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Abstract: Generalized accelerated AOR (GAAOR) splitting iterative method for the generalized
saddle point problems is proposed in this paper. The iterative scheme and the convergence of the
GAAOR splitting method are researched. The eigenvalues distributions of its preconditioned matrix is
discussed under two different choices of the parameter matrix Q. The resulting GAAOR preconditioner
is used to precondition Krylov subspace method such as the restarted generalized minimal residual
(GMRES) method for solving the equivalent formulation of the generalized saddle point problems.
The theoretical results and effectiveness of the GAAOR splitting iterative method are supported by
some numerical examples.
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1. Introduction

Consider the generalized saddle point problems

g 2

where A € C™ is symmetric positive definite matrix and B* is the conjugate transpose of a full column
rank matrix B € C™", C € C'"™" is symmetric semi-positive definite matrix, p € C" and g € C".
Problems associated with linear system like the one of Eq (1.1) arise in a wide fields of scientific
computing and engineering applications, such as computational fluid dynamics [1-9], least-squares
problems [10-12], electronic networks [13]. In general, iterative method is more attractive than direct
methods for large and sparse problem. In particular, a lot of iterative methods have been developed to
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solve the problems (1.1). For example, the HSS method [14-19], Block triangular preconditioner [20—
23], SOR method [3,24-27], PIU method [29-31] and PPS method [32-34].

In recent decades, many scholars have studied the AOR method to solve saddle point problem
and achieved some results [35—40]. However, there is still further research on the solution speed
and the number of iterations, and there is less research on the generalized saddle point problem with
the generalized method. In this paper, the GAAOR splitting iterative method is proposed to solve
the problems (1.1). We analyzed the iterative scheme and the convergence of the GAAOR splitting
iterative method. We discussed the eigenvalues distributions of its preconditioned matrix under two
different choices of the parameter matrix Q. In addition, the resulting GAAOR preconditioner is used
to accelerate Krylov subspace method.

The rest of the paper is organized as follows. In Section 2, we propose the GAAOR splitting
iterative method for solving the problems (1.1). In Section 3, the convergence of the GAAOR splitting
iterative method is discussed. In Section 4, we discuss the eigenvalues distributions of its
preconditioned matrix under two different choices of the parameter matrix Q, the resulting GAAOR
preconditioner is used to accelerate Krylov subspace method and two numerical examples are given to
demonstrate the theoretical results and the effectiveness of the GAAOR splitting iterative method.

2. GAAOR splitting iterative method

In this section, we shall introduce GAAOR splitting iterative method and its preconditioner for
solving the problems (1.1).

For given symmetric positive definite matrix Q € C™", @ > 0,8 > 0. Let the coefficient matrix .o/
of the problems (1.1) be split as follows:

of =D—-L-U, 2.1
where
aA O -A O aA -B
p-(% pe)io(F @) v wle)

For given 0 < w <y < 2. Through the splitting of (2.1), we obtained the GAAOR splitting iterative
scheme for the problems (1.1).

e )= T | %)
= Tiow +w(D -yL)™! , (2.2)
( y(k+1) (@,w,y) y(k) Y —q

where
Tiwwy = (D —yL)'[(1 —w)D + (w — y)L + wU]

[ (@+yA 0] )_1((a+y—w)A -wB )

- —’)/B* ﬁ(zz—)’) Q (w _ 7)3* ,3(22—7) Q —wC
A 0 ) ( (@+7y - wA ~wB )
= 2y ~1pxp-1 21 * B2—y)
Famapl BAT g0 (w=-yB  TFr0-oC
aty-w _w_
= 2(1/(Z+7) Q—IB* I — 2w Q—IC _ o 2wy Q—IB*A—IB ] :
Bla+y)(2-y) B2y Bla+y)(2—-y)
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Thus, the GAAOR splitting iterative method can be defined as follows.

GAAOR splitting iterative method: Let Q be symmetric and positive definite. Given an initial guess
x@" and y©", parameters @ > 0,8 > 0,0 < w <y < 2. Fork = 0,1,2, ... until iteration sequence x*"
and y®" are convergent, compute

FD — ) 4 L(p — Ax® _ By(k)),
{ (k+1) _ (k) w (1) _ (k) (2.3)
YD =y 4 B (Brx Yy = g).
In addition, the iteration matrix ./ can be induced from the splitting
A = Mapoy = Napoy,
where o
1 =LA o
Mapwy = Z(D —-vL) = ( _‘:’% B M2g ) (2.4)
Rawinly| -B
Nopwy = ( wa)yB* B2~ y)Q C ) (2.5
It is readily seen that
Tiapwoy = Mg gwyNapoy (2.6)

where T, 4., and M(alﬂwy)szf are iteration matrix and preconditioning matrix of the GAAOR
splitting iterative method, respectively.  The splitting matrix M, z., can be served as a
preconditioner, called the GAAOR preconditioner. Furthermore, the action of GAAOR splitting

matrix M.,y as a preconditioner can be realized through solving sequences of generalized residual

equations of the form
wA 0 21 ry

where (z],z5)" and (r], r)" represent the generahzed residual vector and the current residual vector,
respectively. From the Eq (2.7), we can compute the vector (z],z5)" through the following two steps:

Step 1. Solve (a + y)Az; = wr, for z;.
Step 2. Solve B(2 — ¥)Qz, = 2(wr, + yB*z;) for z,.

Clearly, at each step of the GAAOR splitting iterative method or applying the GAAOR
preconditioner M, ., With a Krylov subspace method, we only need to solve two sub-system with
coeflicient matrix (@ + y)A and (2 — y)Q.

3. The convergence analysis of the GAAOR splitting iterative method

In this section, we will analyze the convergence of the GAAOR splitting iterative method for solving
the problems (1.1). We first recall in Lemmas 3.1-3.3 some useful result of [41].

Lemma 3.1. Let (x©7, yO")* is given initial vector. If (x*®",y®")* is defined by the split iteration (2.1)
of coefficient matrix <7, then Eq (2.2) holds. If the spectral radius p(T(, g..,)) < 1, then for any initial
vector (xO°,yO) the iterative sequence (x*, y®")* will converge to the unique solution (x*,y*)* of
the problems (1.1).
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Lemma 3.2. The GAAOR splitting iterative method (2.3) converges if and only if the spectral radius
P(T o gwy) of the iteration matrix T, .., satisfies the inequality p(T (4 gwy) < 1.

Lemma 3.3. Consider the quadratic equation x> — bx + ¢ = 0, where b and c are real numbers. Both
roots of the equation are less than one in modulus if and only if |c| < 1 and |b] < 1 + c.

Secondly, we are in the position to state and prove our main results.

Theorem 3.1. Suppose that A € C™™ is symmetric positive definite matrix and B* is the transpose of
a full column rank matrix B € C™", C € C™" is symmetric semi-positive definite matrix. If 1 is an
eigenvalue of the iteration matrix T g, and (u*,v*)* € C"™ is the corresponding eigenvector, then

A —bl+c=0, (3.1)
where
b= BRa+2y —w)2—-7y) - 2wn(a +vy) - 2wyd (32)
Bla+yQ2-7y) ’ '
_ (a+y - )2 ~y) - 2wn] + 2wé(w ~ y) (3.3)
Bla@+y)2-vy) ’
where we defined the new constant
Vv Cy V'B*A~'By
D= , 00 = . 34

g v:Qvy v:Qv (34

Proof. Let w = (u*,v")", A is an eigenvalue of the iteration matrix 7,4, and (u*,v*)* € C"™" is the
corresponding eigenvector, then by T, g.,,)w = Aw and Eq (2.6), we obtained N, g )W = AM (4 8.0, W-

Thus, we have
San Ly -B u YA 0] u
( wype - y)Q C)( ):/l(_sz* B2 ”Q)( ) (3.5)

by Eqs (2.4) and (2.5). That is,

[ _ 114y = By,
{ (EPU=b g )y = (1D gy, (3.6)
We note that 4 # 1 and u # 0. Indeed, assuming A = 1, we obtain
—Au = By,
{ Cv =HBu 3.7

By the first equation in Eq (3.7), we get u = —A~'By. Substituting it into the second equation in
Eq (3.7), we have
(C+BA'By=0

Since A is symmetric positive definite matrix, B is a full column rank matrix, C is symmetric semi-

positive definite matrix, C + B*A~' B is a symmetric positive definite matrix. Hence, we have v = 0 and

u = —A~'Bv = 0. This contradicts the assumption that v is an eigenvector of T, 4., Hence 4 # 1.
The result u # 0 can be proven similarly.
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Suppose that ((’L‘jl_ﬂ) — 1 # 0. By the first equation in Eq (3.6), we obtain u = mA“Bv.
Substituting it into the second equation in Eq (3.6), we have
B2 -y -2 yA-D+ow .
-Cy = B*A™" Bv. 3.8
e T - De Y (3-:8)

It is straightforward to obtain that v # 0 and v*Qv # 0 (since Q is a positive definite matrix). Hence,

on multiplying the Eq (3.8) by — ;V from the left, we obtain the Eq (3.1) through Eqs (3.2)-(3.4). O

Theorem 3.2. Suppose that A € C™™ is symmetric positive definite matrix and B* is the transpose of
a full column rank matrix B € C™", C € C™" is symmetric semi-positive definite matrix, parameters
a>0,>0,0<w<y<2 Ifa, B w, v, nand ¢ satisfy one of the conditions

n=0,
DY 5 B2=NCa+2y-w) (3.9)
w2y - w) ’
or
0<n< ’8(20: 7),
@ s < BC—y) —wnlQa+2y - w), (3.10)
w2y — w) ’

then the splitting iteration method (2.3) converges.

Proof. Without loss of generality, let y # w. Since C € C™" is a symmetric semi-positive definite
matrix and Q is symmetric and positive definite, we have n > 0 by Eq (3.4).
(1) Let n = 0. From Egs (3.2) and (3.3), we obtain

_ BRa+2y —w)2-7y)-2wyd

b )
Bla+y)2-vy)
_ o 2wiw—y) —wB(2-y)
c=1+
Bla+vy)2-vy)
1+C:,B(2a+2y—a))(2—y)+2w6(a)—y). 3.11)
Bla+y)2-vy)
From |c| < 1, we have
1+mmw—w—wm—w<d
Bla+y)2-vy)
— -1<1+ 2wow =) — wB2 =) <1,
Bla+y)(2-vy)
that is,
203(y — w) + wB2 —y) > 0, (3.12)
> 2B+ PC=y) + 20w =P - wBC-y) _ a3

Bla+y)2-7y)
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Since A and Q are symmetric positive definite matrices, @« > 0,8 > 0 and 0 < w < y < 2, we have
0> 0, wd(y —w) >0, wp(2 —vy) > 0. Hence inequality (3.12) holds. Inequality (3.13) is transformed
into

BRa + 2y — w)2 —7y) > 2wi(y — w). (3.14)
Sincea > 0,8>0and0 < w <y <2,wehavey—w >0, 2—y) > 0, 2a+2y—w = 2a+y+(y—w) > 0.
From inequality (3.14), we obtain

< BQRa + 2y —w)(2 - 7)’

0 3.15
20— 0) 1)
From Egs (3.2), (3.11) and |b| < 1 + ¢, we have
e —2wyd <e+2w6(a)—y)’ (3.16)
Bla+y)2-yl pla+y2-y)
where € = BQRa + 2y — w)(2 — y).
From inequality (3.15), we obtain
BRa + 2y —w)2 -1vy)+ 2wé(w —y) > 0.
Because B(a + y)(2 — y) > 0, we have inequalities (3.16) is equivalent to
BRa+2y —w)2—vy) —2wyd < BRa +2y —w)2 —y) + 2wi(w — y),
BRa +2y —w)2 —vy) - 2wyd > —[BRa + 2y — w)(2 —y) + 2wi(w — y)],
that is,
20w* > 0,
(3.17)
BRa +2y —w)2 —7vy) > wd2y — w).

Obviously, the first inequality of inequalities (3.17) holds. Because 8 > 0 2a + 2y — w > 0 and
w2y - w) = wly + (y —w)] > 0, we obtain

BQRa+2y —w)2-y)

o< oy — ) (3.18)
by the second inequality of inequalities (3.17).
Since 2w(y — w) — W2y — W) = —w? < 0, we have
0 <2w(y — w) < w2y — w). (3.19)
And because B2a + 2y — w)(2 — y) > 0, we obtain
pRa+2y —w)2-y) pRa+2y-w)2-Yy) (3.20)

20(y — w) w2y — w)
From inequalities (3.15), (3.18) and (3.20), we have

s Blat2y-wC-y)
w2y — w)
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Hence, we have Eq (3.9) holds.
(2) Let n > 0. From Egs (3.2) and (3.3), we get

_BRa+2y —w)2-vy)-2wn(a+y) - 2wyd + 2w*(n + 5)
B Bl +y)(2~7)

l1+c

2w* (1 + 6)
Bla+y)2-7y)
Since 2w*(7 + 6) > 0 and B(a + v)(2 —y) > 0, we have % > (. Hence, we have b < 1 + ¢ by
Eq (3.21). To prove that inequality || < 1+c holds. Next, we only need to prove inequality —(1+c¢) < b

holds.
From Eqgs (3.2), (3.21) and —(1 + ¢) < b, we obtain

(3.21)

_1,//+2a)2(77+5)< W
Bla+y)2-y) Bla+y2-y)’

where ¥ = BQ2a + 2y — w)(2 — y) — 2wn(a + y) — 2wyd. Simplifying by inequality (3.22), we get

(3.22)

w2y —w) < Qa+2y —w)[BQ2 —vy) — wnl. (3.23)
Since dw(2y — w) > 0 and 2a + 2y — w > 0, the inequality (3.23) has a solution if and only if
{,3(2—7)—wn>0,

S < 2a+2y-w)B2=y)-wn]

w2y-w) ’
that is,
{ n < /3(2‘;7),

(3.24)

Qa+2y-w)[B2—y)—wn]

0 < o0y .

From Eq (3.3) and |c| < 1, we have
+y- 2—-y)=-2 + 2wié(w —

(@+y-wI[B2-7vy)-2wn] +2wé(w —y) <1 (3.25)

Bla+y)2-7y)

Since @ > 0,8 > 0and 0 < w < y < 2, we have B(a + y)(2 — y) > 0. Hence, inequality (3.25) is
equivalent to

(@+y-wIB2~-7vy)—2wn] +2wé(w —y) < pla+y)(2-1y),
(@+vy-wI[B2-7y)-2wn] +2wé(w-7y) > —Lla+y)2-1y),
that is,

{ 26(w —y) < 2n(a +y — w) + B2 - ), (3.26)

20w(y — w) < Qa + 2y — w)[BQ2 —y) — wyl + Wn.
Because 6 > 0 and w — y < 0, we have

20(w—7vy) <0,
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2nla + (y —w)] + B2 -y) > 0.

Hence, we have the first inequality of inequalities (3.26) holds.
From the first inequality of inequalities (3.24), we have B(2 —y) — wn > 0. Since 2w(y — w) > 0
and 2a + 2y — w > 0, we obtained

5. Qo+2y-wIBR-y) - wnl + o'
20(y — w)

, (3.27)

by the second inequality of inequalities (3.26). Since 2a + 2y — w)[B(2 — y) — wn] > 0, we have

Qa+2y —w)B2-7y)—wn] S Qa+2y - w)B2-7y)—wn]

3.28
20(y - w) w2y - w) (5:28)
by inequality (3.19). And because 2(;)_"&)) > 0, we have
Qa +2y — w)[BR2 —7y) — wyl + w?n
20(y — w)
_ Qa+2y —w)B2—-vy)—wn] N wn
20(y - w) 2y -~ w)
2 + 2y — 2—vy)—
, Qa+2y - w2 -y) - wnl (3.29)
w2y — w)
by inequality (3.28).
Hence, we have Eq (3.10) holds by the inequalities (3.24), (3.27) and (3.29). O

Therefore, by combining the above analysis and Lemma 2, we finally obtained the convergence
result of the GAAOR splitting iterative method.

Theorem 3.3. Suppose the conditions of Theorem 2 are satisfied. Then, the GAAOR splitting iterative
method used for solving the generalized saddle point problems (1.1) is convergent.

4. Numerical examples

In this section, two numerical examples are provided to illustrate both the theoretical results
achieved in Section 3 and the effectiveness of the GAAOR splitting iterative method for solving the
problems (1.1). The computation is conducted in Matlab on a personal computer with Intel(R)
Core(TM)2 Quad CPU Q9500 2.83GHz, 4.0G memory and Windows 7 operating system. In the
following tables, we list the iterative numbers (denoted by IT), the elapsed CPU times (denoted by
CPU) in seconds that the stopping criterion, either RES < 1077 or the number of the prescribed

iteration k,,,, = 2000, is met, and the residual error (denoted by RES) defined by

o 1/2
Il p—Ax® - By® |3+l g - B XY + Cy® |3

RES =
Ip = Wx® = ByO [E + | g - B'xO + CyO |3
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Example 4.1. Consider the problems (1.1) with the coefficient matrix form

3-13 3+13
t t

A:[H+K+ I]+i(H+K+ 1)e©’2xl2,

1
H=IV,+V,®1, V, = 7 -tridiag(~1,2, 1) € C™,

1
K=19U,+UQI, U = 5 -tridiag(~1,0, 1) € C™,

B=(B; B;)=(B; b1 bp) € Clzx(12+2)’ C=1]¢ Cllez’

B =I®F+F®IeC™ b, :Bl( (e) ),bZ:Bl( 2 )

e=(1,1,---, e C%, F = tridiag(-1,1,0)/h € CX t is the time step-size, ® denotes the Kronecker
product and h = HL] is the discretization meshsize. Then m = 21> and n = I> + 2. The Example 4.1 is a
new technical modification in [3].

All computations, we set the right-hand side vector of the problems (1.1) such that f* to be a

complex vector with its jth entry f; being given by

(-
PG

t=hj=12-,mq =(-1,-1,---,-1) e C".

Let C = I € C™", the problem is normalized by multiplying both sides with h>. Furthermore, we
consider two different choices of the parameter matrix Q:

Case I: Q = Diag(B*A™'B),

Casell: O = Diag(B*Al‘lB) with A, = tridiag(A).

The numerical results of the GAAOR splitting iterative method in Tables 1-3, the PIU method [29],
the SOR-like method [26] with respect to IT, CPU, RES for Example 1. In this table, the number
outside the bracket denotes the outer iteration and inside number the inner iteration for preconditioned
restarted GMRES(10) method.

From Tables 1-3, we can see that the GAAOR splitting iterative method and GAAOR-GMRES(10)
costs less CPU time than the PIU method and the SOR-like method, more importantly requires much
less iteration number than the others. The reason is that the GAAOR splitting iterative method does
only compute the inverse of lower triangular matrix D — aL, but not the inverse of matrix /. As for
the two cases of the GAAOR splitting iterative method, Case Il is a much better choice, which has the
least number of IT, costs less CPU time and RES comparing with all the other methods. Due to limited
space, a large number of numerical experiments have not been listed in Tables 1-3. Furthermore,
numerical experiments show that the GAAOR splitting iterative method depends on the reasonable
choices of @, 8, w and . All the results show that we proposed the new method which is feasible and
effective for the problems (1.1) in this paper.

Example 4.2. Consider the problem (1.1) with the coefficient matrix form

A= 0 1®T+T®1)EC '

AIMS Mathematics Volume 7, Issue 5, 7625-7641.
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B = (B By) = (B by by) € C?¥+2),

_ I®F 212><12
Bl_(F@I)GC .

1
-tridiag(~1,2,-1) € C,

T:ﬁ

F = tridiag(-1, 1,0)/h € C™.

2
blzBl(g),bZ:Bl(2),e:(1,1,---,1)*e©’2.

In this experiment, we consider the following matrix C = diag(B*B), ® denotes the Kronecker product

and h = ﬁ is the discretization meshsize. Example 4.2 is a new technical modification in [2].

All computations, we set the right-hand side vector of the problems (1.1) such that
(g = (L1, D) e O,

initial guess

(X5, )" = (0,---,0) e CF+2,

Furthermore, we consider two different choices of the parameter matrix Q:
Case I: Q = Diag(B*A™'B),
Case II: Q = Diag(B*A7'B) with A, = tridiag(A).
Numerical results are compared with the PSS method [31] and the SPSS method [33], respectively.

In this table, the number outside the bracket denotes the outer iteration and inside number the inner
iteration for preconditioned restarted GMRES(10) method.

From Tables 4-6, we can see that the GAAOR splitting iterative method and GAAOR-GMRES(10)
costs less CPU time than the PSS method and the SPSS method, more importantly requires much less
iteration number than the others. As for the two cases of the GAAOR splitting iterative method, Case 11
is a much better choice, which has the least number of IT, costs less CPU time and RES comparing with
all the other methods. Furthermore, numerical experiments show that the GAAOR splitting iterative
method depends on the reasonable choices of a, 8, w and . All the results show that we proposed the
new method which is feasible and effective for the problems (1.1) in this paper.

AIMS Mathematics Volume 7, Issue 5, 7625-7641.
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Table 1. Numerical results of PIU, SOR-like, GAAOR splitting iterative methods and

GAAOR-GMRES(10) for Example 4.1.

Case I 1=8 1=16 1=24 1=32
Method a =200 m=64 m=256 m=576 m=1024

B =300 n=66 n=258 n=578 n=1026

(w,y) (1.92,1.64) (0.98,0.85) (0.45,0.26) (0.04,0.02)
PIU IT 44 55 78 94

CPU 9.8639 19.9152 33.6273 94.1759

RES 7.6538e-8 8.7126e-8 8.9537¢-8 9.0724¢-8
SOR-like IT 31 38 44 49

CPU 1.5248 47619 10.8813 42.0914

RES 5.9327e-8 7.4132¢-8 8.7218e-8 4.5312¢-8
GAAOR IT 19 22 27 34

CPU 0.0319 0.3817 3.4931 17.0241

RES 3.8653e-8 4.2159¢-8 7.9123e-8 8.0361e-08
GAAOR-GMRES(10) IT 9(2) 10(3) 10(3) 11(4)

CPU 0.0281 0.2198 3.1105 12.2316

RES 2.3275e-8 6.4417¢-8 4.2398e-8 2.1137e-08

Table 2. Numerical results of PIU, SOR-like, GAAOR splitting iterative methods and

GAAOR-GMRES(10) for Example 4.1.

Case 11 1=8 1=16 1=24 1=32
Method w=04 m=64 m=256 m=576 m=1024

v =0.6 n=66 n=258 n=578 n=1026

(a,) (0.2,0.3) (2,3) (20,30) (200,300)
PIU IT 41 53 75 92

CPU 7.0105 15.9713 26.5328 80.2935

RES 7.3276e-8 8.5617¢-8 8.1095¢-8 8.9268¢-8
SOR-like IT 29 38 45 52

CPU 1.3126 5.0724 11.8714 42.7105

RES 5.2591e-8 7.6319¢-8 8.1295e-8 5.7821e-8
GAAOR IT 15 18 25 28

CPU 0.0306 0.3219 3.2173 16.1915

RES 3.7516e-8 7.0517e-8 8.4254e-8 2.0917e-08
GAAOR-GMRES(10) IT 6(2) 8(3) 9(3) 10(2)

CPU 0.0203 0.1876 2.3917 10.9744

RES 3.5286¢-8 5.3891e-8 3.9152¢-8 2.3729¢-08

AIMS Mathematics
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Table 3. Numerical results of PIU, SOR-like, GAAOR splitting iterative methods and

GAAOR-GMRES(10) for Example 4.1.

1=8 1=16 1=24 1=32
Method Case 11 m=64 m=256 m=576 m=1024
n=66 n=258 n=578 n=1026
(a, B, (0.15,0.28, (13,31, (125,150, (240,320,
w,?y) 0.42,0.67) 0.48,1.65) 0.85,1.27) 0.04,0.02)
PIU IT 38 53 71 85
CPU 6.1274 14.2153 23.2916 77.9831
RES 7.3712e-8 8.4227¢-8 8.5219¢-8 8.5392¢-8
SOR-like IT 25 28 33 37
CPU 0.3782 2.8619 8.6322 33.2947
RES 4.1429e-8 7.9725e-8 8.3824¢-8 4.1239¢-8
GAAOR IT 6 8 8 9
CPU 0.0279 0.3012 2.9327 13.5121
RES 3.1385e-8 7.6529¢-8 4.7641e-8 2.1942¢-08
GAAOR-GMRES(10) IT 3(2) 4(3) 5(2) 5(3)
CPU 0.0107 0.1196 1.8716 9.4137
RES 2.9816e-8 6.8739¢-8 4.2946¢-8 2.7514e-08

Table 4. Numerical results of PSS, SPSS, GAAOR splitting iterative methods and GAAOR-

GMRES(10) for Example 4.2.

Case 1=8 1=16 1=24 1=32
Method @=200 m=128 m=512 m=1152 m=2048

B=300  n=66 n=258 n=578 n=1026

(,7) (1.92,096)  (1.250.84)  (0.450.24)  (0.08,0.03)
PSS IT 28 35 49 61

CPU 5.2391 10.2917 21.5391 38.7412

RES 5.8912¢-8 6.2395¢-8 7.1218¢-8 6.4926¢-8
SPSS IT 20 27 35 47

CPU 2.3429 5.7563 12.4671 28.9216

RES 5.3236¢-8 6.3492¢-8 7.2914e-8 6.3329¢-8
GAAOR IT 8 9 11 12

CPU 0.0284 0.2971 42164 18.2497

RES 1.7149¢-8 7.8763¢-8 6.3529¢-8 7.8137e-08
GAAOR-GMRES(10) IT 42) 4(3) 52) 6(3)

CPU 0.0121 0.1273 2.1376 10.2281

RES 3.9825¢-8 5.2738¢-8 4.2391e-8 5.7219¢-08
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Table 5. Numerical results of PSS preconditioner, SPSS, GAAOR splitting iterative methods
and GAAOR-GMRES(10) for Example 4.2.

Case II 1=8 1=16 1=24 1=32
Method w=14 m=128 m=512 m=1152 m=2048

y=0.5 n=66 n=258 n=578 n=1026

(a,) (0.6,0.4) (15,30) (150,180) (300,400)
PSS IT 24 31 44 57

CPU 4.8421 8.8615 17.3247 34.5126

RES 3.6538¢-8 5.6521e-8 6.9342¢-8 8.9126e-8
SPSS IT 21 29 41 52

CPU 3.1372 4.7528 15.7629 31.2471

RES 5.1287¢-8 6.3258e-8 7.1426e-8 8.3127¢-8
GAAOR IT 5 6 6 7

CPU 0.0261 0.2272 3.2301 16.2325

RES 8.5928e-8 9.6692¢-8 8.8372¢-8 4.0835e-08
GAAOR-GMRES(10) IT 3(2) 3(3) 4(1) 5(2)

CPU 0.0114 0.1862 2.1634 9.0528

RES 3.4185¢-8 7.2351e-8 8.4429¢-8 5.1573e-08

Table 6. Numerical results of PSS preconditioner, SPSS, GAAOR splitting iterative methods
and GAAOR-GMRES(10) for Example 4.2.

1=8 1=16 1=24 1=32
Method Case II m=128 m=512 m=1152 m=2048
n=66 n=258 n=578 n=1026
(a,p, 0.6,0.4, (15,30, (150,180, (300,400,
w,y) 1.92,0.96) 1.25,0.84) 0.45,0.24) 0.08,0.03)
PSS IT 22 30 41 51
CPU 3.7826 7.9835 15.1827 29.3924
RES 5.4327e-8 6.5318e-8 6.2735e-8 7.2769e-8
SPSS IT 20 26 38 47
CPU 3.0047 4.2185 13.9846 28.9326
RES 5.2391e-8 6.5819¢-8 8.3194e-8 5.1753e-8
GAAOR IT 5 5 6 6
CPU 0.0246 0.1931 2.8316 13.7329
RES 7.5514¢-8 1.2462¢-8 4.2304e-8 7.2898e-08
GAAOR-GMRES(10) 1T 2(2) 3(1) 3(2) 4(3)
CPU 0.0094 0.1923 3.1946 8.4327
RES 3.5428e-8 6.3422¢-8 6.4359¢-8 5.2937e-08
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5. Conclusions

In this paper, based on the AOR method for generalized saddle point problems (1.1), we have
proposed the AAOR method for the problems (1.1). Compared with the the PIU, the SOR-like, the
PSS preconditioner and the SPSS methods, the proposed method has the least number of IT, costs less
CPU time and RES, and convergence conditions are easy to be satisfied. Numerical results verified and
the efficiency of the AAOR method for the problems (1.1).

However, the AAOR method involved four parameters «, S, w and y. It is formidable to find the
optimal parameters, therefore, we did not discuss the choice of the parameters «,, w and 7y in this
paper. Consider that the validity of the proposed method depends on the selection of the four
parameters, how to find easy calculated the parameters should be a direction for future research.
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