cy <
<k< <k<

+00.

C1 is the commonly used condition for establishing the consistency of the the empirical covariance
operator of X in functional linear model and partial functional regression model. For example, it has
been adopted in [3, 17, 18] (mean regression), [6, 11] (quantile regression), [12, 13] (robust estimation
procedure), among others. C2(a) is used to identify the slope function 5(¢) via preventing the spacings
between eigenvalues being too small, and C2(b) ensures the sufficiently smooth of slope function S(z).
C3—CS5 are needed to deal with the vector-type covariate in the model (2.1) (see [19]). More concretely,
C3 is for the asymptotic behaviors of ¢zx and ¢z. C4 is used to ensure the effect of truncation on the
estimator of 5(-) be sufficiently small. C5 is a commonly used condition in the literature on partial
functional regression models (see for example, [4,20,21]). The assumptions on E[7;|X;] and E[n;n,"|X;]
are slightly strong, and are used to fix the identifiability of @ and simplify the proof of the theorems.
It is easy to see that (g;, X;) is the projection of Z; onto X;, and E(;) = 0, Cov (n;,{g;, X;)) = O,
Ellp;||* < oo even without the assumptions. The facts can be used to obtain similar results to the
following theorems with more complicated technics (see, for example, [6]) and more conditions to
ensure the identifiability. Other type conditions on 1; can be found in [11,22]. C6 and C6 are specific to
the AHR and WCAHR (CAHR) cases respectively, which are primarily used to ensure the asymptotic
behaviors of our estimators.

The following theorems discuss the convergence rate of the estimated 3(-), the asymptotic normality
of the estimated @ and the convergence rate of the mean squared prediction error. To obtain this, we
further assume (Z 1, X,,+1(-)) is independent of S in this paper.

The next theorem establishes the large sample properties of the AHR estimators.

Theorem 1. Suppose that the Conditions CI-C6 are satisfied, and the tuning parameter m ~ n'/(@*2),

AIMS Mathematics Volume 7, Issue 5, 7657-7684.
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then
1BC) = BoC)IIP = O, (n~ o),
d \%
@ — N|(0,———>7 '),
Vi@ - ao) = ( e () )
MSPEyr = O, (n~ "5 ),

where i> represents convergence in distribution, and V = E [l//% (e — bT)] with Y (u) = pi(u) = (1t —
DI < =) + S2ul(—c¢* <u < 0)+ Zul(0 < u < c*) +7l(u > c*).
The asymptotic properties of the proposed WCAHR estimators are presented in the following

theorem.
Theorem 2. Under the Conditions C1-C5 and C6', if the tuning parameter is taken as m ~ n'/@*2),

then
1BC) = BoOI? = 0, (n~ ),
wlVw
(2K, wehy, (bo)]

_a+2b-1

MSPEwcanr = Op(n~ «2),

V(@ — ag) - N0, x|,

wherew = (w1, ..., wg)l and V = (Vi) 1<k, 1<k> here Vi = E [y, (e — boy) Y, (e — bo)| with 1 < k,1 <
K.

Remark 3. The results illustrate that the slope function estimator has the same convergence rate as
the estimators in [6] and [4], which are optimal in the minimax sense. Note that it is similar to quantile
regression that no moment condition on error term is needed here. In addition, we notice that the rate
attained in predicting Y, is faster than the rate attained in estimating B(t). Trace its root and use
MS PEyr as an example, it is for the integral operator providing additional smoothness in computing

' BOXo1 (t)dt from Bo.

Remark 4. If all wys are equal, then Theorem 2 reduces to the asymptotic properties of the CAHR
wlVw
{(Z&, thrk(b()k)}2

RO (1:/ e Note that the right hand side of the inequality is just the asymptotic variance given in Theorem
7\001
1.

estimators. Taking T, = 7, it is easy to see that there is a weight vector w such that

3. Simulation study

In this section, a Monte Carlo simulation is used to investigate the finite sample properties of the
proposed estimation approaches. The data sets used in the simulation are generated from the following
model,

1
Y=Z"a+ f X(OBt)dt + o(Z, X)e,
0

AIMS Mathematics Volume 7, Issue 5, 7657-7684.
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where the slope function 5(t) = V2 sin(zt/2) + 3 V2 sin(37¢/2), and X(¥) = % Eigi(1), here ¢ (1) =
j=1

V2 sin((j—0.5)nt), and ;s are mutually independent normal random variables with mean 0 and variance
A; = ((j—0.5)m)~2. The true values of parameters are set as @ = (a1, @2)" = (10,5)",and Z ~ N (0,%z)
with (Zz),; = 0.75% fori, j =1, 2.

Five different distributions for ¢ are considered as follows: (a) standard normal distribution
N(O, 1); (b) positively skewed normal distribution SN(0, 1, 15); (c) positively skewed ¢-distribution
S§10,1,5,3); (d) mixture of normals (MN) 0.95N(0, 1) + 0.05N (0, 102), which produces a distribution
with outliers of response; (e) bimodal distribution (Bimodal) 7N(—1.2,1) + (1 — 7)N(1.2,1) with
i1 ~ Binomial(1,0.5). The multiplier o7(Z, X) can be generated from either of the following two models:

(A) (homoscedastic) o(Z,X) = 1;

(B) (heteroscedastic) o(Z, X) = |1+0.1 (zla*; + 205+ [ X(t)ﬂ*(t)dt)
B () = V2sin(nt/2) + V2 sin(3t/2).

Implementing the proposed estimation method requires the predetermined levels over (0,1), i.e.,
{Tk},’le. Similar to the setting in [14], we take K = 19, and choose the equidistant levels 7, = k/(K + 1),
k =1,2,...,K. In addition, for the WCAHR estimator, we employ the adaptive weights given in
Remark 2.

For comparison, we also calculate the OLS estimator, the least absolute deviation (LAD) estimator,
the ESL estimator, the H-ESL estimator, the Huber estimator (which corresponds to the case of AHR
estimator at 7 = 0.5), the CAHR estimator, and the AHR estimators at 7 = 0.25 and 0.75. In this study,
the sample size n is set as 200 or 400.

To implement these methods, we need to choose the tuning parameter m. In this paper, m is selected
by the cumulative percentage of total variability (CPV) method, that is,

m= argmin{ Zp: /Al,-/i A > 5},
p i=1 i=1

where ¢ equals 85%. Other criterion, such as AIC, BIC, can be employed.

For each setting and different methods, bias (Bias), standard deviation (Sd) of the estimated a; and
a», and the mean squared error (MSE) of the estimated @ with MSE = % Zle Z§:1 (&j - j)z, as well as
the mean integrated squared error (MISE) of the estimated S(7) over S=500 repetitions are summarized,

where MISE = {ﬁ IR It (ﬁs(li) - B(t,-))z} with 7;s being 100 equally spaced grids in [0,1], here

a’, B*(-) are the estimates of & jand B() from the sth sampling, j = 1, 2.

, where o] = o5 = 1, and

Table 1. Simulation results under different homoscedastic error distributions (A).

A A

Errors n Method  MISE  MSE@) — ! _*
Bias Sd Bias Sd
OLS 02690 00229  —00048 01074 0009 _ 0.1059
LAD 03294 00354  —0.0099 0.1320 00115  0.1333
ESL 03434 00394 00009  0.1405 —0.0013  0.1403
H-ESL 02824 00259 00055 01141 —0.0059 0.1133
200 AHR(0.25) 03294 00786  —0.0077 02014 00105  0.1948
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Huber 0.2758  0.0234 —-0.0063  0.1090 0.0102 0.1067
AHR(0.75) 0.5251 0.0754 —-0.0092  0.1894  0.0150 0.1981
CAHR 0.2689  0.0233 -0.0051  0.1095  0.0091 0.1060

N, 1) WCAHR 0.2693  0.0230 -0.0055 0.1080  0.0101 0.1058
OLS 0.1004  0.0105 -0.0011  0.0710  0.0015 0.0738

LAD 0.1304  0.0163 —-0.0027  0.0880  0.0045 0.0924

ESL 0.1349  0.0175 0.0010 0.0918  0.0008 0.0955
H-ESL 0.1031  0.0113 0.0011 0.0727  0.0010 0.0773

400 AHR(0.25) 0.1304 0.0358 -0.0048 0.1313  -0.0013  0.1361
Huber 0.1048  0.0107 -0.0018  0.0720  0.0027 0.0742
AHR(0.75)  0.2337  0.0405 0.0043 0.1454  0.0019 0.1390
CAHR 0.1006  0.0107 -0.0014  0.0721  0.0020 0.0743
WCAHR 0.1005  0.0105 -0.0014  0.0709  0.0019 0.0736

OLS 0.2929  0.0241 -0.0037  0.1127 -0.0012  0.1065

LAD 0.2452  0.0137 —-0.0001  0.0844 —-0.0007 0.0813

ESL 0.3665  0.0387 -0.0031 0.1412  -0.0023  0.1368
H-ESL 0.3377  0.0305 -0.0009 0.1244 -0.0028  0.1225

200 AHR(0.25) 0.2260  0.0086 0.0012 0.0652 -0.0022  0.0655
Huber 0.1998  0.0098 —-0.0011  0.0698  -0.0007  0.0702
AHR(0.75) 0.2314  0.0172 -0.0038  0.0949 -0.0001  0.0903
CAHR 0.2122  0.0099 -0.0007  0.0717 -0.0010  0.0691
SN(O,1,15) WCAHR 0.1884  0.0086 0.0002 0.0659 —0.0017  0.0652
OLS 0.0994  0.0122 -0.0024  0.0794  0.0052 0.0769

LAD 0.0718  0.0065 —-0.0004  0.0569  0.0001 0.0568

ESL 0.1372  0.0193 -0.0012  0.1003  0.0031 0.0962
H-ESL 0.1022  0.0139 —-0.0043  0.0832  0.0056 0.0832

400 AHR(0.25) 0.0796  0.0037 0.0028 0.0418 -0.0010  0.0437
Huber 0.0688  0.0045 0.0005 0.0468  0.0003 0.0483
AHR(0.75) 0.0912  0.0082 —-0.0010  0.0627  0.0019 0.0652
CAHR 0.0712  0.0043 0.0007 0.0454  0.0009 0.0471
WCAHR 0.0567  0.0035 -0.0009 0.0418 0.0018 0.0424

OLS 0.4781  0.0695 0.0047 0.1815  -0.0185  0.1902

LAD 0.2461  0.0215 0.0057 0.1052  -0.0094  0.1015

ESL 0.3793  0.0451 0.0023 0.1538  —0.0062  0.1462
H-ESL 0.3682  0.0443 0.0059 0.1533  -0.0078  0.1437

200 AHR(0.25) 0.2541 0.0203 0.0014 0.0987  0.0039 0.1025
Huber 0.2829  0.0284 0.0082 0.1204  -0.0013  0.1175
AHR(0.75) 1.8541 0.3745 0.0128 0.4566  —0.0243  0.4065
CAHR 0.3606  0.0286 0.0037 0.1188  —0.0001  0.1202
$10,1,5,3) WCAHR 0.2205  0.0169 0.0018 0.0920 -0.0089  0.0915
OLS 0.2310  0.0325 —-0.0021  0.1296  0.0008 0.1252

LAD 0.1004  0.0109 0.0006 0.0742  -0.0001  0.0735

AIMS Mathematics

Volume 7, Issue 5, 7657-7684.



7667

ESL 0.1563  0.0212 —-0.0053  0.1002  0.0027 0.1054
H-ESL 0.1516  0.0178 -0.0045 0.0917 0.0011 0.0966

400 AHR(0.25) 0.1000  0.0088 0.0028 0.0671  —0.0004  0.0659
Huber 0.1108  0.0116 0.0019 0.0781  0.0021 0.0743
AHR(0.75) 1.5565 0.3644 -0.0416  0.4269 0.0216 0.4242
CAHR 0.1496  0.0153 0.0016 0.0873  0.0007 0.0874
WCAHR 0.0838  0.0076 -0.0015 0.0616  —-0.0000 0.0618

OLS 0.8806  0.1464 -0.0134  0.2675 -0.0016  0.2732

LAD 0.3783  0.0358 -0.0005 0.1320 -0.0013  0.1355

ESL 0.3719  0.0363 0.0025 0.1331  -0.0044  0.1361
H-ESL 0.3101  0.0280 -0.0018 0.1175 -0.0028  0.1189

200 AHR(0.25) 03297 0.1148 -0.0120  0.2346  0.0105 0.2439
Huber 0.3685  0.0499 -0.0042  0.1613  0.0071 0.1543
AHR(0.75)  0.7037  0.1060 0.0078 0.2321  -0.0033  0.2281
CAHR 0.7857  0.1035 0.0031 0.2292  0.0035 0.2257

MN WCAHR 0.3252  0.0340 -0.0046  0.1289  -0.0033  0.1316
OLS 0.3822  0.0715 0.0063 0.1887  —0.0099  0.1892

LAD 0.1307  0.0190 0.0055 0.0983  —0.0060  0.0965

ELS 0.1268  0.0180 0.0032 0.0963 —-0.0043  0.0932
H-ESL 0.1032  0.0129 0.0048 0.0807 -0.0067  0.0793

400  AHR(0.25) 0.1491  0.0604 0.0052 0.1731  0.0055 0.1742
Huber 0.1332  0.0156 —-0.0007  0.0880  0.0033 0.0887
AHR(0.75) 0.3391  0.0505 -0.0049  0.1597 0.0040 0.1581
CAHR 0.3435  0.0419 -0.0030  0.1442  0.0074 0.1449
WCAHR 0.1127  0.0157 0.0055 0.0894  -0.0077  0.0872

OLS 0.4317  0.0560 -0.0001  0.1690 -0.0018  0.1657

LAD 0.8634  0.1201 —-0.0040  0.2438  0.0008 0.2463

ESL 22921  0.4163 —-0.0148  0.4541 -0.0002  0.4582
H-ESL 0.4417  0.0558 -0.0004 0.1687 -0.0017  0.1653

200  AHR(0.25) 09240 0.3169 -0.0258  0.3973  0.0352 0.3964
Huber 0.5694  0.0776 —-0.0056  0.2018  0.0129 0.1914
AHR(0.75) 1.8171  0.3150 0.0110 0.4044  -0.0107  0.3889
CAHR 0.5191  0.0546 -0.0075 0.1652 0.0116 0.1647
Bimodal WCAHR 04215  0.0552 0.0016 0.1679  -0.0016  0.1642
OLS 0.1861  0.0296 0.0032 0.1170  -0.0017  0.1262

LAD 0.4069  0.0670 -0.0068 0.1765 0.0061 0.1891

ESL 1.5317  0.2511 -0.0185 0.3481 0.0033 0.3600
H-ESL 0.1860  0.0298 0.0032 0.1175  -0.0021  0.1265

400 AHR(0.25) 0.4420 0.1620 —-0.0081 0.2835 —-0.0025 0.2855
Huber 0.2369  0.0454 0.0023 0.1483  -0.0082  0.1529
AHR(0.75) 0.8504  0.1523 0.0142 0.2774  -0.0021 0.2742
CAHR 0.2047  0.0296 0.0025 0.1195 -0.0014  0.1239
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WCAHR 0.1825  0.0291 0.0033 0.1162  -0.0019  0.1249

Table 1 presents the results in the homoscedastic case. From Table 1, we can see the following facts:
(a) The Sd, MSE and MISE decrease as the sample size n increases from 200 to 400. (b) The proposed
estimators are almost unbiased, which further illustrates the consistency combining with the fact (a). (c)
The proposed adaptively weighted estimator performs similarly to the OLS estimator under the normal
error, and is comparable to the corresponding H-ESL estimator for the mixture of normal distributions,
but is significantly better than the other estimators considered when the distribution of model error
is skewed or bimodal, and still enjoys the favoured being robust to outliers. This demonstrates that
the proposed WCAHR estimator can well adapt to different error distributions, thus is more useful in
practice.

Table 2. Simulation results under different heteroscedastic error distributions (B).

A A

Errors n Method  MISE  MSE®@) — ! _*
Bias Sd Bias Sd
OLS 02560 00237  0.0049  0.1105 —0.0052 0.1069
LAD 02988 00300 00054 01228 —0.0009 0.1222
ELS 02990 00316 00041 01272 —0.0021 0.1240
H-ESL 02655 00258 00060 01163 —00052 0.1104
200 AHR(0.25) 02988 0.1065  —0.0860 02178 —0.0965 0.2058
Huber 02531 00234 00050  0.1099 —0.0045 0.1062
AHR(0.75) 05960 00911  0.0958  0.1880 0.0836  0.1990
CAHR 02562 00236 00055 01099 —00051 0.1070
NOLD WCAHR 02519 00227 00051  0.1081 —-0.0045 0.1047
OLS 0.1056 00119  —0.0029 00767 —0.0002 0.0777
LAD 0.1269 00153  —0.0027 00865 00008  0.0882
ELS 0.1257 00157  —0.0026 00884 00019  0.0888
H-ESL 0.1061 00116  —0.0036 00760 00018  0.0762
400 AHR(0.25) 0.1269 00588  —0.1020 0.1418 —0.0889  0.1427
Huber 0.1060 00117  —0.0032 00764 00001  0.0766
AHR(0.75) 02695 00581 00990  0.1428 00859  0.1434
CAHR 0.1064 00120  —-0.0023 00769 —0.0005 0.0777
WCAHR 01046 00115  -0.0030 00754 00002  0.0762
OLS 03164 00357 00862 01070 00748  0.1057
LAD 02417 00209 00695 00789 0058  0.0803
ELS 03578 00306 00140 01234 00119  0.1228
H-ESL 03390 00316 00308 01211 00304  0.1228
200 AHR(0.25) 02417 00139 00555 00651 00485  0.0650
Huber 02344 00209 00780 00711 00684  0.0713
AHR(0.75) 02809 00427  0.1122  0.1026 0.0969  0.1010
CAHR 02454 00211 00774 00725 00684  0.0718
SNOLL1S) WCAHR 02155 00174 00727 00644 00623  0.0642
OLS 0.1180 00242 00859 00754 00776 00718
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LAD 0.0776  0.0149 0.0683 0.0573  0.0622 0.0553

ELS 0.1267  0.0143 0.0180 0.0841  0.0001 0.0833
H-ESL 0.1199  0.0179 0.0527 0.0831  0.0393 0.0819
AHR(0.25) 0.0776  0.0096 0.0532 0.0478  0.0493 0.0453

400  Huber 0.0763  0.0163 0.0753 0.0511  0.0740 0.0500
AHR(0.75)  0.1060  0.0330 0.1043 0.0689  0.1117 0.0700
CAHR 0.0813  0.0158 0.0732 0.0491  0.0755 0.0483
WCAHR 0.0672  0.0130 0.0678 0.0451  0.0668 0.0441

OLS 0.5695  0.0947 0.1071 0.1861  0.1158 0.1876

LAD 0.3044  0.0287 0.0704 0.0970  0.0738 0.0941

ELS 0.4205  0.0400 -0.0035 0.1404 -0.0162 0.1415
H-ESL 0.3927  0.0405 0.0125 0.1409  0.0038 0.1431

200 AHR(0.25) 0.3044 0.0219 0.0477 0.0944  0.0466 0.0925
Huber 0.3450  0.0355 0.0764 0.1077  0.0784 0.1093
AHR(0.75)  2.6347 0.5711 0.1826 0.5139  0.1919 0.4867
CAHR 0.4548  0.0423 0.0776 0.1227  0.0826 0.1200
$10,1,5,3) WCAHR 0.2863  0.0246 0.0667 0.0868  0.0703 0.0875
OLS 0.2663  0.0577 0.1027 0.1286  0.1196 0.1278

LAD 0.1092  0.0199 0.0732 0.0694  0.0738 0.0657

ELS 0.1423  0.0190 -0.0083  0.0973  -0.0090  0.0968
H-ESL 0.1429  0.0202 0.0184 0.0971  0.0177 0.1003

400 AHR(0.25) 0.1092 0.0148 0.0456 0.0725  0.0507 0.0698
Huber 0.1447  0.0237 0.0777 0.0762  0.0784 0.0755
AHR(0.75) 24856 0.6166 0.2100 0.5037  0.1899 0.5317
CAHR 0.1858  0.0264 0.0726 0.0833  0.0831 0.0852
WCAHR 0.0932  0.0160 0.0645 0.0596  0.0694 0.0592

OLS 0.9780  0.1653 -0.0191 0.2838  0.0090 0.2904

LAD 0.3672  0.0409 —-0.0111  0.1436  0.0065 0.1420

ELS 0.3644  0.0390 —-0.0092  0.1407  0.0091 0.1381
H-ESL 0.3186  0.0321 -0.0072  0.1260  0.0047 0.1271

200 AHR(0.25) 03672 0.1579 -0.1021  0.2647 —-0.0797  0.2665
Huber 0.3700  0.0407 -0.0134  0.1412  0.0106 0.1431
AHR(0.75) 0.7890  0.1350 0.0802 0.2419  0.0878 0.2498
CAHR 0.8570  0.0989 -0.0114  0.2229  0.0077 0.2214
WCAHR 0.3324  0.0352 -0.0109  0.1326  0.0071 0.1322

MN OLS 0.4215  0.0781 0.0126 0.2002  -0.0081  0.1944
LAD 0.1244  0.0189 0.0000 0.0980  0.0028 0.0964

ELS 0.1247  0.0173 0.0004 0.0940  0.0028 0.0921
H-ESL 0.1073  0.0131 0.0010 0.0808  0.0019 0.0808

400 AHR(0.25) 0.1244  0.0759 -0.0849  0.1701 -0.0953  0.1752
Huber 0.1222  0.0147 0.0054 0.0861  —0.0011  0.0854
AHR(0.75) 0.3546  0.0735 0.1014 0.1642  0.0908 0.1673
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CAHR 0.3496  0.0531 0.0116 0.1647  —0.0069 0.1604
WCAHR 0.1114  0.0148 0.0038 0.0860  0.0001 0.0857

OLS 0.4259  0.0604 -0.0118 0.1733  0.0020 0.1738

LAD 0.7261  0.1323 -0.0248 0.2573  0.0096 0.2558

ELS 1.9087  0.3505 -0.0283  0.4120 0.0078 0.4241
H-ESL 0.4337 0.0614 -0.0118 0.1758  0.0031 0.1743

200 AHR(0.25) 0.7261 0.5567 -0.1960 0.5100 —-0.1893  0.4716
Huber 0.4839  0.0763 -0.0180 0.1974  0.0064 0.1924
AHR(0.75) 24130 04776 0.1823 0.4534  0.1885 0.4509
CAHR 0.6745  0.1187 -0.0223  0.2449  0.0087 0.2411
Bimodal WCAHR 0.4361  0.0642 —-0.0096  0.1797  0.0068 0.1783
OLS 0.1934  0.0295 0.0087 0.1251  -0.0113  0.1169

LAD 0.3626  0.0578 0.0145 0.1715  -0.0169  0.1670

ELS 1.0701  0.1718 0.0200 0.2893  -0.0187  0.2955
H-ESL 0.1948  0.0299 0.0098 0.1256 -0.0113  0.1178

400 AHR(0.25) 0.3626  0.3363 -0.2023  0.3440 -0.2239  0.3562
Huber 0.2316  0.0383 0.0093 0.1438 -0.0130  0.1320
AHR(0.75) 1.2586  0.3302 0.2280 0.3504  0.1848 0.3484
CAHR 0.3292  0.0506 0.0163 0.1645 —-0.0174 0.1516

WCAHR 0.2058  0.0313 0.0119 0.1298  -0.0092  0.1193

Table 2 presents the results in the more challenged heteroscedastic case, which violates the condition
in this paper. The proposed WCAHR estimator outperforms the other estimators considered for the
normal, skewed normal and skewed ¢ error distributions, and is comparable to the corresponding H-
ESL estimator for the mixture of normal distribution and bimodal distribution. This further illustrates
that the proposed WCAHR estimator may be more applicable. Although the simulation results show
the appealing performance for the considered heteroscedastic errors, general theoretical results are still
challenging, and more conditions on the conditional moments of e may be helpful.

In order to detect the effect of the level choice to the performance of the WCAHR estimators,
especially for the skewed error distributions, we also change in the simulation the number K; of levels
over (0,0.5) given the total level number K. Specifically, for the given K = 19 and different values
of K;, we set 7; = ﬁ, fori=1,--- ,Kjand 1; = %, fori = K; + 1,---, K. Table 3 presents
the estimation results. We find from the results that the choice of the levels does not destroy the
performance of the WCAHR estimators, although less number of levels over (0, 0.5) leads to slightly
larger MSE and MISE for the positively skewed error distributions. In addition, the MISEs and MSEs
decrease as K increases, and stabilize eventually. This may motivate that one can take more levels
appropriately over (0,0.5) in dealing with the positively skewed error distributions.

AIMS Mathematics Volume 7, Issue 5, 7657-7684.



7671

Table 3. Simulation results under skewed error distributions, with different numbers of s
over (0,0.5].

A A

(0] (0%)
Bias Sd Bias Sd
4 0.2321 0.0088 —0.0034 0.0663 0.0044  0.0665
6 0.2295 0.0084 —0.0036 0.0646 0.0042  0.0645
8 0.2279 0.0081 —0.0038 0.0635 0.0042 0.0633

Errors n K, MISE MSE(&)

200 10 0.2269 0.0079 —-0.0040 0.0629 0.0041  0.0626

12 0.2264 0.0078 -0.0041 0.0627 0.0041  0.0621

SN(.1,15) 14 0.2262 0.0078 -0.0043 0.0627 0.0041  0.0620
o 4 0.0626 0.0039 0.0071  0.0450 -0.0054 0.0425

6 0.0611 0.0037 0.0068  0.0440 -0.0050 0.0415

400 8 0.0601 0.0036 0.0065 0.0434 -0.0046 0.0410

10 0.0595 0.0036 0.0063  0.0432 -0.0043 0.0409

12 0.0591 0.0036 0.0060  0.0432 -0.0039 0.0409

14 0.0589 0.0036 0.0059  0.0433 -0.0038 0.0411

4 0.2445 0.0178 -0.0027 0.0961 -0.0023 0.0927

6 0.2388 0.0169 -0.0025 0.0938 -0.0024 0.0900

200 8 0.2349 0.0163 -0.0025 0.0923 -0.0023 0.0880

10 0.2321 0.0158 -0.0025 0.0911 -0.0023 0.0866

12 0.2301 0.0155 —-0.0024 0.0903 -0.0022 0.0856

$10.1.5.3) 14 0.2287 0.0153 —-0.0023 0.0898 -0.0022 0.0849
T 4 0.0925 0.0090 —-0.0079 0.0678 0.0076  0.0652

6 0.0899 0.0085 -0.0078 0.0659 0.0076  0.0637

400 8 0.0880 0.0082 -0.0076 0.0646 0.0076  0.0626

10 0.0867 0.0080 -0.0076 0.0636 0.0076  0.0619
12 0.0857 0.0078 -0.0075 0.0629 0.0077  0.0615
14 0.0850 0.0077 -0.0074 0.0623 0.0077  0.0611

4. Real data application

In this section, we use the proposed estimation methods to the Electricity data and the Tecator data
set, and the competing methods mentioned in Section 3. In the applications, all the observations are
centralized before the regression analysis.

4.1. Electricity data

The data set consists of the daily average hourly electricity spot prices of the German electricity
market (Y), the hourly values of Germany’s wind power infeed (X (7)), the precipitation height (Z,) and
the sunshine duration (Z;). Here we only consider the working days span from January 1, 2006 to
September 30, 2008. The hourly values of Germany’s wind power infeed curves are shown in the left
panel of Figure 3. The data set can be obtained from the online supplements of Liebl [23]. Now we
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adopt the following partial functional linear regression model to fit the data:

24
Y=Za +2Za, + f X(f)ﬂ(f)dt +e. “4.1)
1

10000 15000
1 |

Wind infeed

5000
1

5 10 15 20 850 900 950 1000 1050
Hour Wavelength
(a) Germany’s wind power infeed (b) Spectrum curves

Figure 3. Plots of wind infeed and spectrum curves.

Firstly, the OLS method is applied to fit model (4.1). Then Shapiro-Wilk test is applied to test
the normality of the residuals and the p-value is less than 2.2 X 107'°. In addition, we also give the
estimated density of the residuals and the residual diagnostic plot (see Figure 1). Both the test and
plot clearly indicate that e follows a skewed distribution with outliers. Notice that the density of the
residuals is similar to the error distribution Bimodal discussed in Section 3, and the simulation results
illustrate that the proposed method can be applied and provide reliable inference for this kind of data.

To evaluate the predictions obtained with different estimation methods, we randomly divide data
set into a training sample of size 478 subjects and a testing sample with the remaining 160 subjects
(indexed by ). The data are split for N = 100, 200,400 times, respectively. We use the median
quadratic error of prediction (MEDQEP) defined below as the criterion to evaluate the performances:

I < )
MEDQEP = ; mepiaN {(Y;; = ¥:)%/Varg (Y;)), j € .

The left 3 columns of Table 4 present the MEDQEPs of different methods mentioned above. According
to the results of calculation, the WCAHR method is uniformly superior to the other estimators.
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Table 4. MEDQEDPs of different methods in the two applications.

Electricity prices Tecator

Methods N=100 N=200 N=400 N=100 N=200 N=400

OLS 04269 0.4132 0.4153 2.7824x10~% 2.7182x10~%  2.7257x107?
LAD 0.4094  0.4005 0.4068 2.9388x10~3 2.8611x10~% 2.8253x107?
ESL 0.5751 0.5626 0.5578 2.7268x107%  2.6701x107° 2.6142x107?
H-ESL 0.4104 0.4026 0.4064 2.7395x107%  2.7336x107°  2.6476x107°
AHR(0.25) 0.4052 0.3985 0.4032 2.9056x1073 2.7658x1073  2.7753x1073
Huber 0.4077 0.4027 0.4074 2.7636x107% 2.6491x10~% 2.6278x107?
AHR(0.75) 0.4296 0.4198 0.4280 2.7409x1073  2.6494x1073  2.6063x107°
CAHR 0.4103  0.4019 0.4089 2.8442x107% 2.8106x10~%  2.7457x1073
WCAHR 0.4030 0.3967 0.4008 2.7236x10~%  2.6152x10~%  2.5799x1073

Table 5 (the first 2 columns) presents the estimates of the parametric part by the estimation methods
based on the whole data set. According to the results, both the precipitation height and the sunshine
duration have negative effects on the daily average hourly electricity spot prices. In addition, Figure
4(a) plots the estimated slope function obtained by the WCAHR method, the estimates for 3(-) obtained
by other methods mentioned above exhibit similar patterns and thus omitted here. From the figure, we
can see the prices have a larger (in the absolute value) linkage with the wind power infeed in the
daytime, which reflects the economic phenomena of price sensitivity, and more specifically, the market
is active during the daytime and thus there is more correlation between the prices and the wind power
infeed in the daytime. Secondly, the Germany’s wind power infeed has a negative effect on the daily
average hourly electricity spot prices, which reflects supply-demand balance, that is, more wind infeed
creates the oversupply of electricity and thus reduces the price.

Table 5. Estimators of coeflicients for different methods.

Electricity prices Tecator
@ @ & @
OLS —-0.5983 —-0.4672 —-1.1056 —-0.6894
LAD -0.7095 —-0.9438 —-1.0828 -0.7611
ESL -0.5125 -0.4629 —-1.0894 —-0.7455
H-ESL -0.6007 -0.7212 —1.0983 -0.7367
AHR(0.25) -0.5618 -0.4725 -1.1122 —-0.7026
Huber -0.5799 -0.4416 —-1.0981 -0.7235
AHR(0.75) -0.5812 -0.4302 —-1.0854 -0.7576
CAHR -0.5394 -0.4582 —-1.0990 -0.7274
WCAHR -0.5924 -0.6182 —-1.0964 -0.7270
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Figure 4. The slope function estimators based on WCAHR method.

4.2. Tecator data

The Tecator data set consists of 215 meat samples. For each sample, moisture, fat and protein are
recorded in percent, and a 100-channel spectrum of absorbances is measured by the spectrometer. The
data set is available from the R package fda.usc (see [24]). The right panel of Figure 3 shows the
spectral trajectories. In this paper, the objective is to investigate the effects of the spectral trajectories
X(1), water content Z; and protein content Z, on the fat content Y by fitting the following model:

1050

Y=Za0+Za, + f X(t)ﬁ([)dt +e “4.2)

850

The density of the residuals and the residual diagnostic plot in Figure 2 illustrate the error follows a
skewed distribution with outliers. Similarly, to assess the prediction accuracy, the 215 meat samples
are randomized into training set with 180 subjects and testing set with 35 subjects. We also randomly
split the data set for N = 100, 200,400 times and use MEDQEP as criterion to evaluate the finite
sample performances of different estimation procedures. The comparison results are shown in the right
3 columns of Table 4, from which we know the proposed method performs better than the competing
estimation procedures in view of prediction accuracy.

The estimated coeflicients &;, &, using various methods based on the whole data set are also shown
in the last 2 columns of Table 5. Both the protein content and water content have negative effects on the
fat content. Next, the right panel of Figure 4 demonstrates the estimated slope function curves based on
the WCAHR method. It is obvious that the spectrum curve of absorbance has negative impact on the
quantity of fatty. In addition, the estimated slope functions by other methods mentioned above exhibit
similar patterns and thus omitted here.
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5. Conclusions

In this paper, we study the WCAHR estimation in the partial functional linear regression model. We
use the functional principal component basis to approximate the functions, and obtain the estimators
of the unknown parameter vector and the slope function through minimizing the weighted asymmetric
Huber loss function. The asymptotic normality of the estimated parameter vector and the convergence
rate of the estimated slope function are presented.

The proposed approach is designed for automatically reflecting distributional features as well as
bounding outliers effectively without requiring prior information of the data. Simulation results
show that the proposed method is almost as efficient as OLS when the error follows a normal
distribution, while keeps robust to outliers and still works well when the error follows skewed or
bimodal distributions. That is to say, the method is adaptive to the distribution of the error in the
regression model. The analyses of two examples further illustrate that the utility of the proposed
methods in modelling and forecasting.

The novelty of the method is that it focuses on the extraction of major features as well as shielding
the estimator from outliers. The proposed WCAHR estimation procedure can be extended to more
general situations, including dependent functional data, sparse modeling, partially observed functional
data, and high dimension setting. In addition, we still need to try objective way to select K.
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A. Proofs of the Theorems

We just prove Theorem 2. The Theorem 1 is a special case of Theorem 2.
Proof of Theorem 2:

Let 6, = /2, P, = 130 ql, V, = 6;'P)2 @ — o), 7 = PPy, A = diag{dy,- -, ),
A; = APUL A = NP0 Hy = (7 o) ) <czx,vm>) W = 6,"APF — yo) +
N 1 ~ ~ 1, A
H,(&—-ap)], r; = fo Bo(HX;(1)dt — UiTYO, B;=H,(U;-U) + Z 1/1 (CZX,V]>fu, ;= 6, (& — )" B;,
Jj=m+
T
Su = 6" (be = Do) Sy = (VWiSuts-oos VWESuk) » Fu = {(Via WS ¢ |(VEWESDHT| < L},

Tn = {(Zl’Xl('))’ cees (Zn’ Xn( ))}
Next, we will show that, for any given n > 0, there exists a sufficiently large constant L, such that

n

K
P{ <Vn,WiBan>eﬁ ; kZJ W"p”'(Y" —bo—Z g = Ul yo = 6, (Viiji+ Wy Ai + Bi+ Sz

(A.1)

n

K
> Z wkak Y bor — ZTao - UT'}/O)} >1-n.
i=1 k=1

This means that there is a local minimizer &, b and ¥ in the ball {(V,,, W,.S,) : ||(VT, S,Tl)T” < L}
such that [|& — @oll = 0,(5,), [bx — bor| = 0,(6,). IAY2(F = ¥o)ll = 0,(6,) with a probability at least

1-n.
First, by |lv; — 911> = O,(n"" j*) (see, [4]), one has

2
I = ‘ f ﬁo<r>X,-<r>dt—l7,-Tyo

2
= 2D1 + 2D».

V]>70]

i»

+ 2‘ Z (X, v)0;

j=m+1

For Dy, using Conditions C1, C2, and the Holder inequality, one can obtain

m

Z(Xi, Vi— \7]')’)’01

j=1

_ m
< CmZ ;= 3,1y, < sz 0, %) = 0,,(;) = 0,(5)).

2
D1:

As for D, due to E{ z] wrXevyo)l = 00 Var{ B2, (Xvvel = ER.admf <
C Y% @ = O35 ), one has Dy = 0,(n~“a% ) = 0,(52). To sum up, we have |r> = 0,(52).
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Now consider B;. Due to

IBilI* =

Hy Ui = 0) + > 4 ezw,vdéy

Jj=m+1
d
<2211

=1

Z /1;1 (czx, viX{Xi, vj)

j=m+1

/1 <CZIX7 v]><Xl’V] Vj>

2}
by Conditions C1, C2, C4, and the Holder inequality, we obtain

2 m
A 1211 2
< CmZIlvj—vjll |4 (ezx, vl

J=1

Z /1J_~I<CZ,X, ViXXi, ¥ —v;)

j=1

< CmZO,,(n 120y o 0,,(%) - 0,().

j=1

In addition, noting that

E{ i A; ez Vj><Xi,Vj>} =0

j=m+1

Var Z A <CZ,X’VJ><X1’VJ> Z A ez, vi)? = O ),

j=m+1 j=m+1

together with the above inequality, one has
m
I1BIF = 0,(%) = 0,62, (A2)

Recall that ¢, () = pl, (1) = (1o — DI(u < —¢*) + SR ul(—c* <u < 0)+ Zul(0 < u < )+ 1 (u >
¢*), and denote Q,(V,, W,.S,) = Y, >X wkpfk(Y,- — by — ZTag — Ulyy — 6,(V5igi + WFA, + B, +
S nk)) D wkak(Yi A lA]iTyO). Then Q,(V,, W, S,,) can be transformed into

K n
Qn (Vn’ Wna Sn) = E[Qn (Vn, Wna Sn) |Tn] + Z Wik Z Rnik (Vn’ Wna Sn)
k=1 i=1
K

- Z Wi Z On (V;f~i + WA, + B + Snk) Ve (ei — bor))
=1 =1
£ D]+ D; + D;,
where

Rnik(Vn» Wn’ Sn)
:p‘rk(ri +e;— by — 6,(V¥ij + WrA; + B, + Snk)) — pr(ri + e; — boy)
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— E[{ka(r,- +e; — bOk — 5,,(V;~l + W;{AA, + E,‘ + Snk)) —ka(r,- + e — b()k)}

r)

+ 6 (Vi + Wy A + Bi + S )z, (e = bor).-
Consider D7. According to (A.2), we have
Vil + WyA; + B+ S = (Vi + Wi A; + S ,) (1+ 0,(1)). (A.3)

The proof of Theorem 3.1 in [6] indicates that
op(1) with /" = W,,/||W,,||, which leads to

%i:il [(A,Thm)z] _ 1‘ = Op (n—1/4m1/2(10g n)l/Z) _

% ST (ATWLY = WP+ 0p(1)). (A4)
i=1

Observe that 37, h, (bo) VEijATW, = VIP,'2 3% | by, (bo)nUT A~'>W,,, then by Conditions C1-
C3,CS, E| X%, he (bo)naUT A~ W, | = 0 and E ([ n hfk(bOk)nﬂUiTA‘l/ZWn]z) = O(nm). Hence,

> he (b Vi ATW, = 0, (n'2m'12). (A.5)
i=1

Similarly, 37, b, (bo) VIS = 0, (n'2), XL, he(ba)ATW,S . = O, (n'/2m'/2). Then, together
with formulas (A.3)—(A.5), we have

D} = E[Q, (V,, W,,,S,) [T, ]
K n ri=0n (Vi s+ Wy Ai+Bi+S o)

Ywy [ Elr, (e = bo + 1T, s
k=1 i=1 Ti

1
wkZh,k(bOk){ 8, (Vi + Wy A; + B, +Snk)) —riz}(l +0,(1))
k 1 i=1
> Cndy (IIVAIF + W +11S,I) (1 + 0,(1)).

As for D3, due to the continuity of ¢, (-), we have

Var (Zn: R,
i=1

n» ns*~n

T,,] = 0y (63 IVIP + WP + 1S ul)

then

n»s ns~n

Tn) = 0, (n6y, (IVall> + IWLI> + 1IS.17))

from which we get

n

K
Z e D Rk (Vs W, S,)
k=

i=1

sup |D§|
IV, W, SpIISL (Vs W Sn)||<L

= 0,(Vno,L).
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For the term Dy, it is easy to show that

K n
Zwkz (Vi + Wy A+ S i) e (s = boo)| T

=1

and

K n 2
E {Z Wy Z S, (VZU + WA, + Snk) Yo (e — bOk)} T

k=1 i=1

< Cné; (IIV,,II2 + Wl + ||Sn||2) (1 +0,(1)).

Combining with the equation (A.4), we can obtain

sup |D§| = sup p(énnl/zL).

IV, Wi SwlI<L (Vi WaSIISL

Zwkz(s (Vidis + Wy A; + Bi + S ) 0 (e — boy)| =

k=1 i=1

From the results about D7, D} and Dj, it is easy to obtain that Q,, (V., W,,8,) is dominated by the

positive quadratic term Cné> (||Vn||2 + W, + ||S,,||2). Hence, Eq (A.1) is established, and there exists
local minimizer ¥ such that

1& = @oll = 0,(5,),  |bx — b = 0,6, IAVF = o)l = 0,(62). (A.6)

Now we consider the convergence rate of 5. Since

| R m . m A
A2 = yol? = D 43 =70, = n ) 37— v0))s

=1 =1

and based on the basic Condition C2, we have
A _1m a _ _2b-1
17 = oll® < 0p(/lm1;) = 0,(m™'n"") = 0,(n" ). (A7)

Note that

1B~ Boll* =

IRZBONT

j=1 j=

i 7] 70])‘}]
=1

2 4D’f* +4Dy" +2D5'.

+4

ZYOJ(VJ V}) +2 Z 70]

Jj=m+1

Based on the Condition C2, Eq (A.7) and the orthogonality of {9;}, as well as [lv; — D> = O,(n"' j),
we can obtain

sk
Dy =

m 2
Z(?A’j = Y0,)V;
=
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Zyo,(v,—v,) <mZ||v, vilP g <= p(ZmJ

= 0 n_lmz“]2 2b O,(n" 'm)=o0 p(n” Zb+2'17) (A.8)
Z ')/0] < C Z ,] p(n a+2b)
Jj=m+1 Jj=m+1

These lead to
1B = Boll> = O, (n~ o).

Next, we turn to the asymptotic normality of &. Note that Q,(a,y, b) attains the minimal value
at (&, ¥, b) with probability tending to 1 as n tends to infinity. Then, we have the following score
equations

n

1< . R
=D ) Zun (Y- b~ Z]a - Uf9) = 0, (A9)
k=1 i=1
S &
= we Y O (Y- b - ZTa - UF9) = 0. (A.10)
n
k=1 i=1

Further, we can write (A.9) as H,, + Z,le kaffl) + Z,’f:l ka;kZ) = 0, with

K n
Ho= Y e D Zan (e~ b
k i=1

1 N A
Br(zkl) = Z Z ZiE[lr//Tk(ei —box +ri — (by — byy) — Z;r (& — ap)
i=1

Tn],

UL o) ) — Y (€i = bor)

n

1 7 A
B;](Z) = n Z Zz[{lyl’n( bOk + rp — (bk - b()k) - Z;r (a' - Q’O)

i=1

07 =70 ) - v (e = b |

= B{ura(e = box + 11— (i = b - 2] (@ - )

)

By simple calculations, we have BY = —1 ¥ (o) | ZiZT (@ — ag) + Z:UT (7 = 79)| (1 + 0,(1)).
Through calculating the mean and variance directly, we can obtain Bff‘z) = 0, (0,). Then, Eq (A.9) can

OG- 70) | = (e -
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be written as

1 & n
n Z Wi Zy, (e; — bo)
o (A.11)
1 & L ) o
== > > wihey(bow) 2,27 (@ - a0) + ZOT G - 70)| (1 + 0,(1)).

k=1 i=1

Similarly, Eq (A.10) can be changed into

n

K
Z Wy Z Ui, (e; — boy)
k:Kl i=1
2

k=1 i=1

S| =

wihe, (bo) [UZ] (& - @) + U073 - y0)| (1 + 0,(1)).

1

n

Now let ®, = 1y 00T, T, = Ly" 0Z7, T = EUZY), 3, = ‘31,277, Z, = Z, -

ITo- 10, Yy = }12?:1 U, (e; — by). Then, above equation allows Y& wih. (bo)(¥ — 7o) =
-1

Z,Ile Wi (d),, + op(l)) [Cor + hr (o) (o — @&)]. Substituting it into (A.11), we obtain

K n

LS e ey o) 2] 24~ 170, 6] (@ - ) (1 + 0,(1)
k=1

i=1
K

wi Y Zi|ye, (e = bo) = OF (@,)7 U]

k=1 i=1

Noting that
K

R A A
=D 2 Wi (o0, O Z, - T@, O] = 0
i=1 k=1

1nK
)

> wLT 0, e (e — o) = OF0; 0, = 0,

i=1 k=1

then, it is easy to conclude that

1 K n o R
[; D oW D e (bo) ZiZT | (@ - )
k=1 i=1
1 K no_
== D Wi ) il (e = bo) = O (@7 T (1 + 0,(1)).
k=1 i=1

Note that
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Then we have
he, (boc) ZZ,T] Vi (@ - ay)

k=1 i=1

1 < =
= Z wi ) Ly, (e — bo) (1 +0p(1)).

(A.12)

S

It is easy to see that @, = A +0,(1), I', =I' + 0,(1). And based on Lemma 1 in [8] and the Condition

C5, we can obtain % iy Z ,ZT 2y (n — o0). Through some simple calculations, one has

K

n K
N e Y b o) ZZT 50 wih, (b E,
l’l; k; r WOk ; k', \Y0k

(A.13)

f—

K

Var [Z Wiz, (e; — bOk)] =w'Vw,
k=1

..,w)L. Then, according

where V = (Vk,l)lgk,ng with Vkl = E[lﬂfk (ei — b()k) lﬂﬁ (e,' - b()l)] andw = (Wl,
to Eqs (A.12) and (A.13), the Slutsky’s theorem, and the properties of multivariate normal distributions,

we can obtain

0,

Ty
V(@ - ag) ~ N = }221]-

{Z/{i | Wihe, (bor)

Lastly, we prove the third conclusion of Theorem 2. By the definition of MSPEycanr, we have

MSPEWCAHR
m m 2 o0 K 2
<5 ) 3= %0+ 5C | 700 = 0|l +5 > v, + 5CIé - el +5 {Z wi by — b0k|}
j=1 j=m+1 k=1

J=1
= 5F; +5CF, + 5F3 + 5CF4+5F5.

Firstly, according to the previous proof process, we have Fy = [[A'*(F — yo)IF = 0,(%). As for F»,

based on triangle inequality and Cy inequality,

m 2
Z Yivi =9\ =
=1
m

<2m Y Rl = P+ 2AF = yoll? D4 ;- 9))?

J=1

2

F2:

Z Yoi(vi=V) + F; = vo)(v; = V))
=1

=1
z 2F5 + 2F5,.

= 0, (m) by . As for Fp, it is easy to know

By Eq (A.8), Fy = mZ]V?)jllvj -Vl = p
]:
x Ay = 9))% = 0,(1), then Fyy = [|A3(F = o)l x A1 = 9 = 0,(2). Next, by (A.8), we
j= J=
Volume 7, Issue 5, 7657-7684.
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have F3 = Y ygj/lj = O(m™~**1). By (A.6), we know F, = O, (%) and Fs = O, (%) Then, we
Jj=m+1
have
_at2b-1

MSPEwcanr = Op(n~ «27).

The proof of Theorem 2 is complete.
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