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Abstract: This paper considers the minimax perturbation bounds of the low-rank matrix under Ky
Fan norm. We first explore the upper bounds via the best rank-r approximation Âr of the observation
matrix Â. Next, the lower bounds are established by constructing special matrix groups to show the
upper bounds are tight on the low-rank matrix estimation error. In addition, we derive the rate-optimal
perturbation bounds for the left and right singular subspaces under Ky Fan norm sin Θ distance. Finally,
some simulations have been carried out to support our theories.
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1. Introduction

Singular value decomposition (SVD) has been widely used in statistics, machine learning, and
applied mathematics. Perturbation bounds often play a critical role in the analysis of the SVD. To be
more specific, let

Â = A + E,

where both A and E have the same size d1 × d2, and A is a signal matrix which we are interested
in, while E stands for a perturbation matrix. In this paper, suppose that Â and A have the following
singular value decompositions,

A = UΣrVT + U⊥Σr⊥VT
⊥ =

r∑
i=1

σiuivT
i +

d1∧d2∑
i=r+1

σiuivT
i , (1.1)

Â = ÛΣ̂rV̂T + Û⊥Σ̂r⊥V̂T
⊥ =

r∑
i=1

σ̂iûiv̂T
i +

d1∧d2∑
i=r+1

σ̂iûiv̂T
i , (1.2)
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where r ≤ rank(A), d1 ∧ d2 stands for min{d1, d2}. The singular values σi and σ̂i are in the decreasing
order. U = [u1, . . . , ur], Û = [û1, . . . , ûr] ∈ Od1,r (the set of all d1 × r orthonormal columns and
Od1:=Od1,d1), and V = [v1, . . . , vr], V̂ = [v̂1, . . . , v̂r] ∈ Od2,r. Unlike compressed sensing [5] to
reconstruct the original signal, our goal is to estimate the underlying low-rank matrix A and its leading
left and right singular matrices U,V .

The problems to estimate U,V have been widely studied in the literature [1, 3, 4, 10, 12]. Among
these results, Davis and Kahan [3], Wedin [12] established the fundamental methods for matrix
perturbation theory; Vu [10], Wang [11] discussed the rotations of singular vectors after random
perturbation; Cai and Zhang [1] studied the rate-optimal perturbation bounds for singular subspaces;
Fan et al. [4] gave an eigenvector perturbation bound and the robust covariance estimation. In addition,
Luo et al. [6] considered the perturbation bound under Schatten-q norm. Till now, a few of the
existing works focused on the perturbation analysis of the matrix A itself. This paper will consider
the estimation of rank-r matrix A under Ky Fan norm which extends the results of Luo et al.

For a given k ∈ {1, 2, . . . , d1 ∧ d2}, the Ky Fan norm ‖M‖(k) of the matrix M ∈ Rd1×d2 is given by
‖M‖(k) =

∑k
i=1 σi(M). Clearly, ‖ · ‖(k) is a unitarily invariant norm.

In this paper, we consider the estimation of rank-r matrix A (i.e., Σr⊥ = 0) via rank-r truncated
SVD Âr := ÛΣ̂rV̂T of Â. It is widely known that Âr is the best rank-r approximation of Â. Here and
throughout, Al or (A)l denotes the best rank-l approximation of the matrix A.

Firstly, we establish the following upper bound.

Theorem 1.1. Let the observation matrix Â = A + E ∈ Rd1×d2 , where A is an unknown rank-r matrix
and E is the perturbation matrix. Then

‖Âr − A‖(k) ≤ 3‖Er‖(k), k = 1, 2, · · · , d1 ∧ d2,

where Er denotes the best rank-r approximation of the matrix E.

Remark 1.1. According to Eckart-Young-Mirsky Theorem and rank(A) = r, we have ‖Âr − Â‖(k) ≤

‖A − Â‖(k). Therefore,

‖Âr − A‖(k) ≤ ‖Âr − Â‖(k) + ‖Â − A‖(k) ≤ 2‖Â − A‖(k) = 2‖E‖(k). (1.3)

If r � d1 ∧ d2, then ‖Er‖(k) can be much smaller than ‖E‖(k) for any k � r.

Remark 1.2. If k = d1 ∧ d2, both the Ky Fan norm and the Schatten-1 norm are equal to the nuclear
norm; If k = 1, both the Ky Fan norm and the Schatten-∞ norm are equal to the spectral norm.
Otherwise, the two norms are not included each other. Therefore, our results can be regarded as a
supplement to the existing results.

Before stating the lower bound, for any t > 0, we define the class of (A, E) as

Fr(t) =
{
(A, E) : rank(A) = r, ‖E‖(k) ≤ t

}
. (1.4)

Here A, E ∈ Rd1×d2 and k ∈ {1, 2, . . . , d1 ∧ d2}.

Theorem 1.2. For the low-rank perturbation model Â = A + E ∈ Rd1×d2 , if r ≤ 1
2 (d1 ∧ d2), then for any

estimator Ã based on the observation matrix A + E,
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inf
Ã

sup
(A,E)∈Fr(t)

‖Ã − A‖(k) ≥
t
2
,

where k ∈ {1, 2, . . . , d1 ∧ d2}.

Theorem 1.2 shows that the upper bound given in Theorem 1.1 is sharp for the rank-r truncated
singular value decomposition estimator Âr.

The principle angle Θ(V1,V2) of the matrices V1,V2 ∈ Od,r means the diagonal matrix

Θ(V1,V2) = diag{cos−1(σ1), cos−1(σ2), · · · , cos−1(σr)}

with the singular values σi := σi(VT
1 V2) of VT

1 V2 satisfying σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0. When r = 1,
Θ(V1,V2) coincides with the angle of two d dimensional unit vectors. In this paper, the sin Θ distance
is used to measure the difference between V1 and V2. i.e.,

‖ sin Θ(V1,V2)‖(k) = ‖diag{sin cos−1 σ1, . . . , sin cos−1 σr}‖(k) =

k∑
i=1

(1 − σ2
i )1/2.

Indeed, although ‖ sin Θ(V1,V2)‖ defines a semi-metric on Od,r, it is also satisfied

‖ sin Θ(V1,V2)‖(k) ≤ ‖ sin Θ(V1,V3)‖(k) + ‖ sin Θ(V3,V2)‖(k) (1.5)

and

‖ sin Θ(V1,V2)‖(k) = ‖VT
2⊥V1‖(k) (1.6)

following from [7].
As a byproduct of Theorem 1.1, we can derive the perturbation bounds for the leading singular

subspaces U and V under Ky Fan norm sin Θ distance. i.e.,

‖ sin Θ(Û,U)‖(k) ≤
2‖Er‖(k)

σr(A)
,

‖ sin Θ(V̂ ,V)‖(k) ≤
2‖Er‖(k)

σr(A)
.

Furthermore, we also give the corresponding lower bounds to show the above upper bounds are
sharp.

2. Proofs

Firstly, let us introduce some lemmas in order to prove Theorem 1.1.

2.1. Auxiliary lemmas

A function Φ : Rd → R is called a symmetric gauge function ([9]) if (1) x , 0 =⇒ Φ(x) > 0; (2)
Φ(αx) = |α|Φ(x) for α ∈ R; (3) Φ(x+y) ≤ Φ(x)+Φ(y) for any x, y ∈ Rd, and (4) Φ(Jxπ) = Φ(x), where
J is any diagonal matrix whose diagonal elements are 1 or -1, and π is any permutation with 1, . . . , d.
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For x, y ∈ Rd, define the function
Ψ(y) := sup

Φ(x)=1
〈y, x〉.

It is easy to check Ψ(·) is also a symmetric gauge function. In general, Ψ(y) is usually called the
dual symmetric gauge function of Φ(x). In particular, for a matrix A ∈ Rd1×d2 , we can define

Φ(A) := Φ(σ1, . . . , σd1∧d2),

where σ1, . . . , σd1∧d2 are the singular values of A, then the following lemma is Lemma 3.4 in [9].

Lemma 2.1. Let A, B ∈ Rd1×d2 and their singular values are σ1 ≥ · · · ≥ σd1∧d2 ≥ 0, ξ1 ≥ · · · ≥ ξd1∧d2 ≥

0 respectively. Then

max
U∈Od1 ,V∈Od2

tr(UAVBT ) =

d1∧d2∑
i=1

σiξi. (2.1)

According to Lemma 2.1, we introduce a dual characterization lemma.

Lemma 2.2. Let A ∈ Rd1×d2 , there exists a symmetric gauge function Ψk(·) such that

‖Ar‖(k) = sup
Ψk(X)=1,rank(X)≤r

tr(XT A) (2.2)

for k ∈ {1, 2, . . . , d1 ∧ d2}. In special case, if rank(A) ≤ r, then

‖A‖(k) = sup
Ψk(X)=1,rank(X)≤r

tr(XT A). (2.3)

Proof. For any k ∈ {1, 2, . . . , d1 ∧ d2}, define

Φk(A) = Φk(σ1, σ2, · · · , σd1∧d2) :=
k∑

i=1

σi,

where σ1 ≥ σ2 ≥ · · · ≥ σd1∧d2 ≥ 0 are the singular values of A. Clearly, Φk(A) is a symmetric gauge
function and Φk(A) = ‖A‖(k). Furthermore, denote Ψk the dual symmetric gauge function of Φk, then
for any U ∈ Od1 ,V ∈ Od2 , we have Ψk(UT XVT ) = Ψk(X) and

sup
Ψk(X)=1,rank(X)≤r

tr(XT A) = sup
Ψk(UT XVT )=1,rank(UTXVT)≤r

tr(VXT UA)

= sup
Ψk(X)=1,rank(X)≤r

tr(VXT UA) = sup
Ψk(X)=1,rank(X)≤r

max
U∈Od1 ,V∈Od2

tr(VXT UA).

This along with Lemma 2.1 shows that

sup
Ψk(X)=1,rank(X)≤r

tr(XT A) = sup
Ψk(X)=1,rank(X)≤r

d1∧d2∑
i=1

σiξi = sup
Ψk(X)=1

r∑
i=1

σiξi

= Φk(σ1, . . . , σr, 0, . . . , 0) = Φk(Ar) = ‖Ar‖(k),

where ξ1 ≥ · · · ≥ ξd1∧d2 ≥ 0 are the singular values of X. �
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For any U ∈ Od,r, PU = UUT is the projection matrix onto the column span of U. The next technical
lemma is useful in the proof of Theorem 1.1.

Lemma 2.3. Let Â = A + E ∈ Rd1×d2 , rank(A) = r, and (1.2) holds. Then for any k ∈ {1, 2, . . . , d1 ∧ d2},

max
{
‖PÛ⊥A‖(k), ‖APV̂⊥‖(k)

}
≤ 2‖Er‖(k).

Proof. Since rank(PÛ⊥A) ≤ rank(A) = r, and (2.3) of Lemma 2.2 are satisfied, we have

‖PÛ⊥A‖(k) = sup
Ψk(X)=1,rank(X)≤r

tr
[
XT (PÛ⊥A)

]
= sup

Ψk(X)=1,rank(X)≤r
tr
[
XT (PÛ⊥ Â − PÛ⊥E)

]
≤ sup

Ψk(X)=1,rank(X)≤r
tr
[
XT (PÛ⊥ Â)

]
+ sup

Ψk(X)=1,rank(X)≤r
tr
[
XT (PÛ⊥E)

]
.

According to Lemma 2.2 and (2.2),

‖PÛ⊥A‖(k) ≤

∥∥∥∥(PÛ⊥ Â
)

r

∥∥∥∥
(k)

+
∥∥∥∥(PÛ⊥E

)
r

∥∥∥∥
(k)
. (2.4)

In addition,
∥∥∥∥(PÛ⊥ Â

)
r

∥∥∥∥
(k)

=
∥∥∥∥(Â − Âr

)
r

∥∥∥∥
(k)

due to PÛ Â = Âr. On the other hand, based on Theorem 2
in [8] and the fact that the norm ‖(·)r‖(k) is unitarily invariant, we have

‖(A − Ar)l‖(k) = inf
M∈Rd1×d2 ,rank(M)≤r

‖(A − M)l‖(k).

Therefore, ∥∥∥∥(PÛ⊥ Â
)

r

∥∥∥∥
(k)

= inf
rank(M)≤r

‖(Â − M)r‖(k)

≤ ‖(Â − PU Â)r‖(k) =
∥∥∥∥(PU⊥E

)
r

∥∥∥∥
(k)
.

For two matrices B,C ∈ Rd1×d2 , it is known that

σi+ j−1(BCT ) ≤ σi(B) · σ j(C). (2.5)

Thus, σi(PU⊥E) ≤ σ1(PU⊥)σi(E) = σi(E) and σi(PÛ⊥E) ≤ σi(E). Hence, by (2.4),

‖PÛ⊥A‖(k) ≤ 2‖Er‖(k).

Similarly, ‖APV̂⊥‖(k) ≤ 2‖Er‖(k). This completes the proof of Lemma 2.3. �

2.2. Proof of Theorem 1.1

Now, we are in the position to prove Theorem 1.1.

Proof. By (1.2), we know that Û is composed of the first r left singular vectors of Â. Thus, Âr = PÛ Â.
For any k ∈ {1, 2, . . . , d1 ∧ d2},

‖Âr − A‖(k) = ‖PÛ Â − (PÛ + PÛ⊥)A‖(k)

= ‖PÛ E − PÛ⊥A‖(k) ≤ ‖PÛ E‖(k) + ‖PÛ⊥A‖(k).

This with (2.5) and Lemma 2.3 derives

‖Âr − A‖(k) ≤ 3‖Er‖(k).

The proof of Theorem 1.1 is complete. �
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2.3. Proof of Theorem 1.2

Proof. First, for any k ≤ r, define Ai, Ei ∈ R
d1×d2 (i = 1, 2) with

A1 =


t
k Ir 0 0
0 0r×r 0
0 0 0d1−2r,d2−2r

 , E1 =


0r×r 0 0

0 t
k Ir 0

0 0 0d1−2r,d2−2r,


A2 =


0r×r 0 0

0 t
k Ir 0

0 0 0d1−2r,d2−2r,

 , E2 =


t
k Ir 0 0
0 0r×r 0
0 0 0d1−2r,d2−2r

 ,
then we have A1 + E1 = A2 + E2 = Â and rank(A1) = rank(A2) = r. Where rank(A1) = rank(A2) = r
and

∥∥∥∥(E1

)
r

∥∥∥∥
(k)

=
∥∥∥∥(E2

)
r

∥∥∥∥
(k)

= k
k t = t. Therefore, (A1, E1), (A2, E2) ∈ Fr(t).

For any estimator Ã of A, one derives

inf
Ã

sup
(A,E)∈Fr(t)

‖Ã − A‖(k) ≥ inf
Ã

(
max

{
‖Ã − A1‖(k), ‖Ã − A2‖(k)

})
≥ inf

Ã

1
2

(
‖Ã − A1‖(k) + ‖Ã − A2‖(k)

)
≥ inf

Ã

1
2
‖A1 − A2‖(k) =

t
2
. (2.6)

Next to show Theorem 1.2 is established for k > r. One takes

A1 =


t
r Ir 0 0
0 0r×r 0
0 0 0d1−2r,d2−2r

 , E1 =


0r×r 0 0

0 t
r Ir 0

0 0 0d1−2r,d2−2r

 ;

A2 =


0r×r 0 0

0 t
r Ir 0

0 0 0d1−2r,d2−2r,

 , E2 =


t
r Ir 0 0
0 0r×r 0
0 0 0d1−2r,d2−2r

 .
Then A1 + E1 = A2 + E2 = Â, rank(A1) = rank(A2) = r and

∥∥∥∥(E1

)
r

∥∥∥∥
(k)

=
∥∥∥∥(E2

)
r

∥∥∥∥
(k)

= t. Therefore,

(A1, E1), (A2, E2) ∈ Fr(t). We can use similar processes to prove (2.6). i.e.,

inf
Ã

sup
(A,E)∈Fr(t)

‖Ã − A‖(k) ≥
t
2
.

Theorem 1.2 is finished.
�

3. Perturbation bounds of singular subspaces

As a byproduct of the perturbation theory, this paper derives sin Θ perturbation bounds of the left
and right subspaces U,V under Ky Fan norm.
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3.1. Upper bounds

Theorem 3.1. Let Â = A + E ∈ Rd1×d2 , rank(A) = r. If the singular value decompositions (1.1)
and (1.2) hold, then

‖ sin Θ(Û,U)‖(k) ≤
2‖Er‖(k)

σr(A)
,

‖ sin Θ(V̂ ,V)‖(k) ≤
2‖Er‖(k)

σr(A)

for any k ∈ {1, 2, . . . , d1 ∧ d2}.

Proof. By Theorem 3.9 (II) in [9], one knows ‖BCT ‖(k) ≥ ‖B‖(k)σd1∧d2(C) for any two matrices B,C ∈
Rd1×d2 . This with (1.6) shows

‖ sin Θ(Û,U)‖(k) = ‖ÛT
⊥U‖(k) ≤

‖ÛT
⊥UUT A‖(k)

σr(UT A)
.

According to (1.1) and rank(A) = r, one has UUT A = A and σr(UT A) = σr(A). Thus

‖ sin Θ(Û,U)‖(k) ≤
‖ÛT
⊥A‖(k)

σr(A)
≤

2‖Er‖(k)

σr(A)

thanks to Lemma 2.3. Similarly, one also can get ‖ sin Θ(V̂ ,V)‖(k) ≤
2‖Er‖(k)

σr(A) . We have concluded the
proof of Theorem 3.1. �

3.2. Lower bounds

Theorem 3.2. For k ∈ {1, 2, . . . , d1 ∧ d2}, define the following class

Fr(α, β) =
{
(A, E) : rank(A) = r, σr(A) ≥ α, ‖E‖(k) ≤ β

}
.

If r ≤ 1
2 (d1 ∧ d2) and α(k ∧ r) ≥ β, then for any estimators Ũ and Ṽ based on the observation matrix

A + E, we have

inf
Ũ

sup
(A,E)∈Fr(α,β)

‖ sin Θ(Ũ,U)‖(k) ≥
1

2
√

10

β

α
, (3.1)

inf
Ṽ

sup
(A,E)∈Fr(α,β)

‖ sin Θ(Ṽ ,V)‖(k) ≥
1

2
√

10

β

α
. (3.2)

Proof. We only need to show (3.2) since the statement (3.1) can be gotten by similar process. First, we
introduce the following singular value decomposition,(

α β

k∧r
0 0

)
=

(
u11 u12

u21 u22

)
·

(
σ1 0
0 0

)
·

(
v11 v12

v21 v22

)T

=

(
u11

u21

)
σ1

(
v11

v21

)T

,
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then by Lemma 3 in [2] and α(k ∧ r) ≥ β, we know

|v21| ≥
1

√
10(k ∧ r)

β

α
. (3.3)

Second, based on the above matrix, the following matrices are constructed.

A1 =


σ1u11v11Ir σ1u11v21Ir 0
σ1u21v11Ir σ1u21v21Ir 0

0 0 0d1−2r,d2−2r

 , E1 = 0d1,d2;

A2 =


αIr 0 0
0 0 0
0 0 0d1−2r,d2−2r,

 , E2 =

0
β

k∧r Ir 0
0 0 0
0 0 0d1−2r,d2−2r

 .
Obviously, rank(A1) = rank(A2) = r and

Â = A1 + E1 = A2 + E2 =

αIr
β

k∧r Ir 0
0 0 0
0 0 0d1−2r,d2−2r

 .
On the other hand, It is easy to check σr(A1) = σ1(A1) ≥ α,

∥∥∥∥(E1

)
r

∥∥∥∥
(k)

= 0 ≤ β and σr(A2) =

α,
∥∥∥∥(E1

)
r

∥∥∥∥
(k)

= k∧r
k∧rβ ≤ β. Hence, (A1, E1), (A2, E2) ∈ Fr(α, β). Let V1,V2 are the leading r singular

vector of A1, A2 respectively, then

V1 =


v11Ir

v21Ir

0d2−2r

 , V2 =


Ir

0r

0d2−2r


follow from the structure of A1, A2, Therefore, for any estimator Ṽ of the leading r right singular space,
we have

inf
Ṽ

sup
(A,E)∈Fr(α,β)

‖ sin Θ(Ṽ ,V)‖(k)

≥ inf
Ṽ

max
{
‖ sin Θ(Ṽ ,V1)‖(k), ‖ sin Θ(Ṽ ,V2)‖(k)

}
≥

1
2

(
‖ sin Θ(Ṽ ,V1)‖(k) + ‖ sin Θ(Ṽ ,V2)‖(k)

)
(1.5)
≥

1
2
‖ sin Θ(V1,V2)‖(k)

(1.6)
=

1
2
‖v21Ir‖(k)

=
1
2

(k ∧ r)|v21|
(3.3)
≥

1

2
√

10

β

α
.

The proof of Theorem 3.2 is finished. �

Remark 3.1. In Theorem 3.2, the assumption α(k∧r) ≥ β is necessary to obtain a consistent estimator.
In fact, if α(k ∧ r) < β, there is no stable algorithm to recover either U or V in the sense that there
exists uniform constant 1

2
√

2
such that

inf
Ũ

sup
(A,E)∈Fr(α,β)

‖ sin Θ(Ũ,U)‖(k) ≥
1

2
√

2
,
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inf
Ṽ

sup
(A,E)∈Fr(α,β)

‖ sin Θ(Ṽ ,V)‖(k) ≥
1

2
√

2
.

Proof. Let

(
α β

k∧r
0 0

)
=

(
u11

u21

)
σ1

(
v11

v21

)T

,

then by Lemma 3 in [2] and α(k∧r) < β, we know |v21| ≥
1
√

2
. Therefore, based on the similar discussion

of the proof of Theorem 3.2, Remark 3.1 is established. �

Remark 3.2. By Theorem 3.2, we can know that the rates given in Theorem 3.1 are optimal, but the
corresponding lower bounds for the singular subspaces are not given in Luo et al. [6].

4. Numerical simulations

In this section, we provide some numerical studies to support our theoretical results. Throughout
the simulation studies, we consider the nuclear norm ‖ · ‖∗ (the sum of all singular values) as the error
metric. i.e., k = d1 ∧ d2. Without loss of generality, we assume d1 = d2 := d. In each setting, we
randomly generate the perturbation E = uvT + Z ∈ Rd×d, where u, v ∈ Rd are randomly generated unit
vectors and Z has independent identically distributed N(0, σ) entries. On the other hand, we generate
low-rank matrix A = UΣrVT by a special structure. Here U,V ∈ Rd×r are independently drawn from
Od,r uniformly at random; Σr is a r × r diagonal matrix with singular values decaying polynomially as
(Σr)ii = 10

i , 1 ≤ i ≤ r. Each simulation setting is repeated for 100 times and the average values are
reported. The Figure 1 is the result of numerical studies.

Figure 1. Theorem 1.1 bound, upper bound (1.3) and the true value of ‖Âr − A‖∗

We set d ∈ {100, 200}, r ∈ {3, 6, 9, 12, 15}, σ = 0.004. The results of the upper bounds in
Theorem 1.1, (1.3) and the true value of ‖Âr − A‖∗ are given in Figure 1. It shows that the upper
bound in Theorem 1.1 is tighter than the upper bound in (1.3) in all setting. Furthermore, the upper
bound of Theorem 1.1 remains steady while the upper bound of (1.3) significantly increases when d
increases form 100 to 200.
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5. Conclusions

In this paper, we give a sharp upper bound for rank-r matrix A under Ky Fan norm, and show
that it is optimal by establishing the corresponding lower bound. As a byproduct, we provide the
perturbation bounds for the singular subspaces under Ky Fan norm sin Θ distance. Furthermore, we
give the corresponding lower bound to show its optimality. Finally, we provide numerical studies to
support our theoretical results.

As a unitarily invariant norm, Ky Fan norm which is different from Schatten-q norm is also an
important matrix norm. So it makes sense to study the perturbation bound for the low-rank matrix. It
is worth mentioning that the approach of proving Lemma 2.3 can be generalized any unitarily invariant
norm. Therefore, it can be used to study other perturbation theory in future.
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