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1. Introduction

Lattice dynamical systems arise from a variety of applications in electrical engineering, biology,
chemical reaction, pattern formation and so on, see, e.g., [4,7, 14, 19,33]. Many researchers have
discussed broadly the deterministic models in [6, 12,34, 39], etc. Stochastic lattice equations, driven
by additive independent white noise, was discussed for the first time in [2], followed by extensions
in [8,13,15,16,21,23,27,32,35-38,40].

In this paper, we will study the long term behavior of the following second order non-autonomous
stochastic lattice system driven by additive white noise: for givent € R, > tand i € Z,

{u + VAL + h(i) + Au + Au + f(u) = g(t) + ad(t), (L1)

. 1 1
w(t) = (Uri)iez = Ur, W(T) = (Uy)icz = Uy,
where u = (u;);ez is a sequence in I?, v and A are positive constants, & = (i;);ez and ii = (ii;);cz denote

the fist and the second order time derivatives respectively, Au = ((Au),)icz, At = ((Ait);)icz, A 1s a
linear operators defined in (2.2), a = (a))iez € I, f(u) = (fi(w:)),e;, and h(it) = (hi(ity)),,, satisfy certain
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conditions, g(t) = (gi(1),.; € LIZOC(R, ) is a given time dependent sequence, and w(f) = W(t, w) is a
two-sided real-valued Wiener process on a probability space.

The approximation we use in the paper was first proposed in [18,22] where the authors investigated
the chaotic behavior of random equations driven by Gs(6,w). Since then, their work was extended by
many scholars. To the best of my knowledge, there are three forms of Wong-Zakai approximations
Gs(0,w) used recenly, Euler approximation of Brownian [3, 10, 17, 20, 25, 28-30], Colored noise [5,
11,26,31] and Smoothed approximation of Brownian motion by mollifiers [9]. In this paper, we will
focus on Euler approximation of Brownian and compare the long term behavior of system (1.1) with

pathwise deterministic system given by

(1.2)

0,1

il + vAI® + h(@®) + Au® + Al + () = g(t) + aGs(B,w),
(1) = W)iez = ul, #°(t) = Uiz = ul',

for6 e Rwithd # 0,7 € R, ¢t > Tt and i € Z, where Gs(6,w) is defined in (3.2). Note that the solution
of system (1.2) is written as u° to show its dependence on 6.

This paper is organized as follows. In Section 2, we prove the existence and uniqueness of random
attractors of system (1.1). Section 3 is devoted to consider the the Wong-Zakai approximations
associated with system (1.1). In Section 4, we establish the convergence of solutions and attractors
for approximate system (1.2) when 6 — 0.

Throughout this paper, the letter ¢ and c¢;(i = 1,2,...) are generic positive constants which may
change their values from line to line.

2. Stochastic lattice system with additive white noise

In this section, we will define a continuous cocycle for second order non-autonomous stochastic
lattice system (1.1), and then prove the existence and uniqueness of pullback attractors.

A standard Brownian motion or Wiener process (W;)cr (i.€., with two-sided time) in R is a process
with W, = 0 and stationary independent increments satisfying W, — Wy ~ N(O, |t — s|I). ¥ is the Borel
o-algebra induced by the compact-open topology of €, and P is the corresponding Wiener measure on
(Q,F), where

Q={weCR,R):w) =0},

the probability space (Q, 7, P) is called Wiener space. Define the time shift by
Gw()=w(+1) —w®), weQ, teR.

Then (Q, F, P,{0;},cr) 1s a metric dynamical system (see [1]) and there exists a {6,},cg-invariant subset
Q C Q of full measure such that for each w € Q,
@ — 0 as t — oo, (2.1)
For the sake of convenience, we will abuse the notation slightly and write the space Q as Q.
We denote by

P = {ulu = )iz, i € R, ) uil? < +oo),
i€Z
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with the norm as

lully = ) il
p

i€Z
In particular, [ is a Hilbert space with the inner product (-, -) and norm || - || given by
vy = > uw, P =) il
i€Z i€Z

for any u = (u;)icz, v = (Vi)iez € 2.

Define linear operators B, B*, and A acting on I in the following way: for any u = (u;);ez € %,

(Bu); = uiy1 — u;, (Bu); = ui—y — uj,
and
(Au); = 2u; — ujpy — uj_y.

Then we find that A = BB* = B*B and (B*u,v) = (u, Bv) for all u, v € [°.

(2.2)

Also, we let Fi(s) = [ f(r)dr, h(i) = (hi(i)iez, fu) = (fi(u))ez With fi, h; € C'(R, R) satisfy the

following assumptions:

()] < (sl + Is]),
sfi(s) > arFi(s) > az|sl”t,

and
hi(0) =0, 0<hy <hi(s)<hy,, VYseR,

where p > 1, @; and h; are positive constants fori = 1,2,3 and j = 1, 2.
In addition, we let

s

=g P35

and
A
4+ hi(hy + (J4d + h3)

g =

For any u, v € I>, we define a new inner product and norm on /> by

,v)a = (1 =vB)(Bu, Bv) + Aw,v), |lulli = (u,u)2 = (1 = vB)|Bul* + Allull*.

Denote
lz = (129 ('9 ')’ ” : ||)a li = (129 (" ')/1’ || : ”/1)
Then the norms || - || and || - ||, are equivalent to each other.
Let E = 2 x I* endowed with the inner product and norm

1 2 1 2 2 2 2
(wb w2)E = (l/l( )a l/l( ))/1 + (V( )a V( ))a ||w”E = ”u”,l + ||V|| ’

(2.3)
(2.4)

(2.5)

(2.6)

2.7)
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for ¢; = WP,V = (W), VW)L, € E, j=1,2, ¢ = u,w)" = ((w), )i, € E.
A family D = {D(1,w) : T € R, w € Q} of bounded nonempty subsets of E is called tempered (or
subexponentially growing) if for every € > 0, the following holds:

lim e||D(t + t, 6,w)|]* = 0,
t——00

where ||D|| = sup||x|lg. In the sequel, we denote by D the collection of all families of tempered
xeD
nonempty subsets of E, i.e.,

D={D={D(t,w) : T€eR,w e Q} : Dis tempered in E}.

The following conditions will be needed for g when deriving uniform estimates of solutions, for
every T € R,

f e”g(9)IPds < oo, (2.8)
and for any ¢ > 0
0
1m1éif e”llg(s + 1)|[*ds = 0, (2.9)
[—>—0 o
where y = min{7, [%Bl}.

Let v = it + Bu and @ = (u, V)T, then system (1.1) can be rewritten as

@+ Li(@) = Hi(§) + G (w), (2.10)

with initial conditions

- =\T 1 T
Yr = (uT’ V‘r) = (un 7 +ﬁu‘r) s

where
L Pu—v 0
Li(p) = ( (1 = vB)Au + vAT + Au + Bou — Bv )+( h(v — Bu) ),
L 0 _( 0
H\(p) —( —Fu) + g(0) ) Gi(w) = ( ad(t) )
Denote

v(t) = 9(t) — aw(t) and ¢ = (u,v)".
By (2.10) we have

¢+ L) = H(p) + G(w), (2.11)

with initial conditions
$r = (MT, VT)T = (I/L,-, uql— +ﬂu‘r - aw(T))T,

where
B pu—v 0
L(‘p)_( (1—Vﬁ)Al/I+VAV+/1u+ﬁ2u_ﬁv )+( h(V—ﬁl/l'i'aa)(t)) 5
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B 0 B aw(t)
H(p) —( _Fu) + g(0) ) Gw) = ( Baw(t) - vAaw(t) )

Note that system (2.11) is a deterministic functional equation and the nonlinearity in (2.11) is locally
Lipschitz continuous from E to E. Therefore, by the standard theory of functional differential
equations, system (2.11) is well-posed. Thus, we can define a continuous cocycle @ : R* XRXQXE —
E associated with system (2.10), where for r € R, r € R* and w € Q

Qo(t, 7, w, ) = Pt + 7,7,0_:0, §7)
= (ut + 7,7, 0_w, ur), ¥(t + 7,7, 0_w, V)"
= (Ut + 7,7, 0w, u), V(1 + T, T, 0_,w, vy) + a(w(t) — w(-1)))"
= QD(t +7,7, 0_-,-(,(), SDT) + (Oa a((,()(t) - w(_T)))Ta
where v; = V; + aw(-7).
Lemma 2.1. Suppose that (2.3)—(2.8) hold. Then for every T € R, w € Q, and T > 0, there exists
¢ =c(t,w, T) > 0 such that for all t € [t,7 + T, the solution ¢ of system (2.11) satisfies

! !
le(t, 7, w, eo)l12 + f (s, T, w, @o)l2ds <c f (lg()I* + lw(s)* + w(s)P*)ds

+e(llgelly +2 ) Filuey).

i€Z,
Proof. Taking the inner product (-, -)g on both side of the system (2.11) with ¢, it follows that
1d
Ed—IIISOII% + (L(p), @) = (H(p), )r + (G(w), 9)E. (2.12)
For the second term on the left-hand side of (2.12), we have
(L(@), ©)& = Bllull; + B>(u,v) = BIVIP + v(Av,v) + (h(v — Bu + aw(1)), v).
By the mean value theorem and (2.5), there exists &; € (0, 1) such that

B(u,v) + (h(v — Bu + aw(t)), v)
= B*(u,v) + Z h.(&(vi = Bu; + a;w()))(vi — Bu; + a;w(t))v;

i€Z
> (B = )iVl + hi VP = hal(aw (@), v).
Then

h h
(L(p), )i — ollell: - 31||v||2 >(B — o)l|ul2 + (31 —B - )V

h
- %nunﬂnvn - hal(aw(e) v,
which along with (2.6) and (2.7) implies that
h o+h
(L(p), o)k > Tllelly + EIIIVII2 - T”IVII2 — clw@®)llall’. (2.13)

AIMS Mathematics Volume 7, Issue 5, 7569-7594.



7574

As to the first term on the right-hand side of (2.12), by (2.3) and (2.4) we get

(H(@), @) = (~f(w), it + Bu = aw(®)) + (g(1),v)
< —%( D Fu) - asB Y Fiw) +ar D (uil” + luiDlaiw(®n)] + (g(2), v)

ieZ ieZ i€z
= _%(; Fi(u)) - pa-zkﬁl ; Fi(u;) + clow(@)P*|al™! @1
+ ?IIHIIQ + cllalPloP + 2= i VI + cllg@)I.
The last term of (2.12) is bounded by
(G(w), @)e = w(t)(a, u), + pw(t)(a,v) — vw(t)(Aa, v) 015

o 1 ), O+ 210112
< Z||M||,1 + ;”a”,zlw(t)l + THVH + clw®)||lall*.

It follows from (2.12)—(2.15) that

d
(1l +2 ZZ: Fi(u)) +¥(llelly + 2 ZZ: Fi(w)) + vl (2.16)

< c(IgOIP + P + (o),

g @p

where y = min{%, m}. Multiplying (2.16) by ¢ and then integrating over (7, ¢) with > 7, we get for
every w € Q

!
ez, 7., @Il + ¥ f & g(s, T, w, @)l
’ ; (2.17)
< & lgelly +2 ) Filur) + ¢ f I (lg P + I + lw(s)IP)ds,

i€Z T
which implies desired result. O

Lemma 2.2. Suppose that (2.3)—(2.9) hold. Then the continuous cocycle ®, associated with system
(2.10) has a closed measurable D-pullback absorbing set Ky = {Ko(t,w) : T € R,w € Q} € D, where
foreveryt € R and w € Q

Ko(t,w) = {p € E : ||g|l% < Ro(t, w)}, (2.18)

where ¢._, € D(t — t,0_,w) and Ry(t, w) is given by
0
Ro(7,w) = ¢ + clo(=1) + ¢ f " (llg(s + DI + () = (1) + w(s) = w(-D)P"*)ds,  (2.19)

—00

where c is a positive constant independent of T, w and D.
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Proof. By (2.17), we get forevery T € R, t € R" and w € Q

lo(r, T = t,0_cw, o Iz +y f " p(s, T — 1, 0w, o )zds
T—t
< e (llpedlf +2 ) Filues)
€7,
+ cf ey(s_”(llg(s)ll2 + |w(s — 1) — 0)(—‘[')|2 + |lw(s — 1) — w(—r)lp“)ds (2.20)
Tt
< e (llpedlf +2 ) Filues)

i€z

0
+ Cf eys(Hg(s + DI + lw(s) — w(—1)* + |w(s) - w(_7)|p+l)ds'

t

By (2.1) and (2.8), the last integral on the right-hand side of (2.20) is well defined. For any s > 7 — ¢,
(,_D(S, T— t’ 9_70), QZ)T—!) = QO(S, T— ta G—Tw’ QDT—Z) + (Oa Cl(a)(s - T) - w(_T)))Ta

which along with (2.20) implies that

;
@, T = t,0_cw, B I3 + 7y f " N@(s, T — 1, 0w, §r)zds

Tt

<2lp(T, T = t,0_cw, o-_,)|[% + 2y f e Np(s, T — t,0_rw, or_)I2ds
Tt

+ 2lalP(J(-) + ¥ f & lw(s - 1) - w(-1)Pds) (2.21)

Tt

< 471G} + llalPl(=0) = (=D + )" Filute11)) + cleo(=0)P
i€Z

0
+ 6f eys(llg(s + DI + lw(s) — w(=1)I + |w(s) — w(_7)|p+l)ds'

[Se]

By (2.3) and (2.4) we have

1 1
D i) S = ) filtte ity < o= max e (2.22)

- . ap —lur—ll<s<|lur—ll
i€Z i€Z 2 i i

Using ¢, € D(t —t,60_,w), (2.1) and (2.22), we find

lim sup 4e (I} + lalPlw(=) = (~D)F + > Fiur)) =0, (2.23)

I=teo i€Z

which along with (2.21) implies that there exists T = T(t, w, D) > 0 such that forall t > T,

(T, T — ¢, 0_,w, (,_DT_t)H% + 'yf eY(S_T)H@(S, T—-10_w, @r—z)“%ds
i 71 (2.24)
<c+ (-0 +¢ f e"(llg(s + DIP +lw(s) = (=D +lw(s) — w(=1)|"*")ds,

—00
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where ¢ is a positive constant independent of 7, w and D. Note that K, given by (2.18) is closed
measurable random setin E. Given T € R, w € £, and D € D, it follows from (2.24) that for all r > T,

Oy(t,7 = 1,0_w, D(t — 1,0_,w)) € Ko(1, w), (2.25)

which implies that K pullback attracts all elements in . By (2.1) and (2.9), one can easily check that
Ky is tempered, which along with (2.25) completes the proof. O

Next, we will get uniform estimates on the tails of solutions of system (2.10).

Lemma 2.3. Suppose that (2.3)—(2.9) hold. Then for everyt € R, w € Q, D = {D(t,w) : T€ R,w €
Qe Dand e > 0, there exist T = T(t,w,D,e) >0and N = N(1,w, €) > 0 such that for all t > T, the
solution § of system (2.10) satisfies

DB T =100, ) <&

=N
where ¢._, € D(t —t,0_,w) and |g‘0,~|% =(1- V,B)lBuIl.2 + Au)? + 9.

Proof. Let n be a smooth function defined on R* such that 0 < n(s) < 1 for all s € R*, and

=] 0 0=s<l
M=V 1, s>2.

Then there exists a constant Cy such that |'(s)] < Cy for s € R*. Let k be a fixed positive integer
Il

which will be specified later, and set x = (X;)icz, ¥ = (Vi)iez With x; = n(%)u,-, yi = n(%)vi. Note
= (x0T = ((x), (i ))zez Taking the inner product of system (2.11) with i, we have
(@ ¥)e + (L(p), Y)e = (H(@), Y)E + (G, Y)E. (2.26)
For the first term of (2.26), we have
(@0 = (1= vp) D (Bii(Bx)i + A ) itixi + Y vy,
i€Z i€Z i€Z
=2 Zn(' g + (1 - ) ) (Bi0i(B): - a0
C (2.27)
>3 dtZ ("'>| o} - ¢gZ:KB(v pu+ aw(®)illus |
> 2 S Z n('l'>|<pl|E Cllell; = Zlw(®PalP

where |@il7 = (1 = vB)|Bul? + Alu;|* + [vil*. As to the second term on the left-hand side of (2.26), we get

(L(p), W) =B(1 = vB)(Au, x) + (1 — vB)(Au, y) — (A, X)) + V(Av,y) + AB(u, x)
+ B2 (u,y) — B, y) + (h(v = Bu + aw(t)),y).
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It is easy to check that

2C
<Au,x>:Z(B)(n(")(Bu)#(Bx), n(")(B) ZU(H)IB ==l

i€Z i€Z

2C
(Av,y) = 3 Bv){iC ')(Bv>,+<By), n(")(Bv) Zn(ll)IBl - =P,

i€Z i€Z
and

(Au,y) = (Av,x) 2 —— Z |(Bu)il[visi| = Z |(Bv)illtir1| > ——(Ilull + V).
i€Z i€Z

By the mean value theorem and (2.5), there exists &; € (0, 1) such that
B (u,y) + (h(v = Bu + aw(1)), )
=5 ), n(' D+ 3 B = Bty + o)) v — B + w(t»n(' by,

i€Z i€Z

> BB - hz)Zﬂ( )IMVI+h12n(||)I i —hzzﬂ( Wigio().

i€Z i€Z i€Z

Then

ORIESSY e ')|sol|E i Z n<m>|v,-|2

i€Z

> (B~ G)Zn(ll)(l—Vﬁ)lBulzwlu)+( )Zn(”)l i

i€Z tGZ
h
/i/i e n( (1 = vB)Bw2 + ) — ke S (s n( D viaieol - lll
i€Z i€Z

which along with (2.6) and (2.7) implies that

(L(p), @) 2 UZn(l |)IsozlE Z 17(| |)I i = —IIsollE hy Zn( )viaiw(r)|
i€Z i€Z
il i . (2.28)
> (r; el + Z n( ik - lll; - C,ZZ: nOlalw().
As to the first term on the right-hand side of (2.26), by (2.3) and (2.4)we get
(H(@) e =~ ) n(' ) s + u - ooy + 3 (2 )gi(r)vi
i€Z i€Z
< ——(Z U(H)Fi(ui)) — 1 Z U(U)Fi(ui)
i B (2.29)
e ) nEw@OP ! + == 7L Dl
i€Z i€Z
ve > niallor + 7 S phie +e 3 aCHisor
i€Z i€Z i€Z
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For the last term of (2.26), we have
(G, ) = w(t)(a, x)1 + pw(t)(a,y) — vo(r)(Aa,y)

= w(t)(1 = vB)(Ba, Bx) — vw(t)(Ba, By) + Aw(t)(a, x) + Bw(t)(a,y), (2.30)
As to the first two terms on the right-hand side of (2.30), we get
1 :
w()(1 - vB)(Ba, Bx) = w(t)(1 = vB) Y (a1 — a; )(n(" . '>ui+1 - n(%mi)
i€Z
INPRRY %
Z n(ll . l)“z+1 i+l 7 a"))z)
o i ke i i @31)
(D) ( Z @O = B) (@i = a))’)’
i€z i€Z
Z n(' b2+ o Y a2
iz li>k
and
[+ 1
—vw(t)(Ba, By) = —vuw(t) Z(am - ai)(ﬂ(?)viﬂ 77(|l|)Vz)
€|Z| (2.32)
< ZZ" N WE + clan)l sz
The last two terms of (2.30) is bounded by
h
Aw(1)(@, x) + fw(t)(a,y) < — Zn(lll) sl Z (| |)v +clo®P ) al. (2.33)
i€Z i€Z lil>k
It follows from (2.26)—(2.33) that
a7 Z 2Dl + 2F ) +y (X 1 +2F i) + DN (g .
< el + TP + Cllzk i (ol + CHZk 8P + cHZk P, |

where y = min{Z, +1} Multiplying (2.34) by e”’, replacing w by 6_.w and integrating on (7 —¢, ) with
t € R*, we get for every w € Q

i
2T 7 = 1,000l + 2F (.7 = 1,00, 1r-,)
i€Z

- i e
<e( Y (el + 2F i ”))) e lg(s, T = 1,60_cw, g, )llzds
Tt

) e 0 (2.35)
+ - f e’ |w(s) — w(— T)|2ds+cZ|a [P+ f e’lw(s) — w(-7)"ds

k
li|>k -

+c Z la; |2f e”’lw(s) — w(-1)Pds + cf er’ Z lgi(s + 7)%ds.

li[>k - lil>k
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Forany s > 7 -1,
‘)b(s’ T—1, Q_T(,L), @T—t) = QD(S, T—1, 9_7(1), ‘)0‘1'—1‘) + (0’ a(w(s - T) - w(_T)))Ta

which along with (2.35) implies that

[N _
Z n(z)(lcpi(n T = 1,00, 80 + 2Fiu (T, T = 1,00, u1)))

i€Z
_ lil -
<4e7( ZZ Nl + laiPlo(=1) = w(=D)F + Filur))
c (T ) c (° )
2 f e N@(s, T = 1,0, B lzds + % f e”’lw(s) — w(-1)l"ds (2.36)
Tt —0o0
0 0
+c ) lal”! f ”lw(s) —w(—T)|P+1ds+cZ la|* f e”lw(s) — w(-1)ds
li|=k - li|=k -
0
+ cf e” Z lgi(s + T)Pds + 2 Z a2 lw(=T)[*.
- lil>k lil>k

By (2.1) and (2.8), the last four integrals in (2.36) are well defined. By (2.3) and (2.4), we obtain

IO < = Y nCD ey < - max O

- . ay —lur—l<s<llur—ll
i€Z i€Z 2 ! !

which along with ¢,_; € D(t — t,0_,w) and (2.1) implies that

lim sup 4e7( " n(%)(m_,,,wé +laiPlo(=1) = w(=0)P + Fi(ttz—,))) = 0.

=400 i€Z

Then there exists 77 = T;1(7, w, D, €) > 0 such that for all t > T,
_ il _
4e7( 3 N Bemrl} + lailla(=1) = (=D + Filury))) <
i€Z k

By (2.1) and (2.24), there exist T, = T»(t,w, D,&) > T, and N; = N, (1, w, &) > 0 such that for all
t>T,and k > N

(2.37)

1M

0

L et lids + L [ ot - wt-oPds< 5. @3)
T—t -
By (2.8), there exists N, = N,(1, w, €) > N; such that for all k > N,,
0
2 %}; lail’lw(-7)* + ¢ I N e” HZ; 8i(s + T)fPds < Z- (2.39)
By (2.1) again, we find that there exists N3 = N3(7, w, €) > N, such that for all k > N3,
0 0
c MZk la; |t LO elw(s) — w(-D)"ds + ¢ MZk la|* Lo e”lw(s) — w(-1)I’ds < 2 (2.40)
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Then it follows from (2.36)—(2.40) that for all t > T, and k > N;

Z @7, T = 1,00, oyl < Zn( (T, T = 1,6, Pry )l <
|i|>2k i€Z

This concludes the proof. O

As a consequence of Lemma 2.2 and Lemma 2.3, we get the existence of D-pullback attractors for
@, immediately.

Theorem 2.1. Suppose that (2.3)—(2.9) hold. Then the continuous cocycle ®, associated with system
(2.10) has a unique D-pullback attractors Ay = {Ap(r,w) :TeR, we Qe DinE.

3. Wong-Zakai approximation of second order lattice system

In this section, we will approximate the solutions of system (1.1) by the pathwise Wong-Zakai
approximated system (1.2). Given ¢ # 0, define a random variable G5 by

Gs(w) = ?, for all w € Q. (3.1)
From (3.1) we find
Gulbw) = 2L =W 5) w0 f Gs(O,w)ds = f ?d f5 “’((Ss)d (3.2)
By (3.2) and the continuity of w we get for all £ € R,
(1513} fot Gs(Osw)ds = w(?). (3.3)

Note that this convergence is uniform on a finite interval as stated below.

Lemma 3.1. ( [17]). Let vt € R, w € Qand T > 0. Then for every € > 0, there exists 6y =
oo(&, T,w, T) > 0 such that for all 0 < |6| < dp and t € [t,7 + T],

‘ fo t Gs(0,w)ds — a)(t)' <&

By Lemma 3.1, we find that there exist ¢ = ¢(t, w, T) > 0 and 8y = do(t, w, T) > 0 such that for all
0<|6|<dpandte[r,T+T],

‘ fo t Q(;(Qsa))ds‘ <e. (3.4)

By (3.3) we find that Gs(6,w) is an approximation of the white noise in a sense. This leads us to
consider system (1.2) as an approximation of system (1.1).
Let ¥ = i° + Bu’ and @5 = (u°,7°), the system (1.2) can be rewritten as

©s + Ls1(@s) = Hs1(85) + G (w), (3.5)
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with initial conditions

6 =0T 6 6,1 NT
s = (uT’V‘r) :(u u; +ﬁur) >

T

where s s
- pu’ —v 0
Lan@) = ( (1 = VBAW + VAP + A’ + u’ — 7 ) ’ ( h(i° — Bu’) )
_ 0 0
H5,1(‘105) = ( _f(ué) + g(t) )7 G(S,l(w) = ( agé(etw) )
Denote

V() =7°(f) —a f Gs(0,w)ds and @5 = (u®, V).
0

By (3.5) we have

@5 + Ls(ps) = Hs(¢s) + Gs(w), (3.6)

with initial conditions
.
@or = W V)" = @ ul +pul —a f Gs(O,w)ds)",
0

where
. ~ ﬂu(s _ V6 0
s(@s) = ( (1- V,B)Alxlé + vAV + Au’ +ﬁ2u6 —,3\16 ) * ( /’l(v6 —,3146 + aj(;t Gs(0,w)ds) ),

i 0 B a [} Gs(Ow)ds
H;(ps) = ( —Fd) + g(0) ), Gs(w) = [ pa fot Gs(B,w)ds — vAa fo[ Gs(O,w)ds ]

Note that system (3.6) is a deterministic functional equation and the nonlinearity in (3.6) is locally
Lipschitz continuous from E to E. Therefore, by the standard theory of functional differential
equations, system (3.6) is well-posed. Thus, we can define a continuous cocycle @s : R* XRXQXE —
E associated with system (3.5), where for 7 € R, € R* and w € Q

(D5(t9 T, W, ()_0(5,T) = ()_0(5(t +7,7, 9—‘1'(1)9 @6,7’)
= (ué(t +71,7,0_w, uf), \75(t +71,7,0_w, ﬁf))T

! T
= (u‘s(t +1,7,0_w, uf), V(i + 1,7, 0_,0, vf) +a f g(;(esw)ds)
t T -
= 05(t + 7,7, 0., 050) + (0, @ f GsO.w)ds)

where v = % —a [ G5(6,w)ds.
For later purpose, we now show the estimates on the solutions of system (3.6) on a finite time
interval.
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Lemma 3.2. Suppose that (2.3)—(2.8) hold. Then for every T € R, w € Q, and T > 0, there exist
0o = 0o(T,w,T) > 0and c = c(t,w,T) > 0 such that for all 0 < |0]| < 6g and t € [1,T + T, the solution
s of system (3.6) satisfies

st T, @, sl + f lps(s. 7. 0, gslpds < (llgocllf +2 Y Fitai )

i€Z

+c f (Ilg(s)I> +1 fo Gs(Ow)dI +| fo Go(Ow)dl"|)ds.

Proof. Taking the inner product (-, -)g on both side of the system (3.6) with s, it follows that

2dt||%”E + (Ls(@s), 05)E = (Hs(@s), 95)E + (Gs(w), ¢5)E- 3.7

By the similar calculations in (2.13)—(2.15), we get

— IVl

6 —lega(st)dSIZIIallz, (3.8)
0

h
(Ls(@s), @) = ollgsll + Elnvfsn2 -

(Hy(s), ¢5>E<——<Z Flu) = =5 Zﬁ - D Fiu) + ol f Gs(O,w)dsl"lall”™!

i€Z i€Z (39)
IIM‘SII + cllall |f§5(9 w)ds® + cllg(®)I +Z || VI,
and
g
(Gs(w), ps)E < Z||u6||,l + cllall If Go(Ow)dsl + = 6 || V1. (3.10)

It follows from (3.7)—(3.10) that

(||%||E +2 3" Fid) + Y(llpolly + 2 ) Filud)) + sl
i€Z i€Z (311)

< c(llg®IP +1 fo Gs(O,w)ds + | fo Gs(Bwydsp™),

where y = min{7, —ﬁ} Multiplying (3.11) by ¢”" and integrating on (7, ) with ¢t > 7, we get for every
w e Q

!
lgs(t, 7. w, @Il + ¥ f " llpa(s, 7, @, gsllids < & llgaelly + 2 Y Ficad)
T i€Z

e f & lgIP +| f GoOudIF +) f Sg(s(ezw)dn”“)ds
T 0 0

which implies the desired result. O

In what follows, we derive uniform estimates on the solutions of system (3.5) when ¢ is sufficiently
large.
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Lemma 3.3. Suppose that (2.3)—(2.8) hold. Then for every 6 # 0, T € R, w € Q, and D = {D(1, w) :
TeR,weQ}e D, there exists T = T(t,w, D, ) > 0 such that for all t > T, the solution s of system
(3.5) satisfies

16s(T, T = 1, 0_cw, Pz + )’f e’ @s(s, T — 1, 0_w, Psr_)Izds < Rs(t, w),
Tt

where ps5.—; € D(t — t,0_,w) and Rs(t, w) is given by

0 s .
Rs(r,w) =c f " (llgs + I +| f G5O w)dI + | f Gs(Ow)dl"*" )ds
h -’ - (3.12)

0
+c+ (| f Gs(Ow)dI,
=T
where c is a positive constant independent of T, w and 6.

Proof. Multiplying (3.11) by e”’, replacing w by 6_,w and integrating on (7 — ¢, 7) with t € R*, we get
for every w € Q

oo (T, = 1,000, @3 I} +2 Y Fiul(r, 7 = 1,000, 1, )
i€Z

.
. 2
iy f N lps(5,T = 1,010, 957-)2ds
Tt

< €_7t(||905,r—t||12€ +2 Z Fi(uf—t,i))

i€Z

0 X S
ve [ i+l +1 [ Guowrart +1 [ Guwran)as

(3.13)

By (2.1), (2.8) and (3.2), the last integral on the right-hand side of (3.13) is well defined. For any
§>2T—1,

) T
Ps($, T = 1,02, Psr1) = Ps(8, T = 1,01, Ps5r1) + (O,a f Qa(ﬁz_rw)dl) :
0
which along with (3.13) shows that
1@s(T, T = 1,00, -l + ¥ f e |gs(s, T — 1, 0_rw, Br_y)lIzds
Tt

—t 0
< 4¢7(I@s 2 I3 + llall’ f GoOw)dll + ) Filutr1,)) + f GoOwdlP  (3.14)

i€Z
0 s $
te f e (llgCs +DIF +] f Go(Ouw)dIP +| f Ga(Or)dll"™')ds,

Note that (2.3) and (2.4) implies that

1 1 )
D FE) < — 3 Al g < —  max S (o)l
2

- - @ —|jul_||<s<|ul
ez iz 2 —lup_lI<s<|lus_, |l
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which along with ¢s,_, € D(t — t,0_,w),(2.1) and (3.2) implies that

—t
Tim sup 4e™"(1I@s eIl + llall’ f Gs(Ow)dIP + ) Filur1,)) = 0. (3.15)

t—+00 -7 icZ
Then (3.14) and (3.15) can imply the desired estimates. O

Next, we show that system (3.5) has a D-pullback absorbing set.

Lemma 3.4. Suppose that (2.3)—(2.9) hold. Then the continuous cocycle ®s associated with
system (3.5) has a closed measurable D-pullback absorbing set K5 = {Ks(t,w) : T € R,w € Q} € D,
where for every T € R and w € Q

Ks(t,w) = {@s € E : 135l < Ro(T, w))}, (3.16)
where Rs(t, w) is given by (3.12). In addition, we have for every T € R and w € Q)
(lsi_f)% Rs(t, w) = Ro(7, w), (3.17)

where Ry(t, w) is defined in (2.19).

Proof. Note K given by (3.16) is closed measurable random setin £. Givent € R, w € Q,and D € D,
it follows from Lemma 3.3 that there exists Ty = To(7, w, D, ) such that for all r > T,

q)5(t? T—1, g—tw? D(T — 1, Q—Iw)) c Ké(Ta (,l)),

which implies that K; pullback attracts all elements in . By (2.1), (2.8) and (3.2), we can prove
Ks(t, w) is tempered. The convergence (3.17) can be obtained by Lebesgue dominated convergence as
in [17]. O

We are now in a position to derive uniform estimates on the tail of solutions of system (3.5).

Lemma 3.5. Suppose that (2.3)—(2.8) hold. Then for every T € R, w € Q and & > 0, there exist
00 =00(w) >0, T =T(t,w,&) >0and N = N(t,w, &) > 0 such that for all t > T and 0 < |0 < 6y, the
solution s of system (3.5) satisfies

_ - 2
Z |@si(T, T — 1,0, @sr—1i)|g < &,
liI=>N

where 5., € Ks(t — 1,0_,0) and |@s;|z. = (1 — vBIBU’? + Alull* + [

Prqof Let n b¢ a smooth function defined in Lemma 2.3, and set x = (x))iez, ¥ = (Vi)iez With x; =
(e, y; = n(8?. Note ¥ = (x,y)" = ((x;), (7))L, Taking the inner product of system (3.6) with y,
we have

(@5, Ve + (Ls(@s), W)E = (Hs(ws), )i + (Gs, Y)E. (3.18)
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For the first term of (3.18), we have

(@ W)E = (1 =vB) Y (B y(Bx) + A Y il + ) vly;

i€Z i€Z i€Z
1d
=5 Z ﬂ(lll)lsoallE +(1-vp) Z(Bu )i\ (Bx); — 17(' l)(Bu )i)
i€Z
1d C (3.19)
= Ed—Zn(lll)l ile = ﬂZIB(V - pu’ +af Gs(0,)ds)|lui, |

i€Z

v

ld
oS Dt~ Sl - <) f Gs(Ow)dsl lall

i€Z

where |@slz = (1 — vB)IBu®l? + Aull* + V>, By the similar calculations in (2.28)—(2.33), we get

h
(Ls(@s), ) >0'Z77( sl + = Zn(lll)l VP - —II%IIE
i€Z i€Z (320)

Zn("w | f GoB.0)dsP.

i€Z

p . .
(Hy(¢s), W) < ——(Z U(H)Fi(u?)) e Z n(H>Fi<u?>

Z ("')| P+ Zn(' ')W * cZn(' Digior (3.21)

i€Z i€Z i€Z

+CZ?7( ail |f§5(9 w)ds|* +CZ?7( a |p+l|fg<s(9 w)ds|"*,

i€Z i€Z

and

(Go, e = (1 =vP) f Go(6,w)ds(Bx, Ba), + B f Gs(bs,w)ds(y, a)

Z (lll)l ull + Zn(ll)lv5| +C|fg5(9 wyds| ZU(H)IaI (3.22)
< i€Z
It follows from (3.18)—(3.22) that
" é’?(||)(|%z|E+2F(u ))+7 ;‘n( psill + 2F0))) + én(")l%,u
< Sligll + 5| f G0+ T g0 + e Sl f G0 ends .
+e ) laf |fg5(9 w)dsP,

li=k
where y = min{£, ;%’f}. Multiplying (3.23) by e/, replacing w by 6_.w and integrating on (7 —¢, 7) with
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t € R*, we get for every w € Q

i
D2 Clsi(r. = 1,000, @sc-a i + 2Fiu 7 = 1, 0_0,11_,))

i€Z

|l| N
< Y e goeali + 2P0 0) + 1 | T ln(s T = 100, o pds
—1

i€Z
) (3.24)
- f e’ f Gs(Ow)dIds + ¢ f e Z |gi(s + D)I*ds
lil=k
+e ) laf f e f Gs(Ow)dlPds +c ) laf"! f e f Gs(O )l ds.
li>k lil>k
Forany s > 7 -1,
s T
(8,7 = 1,000, @s1) = 95(5,T = 1,0, @5) + (0, f Gs(Orw)dl)
0
which along with (3.24) shows that
Zﬂ( )l()Déz(T T t Q—Tw ()067 Il)lE
i€Z
/i
< 2277( )|Q06I(T T t 9—70) ()057 tz)lE + 2277( )|azf gé(el ‘rw)dll
i€Z i€Z
_ li |
<23 f Gt 4 3 W (1ose i +las [ Gt + Fii,)
li|>k i€Z (325)

+%f &N @s (s, T = 1,0, Pse)llpds + — f e”lf Gs(Ow)dlds

+c f " Y lgis + DPds + ¢ ) lai f | f Gs(Qw)diPds

li1=k li|>k

+e ) laf! f e f Gs(Ow)dI™* ds.

i[>k

By (2.1) and (2.8), the last four integrals on the right-hand side of (3.24) are well defined. Note that
(2.3) and (2.4) implies that

1
> (")F(,,,)_ Zn(”)ﬁ Wiy < —  max |F ()l )

= = @y <5<l

il

Since @5, € Ks(t —t,6_,w), we find

limsupe ”Zn(l |)|g05, w5 < limsup e ™'||Ks(t — t,6_,w)||% = 0,

t—+00 iz t—+00
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which along with (2.1) and (3.2) shows that there exist T = T(7, w, €) > 0 and 6, > 0 such that for all
t>T;and 0 < |6] < 6o,

- lil (- -
4e V’Zn(;)(lso(s,r_t,ilé + la; f GoOw)dIl® + Fi(u_,)) < 7. (3.26)

i€Z

1M

By Lemma 3.3, (2.1) and (3.2), there exist T, = T»(1,w, &) > Ty and Ny = N;(t, &) > 0 such that for all
t>T,, k> Nand 0 < |9] < Oy

T 0 X
. f NG5 T = 1,000, Bar-llpds + f e f GsOwidifds < 2. (3.27)
Tt —00 -7
By (2.8), there exists N, = N,(t, &) > N; such that for all k > N,,
0 2 0 2 €
23 la, f GoOIP + ¢ f Yl + Dfds < 7. (3.28)

lil>k lil=k

By (2.1) and (3.2) again, we find that there exists N3 = N3(t,&) > N, such that for all K > N; and
0 < 9] < b,

0 s 0 S
¢y laf™! f e f GOl ds + ¢ ) laif’ f e f GsOw)dlfds < 7. (329)
li=k e - li=k —o0 -7
Then it follows from (3.25)—(3.29) that for all t > 75, k > N5 and 0 < |6 < dy,
_ _ lil |, i,
D 8ot T = 1,000, 8ocili < D CNPai(T. T = 1,000, Pasr )l < .
li>2k ieZ
This concludes the proof. m|

By Lemma 3.4, ®; has a closed D-pullback absorbing set, and Lemma 3.5 shows that ®; is
asymptotically null in E with respect to 9. Therefore, we get the existence of D-pullback attractors
for @; .

Lemma 3.6. Suppose that (2.3)—(2.9) hold. Then the continuous cocycle ®s associated with (3.5) has
a unique D-pullback attractors As = {As(t,w) :TeR, w e Q} e DinE.

For the attractor A; of @4, we have the uniform compactness as showed below.
Lemma 3.7. Suppose that (2.3)—(2.9) hold. Then for every T € R, w € Q, there exists 5y = dp(w) > 0

such that |J As(t, w) is precompact in E.
0<ld|<b9

Proof. Given g€ > 0, we will prove that |J As(t, w) has a finite covering of balls of radius less than

0<I5]<60
e. By (3.2) we have

0 s+0
f Gs(Ow)dl = — f O f @@ (3.30)
s s 0 0 0
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By lims_o [ “Cdr = 0, there exists 6, = 6;(w) > 0 such that for all 0 < |6] < &,

| f @du <1 (3.31)

s+0

Similarly, there exists /; between s and s + ¢ such that fs %a’l = w(ly), which along with (2.1)
implies that there exists 7, = Tj(w) < 0 such that for all s < T and |0] < 1,

| f @dn <1-s (3.32)

Let 6, = min{0;, 1}. By (3.30)—(3.32) we get for all 0 < |6] < 6, and s < T,

0
| f Gs(Ow)dl| <2 —s. (3.33)

By (3.4), there exist 9y = dp(w) € (0, ;) and ¢;(w) > 0 such that forall 0 < [6| < dpand T < s <0,

0
|f Gs(Ow)dl| < c1(w),

which along with (3.33) implies that for all 0 < |6] < 6y and s < 0,

0
|f Gs(Ow)dl| < —s + cr(w), (3.34)
where ¢;(w) = 2 + ¢;(w). Denote by
B(t,w) = {@s € E : ||sl* < R(z, w)},

and

0
R(r, w) =c f & (Ilg(s + DI + 2z = 90 + 2(I| + €2)” + 27(ca = )" + 27(|r| + €)' )dis (3.35)

+ ¢+ 2¢(t] + ),

with ¢ and ¢, being as in (3.12) and (3.34). By (3.12) and (3.35) we find that for all O < |0] < dy,
R;(t,w) < R(1, w). (3.36)

By (3.35) and (3.36), we find that K(7, w) C B(t, w) for all 0 < |6] < 8y, T € R and w € Q. Therefore,
forevery T € R, w € Q,

U As(t, w) C U K;(t,w) C B(t, w). (3.37)
0<|d|<bo 0<l6]<dg
By Lemma 3.5, there exist T = T(1,w,&) > 0 and N = N(1,w,&) > 0 such that for all t+ > T and
0 < 16| < dy,

_ _ 2 €
HEN |85, (T, T = 1,02, Psr—1,)|p < vk (3.38)
1>
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for any @s.—; € Ks(t — t,0_,w). By (3.38) and the invariance of Aj;, we obtain

- & - -
Z [ T for all = (@)iez € U As(7, w). (3.39)

liI=N 0<l6]<d9

We find that (3.37) implies the set {(@)<y : ¢ € U As(r,w)} is bounded in a finite dimensional
0<l6|<d9

space and hence is precompact. This along with (3.39) implies |J As(t, w) has a finite covering of
0<ld|<dg
balls of radius less than € in E. This completes the proof. O

4. Upper semicontinuity of pullback attractors

In this section, we will study the limiting of solutions of (3.5) as 6 — 0. Hereafter, we need an
additional condition on f: Foralli € Z and s € R,

I/ ()] < aals”™" + K, (4.1)

where a4 is a positive constant, k = (k;)icz € [> and p > 1.

Lemma 4.1. Suppose that (2.3)—(2.7) and (4.1) hold. Let p and p; are the solutions of (2.10) and (3.5),
respectively. Then for everyt € R, w € Q, T > 0 and € € (0, 1), there exist 6y = 6o(t,w, T, &) > 0 and
c=c(t,w,T) > 0 such that for all t € [T,7 + T] and 0 < |6| < 9y,

1Bs(t, T, w, @5.x) — @1, T, w, @l < 26 N\@sr — &ellf + ce.
Proof. Let = ¢o5— @ and @ = (i1, ¥)!, where it = u® —u, v =1°
and (3.6), respectively. By (2.11) and (3.6) we get

— v, ¢ and ;s are the solutions of (2.11)

¢+ L) = H) + G(w), (4.2)
where
. Bii — ¥
L) = ( (1 — vB)A#i + vAT + Aii + B2ii — Bv )
0
" ( h(v° — Bu® + a fol Gs(O,w)ds) — h(v — Bu + aw(t)) )’

0 ) a( [} Gs(O.w)ds — w(1)
—f@W®) + f(u) )’ (Ba —vAa)( [} Gs(Bsw)ds — w(®) |’
Taking the inner product of (4.2) with ¢ in E, we have

o= Gw) =(
Vd, o
Ed_t”‘p”E + (@), D) = (H(D), P)E + (G(w), P)E- 4.3)

For the second term on the left-hand side of (4.3), using the similar calculations in (2.13) we have

- h d
(L), p)r = @l + Elllﬁll2 — hy|(a( f Gs(Osw)ds — w(t)), V)|
0 (4.4)

e t
> ol|@ll, + ZIIIVII2 - le Gs(b,w)ds — w(®)Pllall’.
0
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For the first term on the right-hand side of (4.3), by (4.1) we get

(f(u) - f), ) = ;‘(ﬁ(ui) — ) = hil ZZ: \fiw) — fiud)P + % ZZ: 15,2 s

2p-2 2p=2511 ~112 hi 2 2||K||2 ~2
< cllelly ™ + llesllz )||<,0||E+ZIIVI| o [l
1

As to the last term of (4.3), we have

(a f Go(O,0)ds — (1)) 1), + ((Ba — vAa)( f Go(B)ds — (1)), )
0 0

(4.6)
. 1 ! . !
< ollal? + o f Gs(Osw)ds — w@®Pllall? + oIl + ¢l f Gs(0,w)ds — w(@®)lal.
0 0
It follows from (4.3)—(4.6) that
d . 5 5 . !
Eugoné < c(lell? % + sl + DII@IE + ¢l f Gs(Osw)ds — w(@). (4.7)
0

By Lemma 2.1 and Lemma 3.2, there exists 6; = 6(7,w,T) > 0 and ¢; = ¢;(1, w, T) > 0 such that for
all0< |6l < dyandt € [r, 7+ T],

2 2
”‘;D(S(t’ 7, W, ()0(5,T)||E + ”()D(t’ T, W, QDT)”E < Cy,

which along with (4.7) shows that for all 0 < |6] < 6; and f € [r,7+ T]

d t
d—tlltfollé < cll@llz + | f Gs(Osw)ds — w()l’. (4.8)
0

Applying Gronwall’s inequality and Lemma 3.1 to (4.8), we see that for every € € (0, 1), there exists
0o = 0p(t,w, T,e) € (0,6,) such that forall 0 < || < dgand ¢ € [7, 7+ T]

16(t, 7, w, Pl < e @Iz + ce. (4.9)

On the other hand, we have

@5(t’ T, W, ‘1_06,7) - @(L T, W, @‘r) = @ + (0’ a(‘[() g&(es)ds - w(t)))T,

which along with (4.9) implies the desired result. O
Finally, we establish the upper semicontinuity of random attractors as 6 — 0.

Theorem 4.1. Suppose that (2.3)—(2.9) and (4.1) hold. Then for every T € R and w € Q,

lim di (A (1, w), Ao(7, w)) = 0, (4.10)

where dg(As(t, w), Ap(T,w)) = sup inf |lx—yllg .

XEﬂJ(T,UJ) yeﬂo (T’w)
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Proof. Let 6, — 0 and @5, - — @, in E. Then by Lemma 4.1, we find that for all r € R, # > 0 and
w e Q,

D (1, 7, w, @5, 7) = DPo(t, 7, w,p;) In E. “4.11)

By (3.16)—(3.17) we have, forall 7 € R and w € Q,
lim |Ky(r. )7 < Ro(T, w). (4.12)
Then by (4.11), (4.12) and Lemma 3.7, (4.10) follows from Theorem 3.1 in [24] immediately. O

5. Conclusions

In this paper we use similar idea in [30] but apply to second order non-autonomous stochastic
lattice dynamical systems with additive noise. we establish the convergence of solutions of Wong-
zakai approximations and the upper semicontinuity of random attractors of the approximate random
system as the step-length of the Wiener shift approaches zero. In addition, as to the second order
non-autonomous stochastic lattice dynamical systems with multiplicative noise, we can use the similar
method in [29] to get the corresponding results.

Acknowledgements

The authors would like to thank anonymous referees and editors for their valuable comments and
constructive suggestions.

Contflict of interest

The authors declare no conflict of interest.

References

1. L. Arnold, Random dynamical systems, 1 Eds., Berlin: Springer,  1998.
http://dx.doi.org/10.1007/978-3-662-12878-7

2. P. W. Bates, H. Lisei, K. Lu, Attractors for stochastic lattice dynamical systems, Stoch. Dyn., 6
(2006), 1-21. http://dx.doi.org/10.1142/S0219493706001621

3. Z. Brzezniak, U. Manna, D. Mukherjee, Wong-Zakai approximation for the stochastic
Landau-Lifshitz-Gilbert equations, J. Differ. Equations, 267 (2019), 776-825.
http://dx.doi.org/10.1016/j.jde.2019.01.025

4. T. L. Carrol, L. M. Pecora, Synchronization in chaotic systems, Phys. Rev. Lett., 64 (1990),
821-824. http://dx.doi.org/10.1103/PhysRevLett.64.821

5. P. Chen, R. Wang, X. Zhang, Long-time dynamics of fractional nonclassical diffusion equations
with nonlinear colored noise and delay on unbounded domains, B. Sci. Math., 173 (2021), 103071.
http://dx.doi.org/10.1016/j.bulsci.2021.103071

AIMS Mathematics Volume 7, Issue 5, 7569-7594.


http://dx.doi.org/http://dx.doi.org/10.1007/978-3-662-12878-7
http://dx.doi.org/http://dx.doi.org/10.1142/S0219493706001621
http://dx.doi.org/http://dx.doi.org/10.1016/j.jde.2019.01.025
http://dx.doi.org/http://dx.doi.org/10.1103/PhysRevLett.64.821
http://dx.doi.org/http://dx.doi.org/10.1016/j.bulsci.2021.103071

7592

6.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

C. Cheng, Z. Feng, Y. Su, Global stability of traveling wave fronts for a reaction-diffusion system
with a quiescent stage on a one-dimensional spatial lattice, Appl. Anal., 97 (2018), 2920-2940.
http://dx.doi.org/10.1080/00036811.2017.1395864

L. O. Chua, T. Roska, The CNN paradigm, [EEE Trans. Circuits Syst., 40 (1993), 147-156.
http://dx.doi.org/10.1109/81.222795

X. Ding, J. Jiang, Random attractors for stochastic retarded lattice dynamical systems, Abstract.
Appl. Anal., 2012 (2012), 409282. http://dx.doi.org/10.1155/2012/409282

A. Gu, Asymptotic behavior of random lattice dynamical systems and their wong-
zakai approximations, Discrete Contin. Dyn. Syst. B, 24 (2019), 5737-5767.
http://dx.doi.org/10.3934/dcdsb.2019104

A. Gu, K. Lu, B. Wang, Asymptotic behavior of random Navier-Stokes equations driven
by Wong-Zakai approximations, Discrete Contin. Dyn. Syst., 39 (2019), 185-218.
http://dx.doi.org/10.3934/dcds.2019008

A. Gu, B. Guo, B. Wang, Long term behavior of random Navier-Stokes equations
driven by colored noise, Discrete Contin. Dyn. Syst. B, 25 (2020), 2495-2532.
http://dx.doi.org/10.3934/dcdsb.2020020

J. Guo, C. Wu, The existence of traveling wave solutions for a bistable three-
component lattice dynamical system, J. Differ. Equations, 260 (2016), 1445-1455.
http://dx.doi.org/10.1016/j.jde.2015.09.036

Z. Han, S. Zhou, Random uniform exponential attractors for non-autonomous stochastic lattice
systems and FitzHugh-Nagumo lattice systems with quasi-periodic forces and multiplicative noise,
Stoch. Dyn., 20 (2020), 2050036. http://dx.doi.org/10.1142/S0219493720500367

R. Kapral, Discrete models for chemically reacting systems, J. Math. Chem., 6 (1991), 113-163.
http://dx.doi.org/10.1007/BF01192578

D. Li, L. Shi, Upper semicontinuity of random attractors of stochastic discrete complex Ginzburg-
Landau equations with time-varying delays in the delay, J. Differ. Equ. Appl., 24 (2018), 872-897.
http://dx.doi.org/10.1080/10236198.2018.1437913

D. Li, L. Shi, X. Wang, Long term behavior of stochastic discrete complex ginzburg-landau
equations with time delays in weighted spaces, Discrete Contin. Dyn. Syst. B, 24 (2019), 5121-
5148. http://dx.doi.org/10.3934/dcdsb.2019046

K. Lu, B. Wang, Wong-Zakai approximations and long term behavior of stochastic
partial differential equations, J. Dyn. Diff. Equat., 31 (2019), 1341-1371.
http://dx.doi.org/10.1007/s10884-017-9626-y

K. Lu, Q. Wang, Chaotic behavior in differential equations driven by a Brownian motion, J. Differ.
Equations, 251 (2011), 2853-2895. http://dx.doi.org/10.1016/j.jde.2011.05.032

J. Malletparet, S. Chow, Pattern formation and spatial chaos in lattice dynamical systems I, /EEE
Transactions on Circuits Systems I Fundamental Theory Applications, 42 (2002), 746-751.
http://dx.doi.org/10.1109/81.473583

AIMS Mathematics Volume 7, Issue 5, 7569-7594.


http://dx.doi.org/http://dx.doi.org/10.1080/00036811.2017.1395864
http://dx.doi.org/http://dx.doi.org/10.1109/81.222795
http://dx.doi.org/http://dx.doi.org/10.1155/2012/409282
http://dx.doi.org/http://dx.doi.org/10.3934/dcdsb.2019104
http://dx.doi.org/http://dx.doi.org/10.3934/dcds.2019008
http://dx.doi.org/http://dx.doi.org/10.3934/dcdsb.2020020
http://dx.doi.org/http://dx.doi.org/10.1016/j.jde.2015.09.036
http://dx.doi.org/http://dx.doi.org/10.1142/S0219493720500367
http://dx.doi.org/http://dx.doi.org/10.1007/BF01192578
http://dx.doi.org/http://dx.doi.org/10.1080/10236198.2018.1437913
http://dx.doi.org/http://dx.doi.org/10.3934/dcdsb.2019046
http://dx.doi.org/http://dx.doi.org/10.1007/s10884-017-9626-y
http://dx.doi.org/http://dx.doi.org/10.1016/j.jde.2011.05.032
http://dx.doi.org/http://dx.doi.org/10.1109/81.473583

7593

20

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

. U. Manna, D. Mukherjee, A. A. Panda, Wong-Zakai approximation for the stochastic Landau-
Lifshitz-Gilbert equations with anisotropy energy, J. Math. Anal. Appl., 480 (2019), 123384.
http://dx.doi.org/10.1016/j.jmaa.2019.123384

L. She, R. Wang, Regularity, forward-compactness and measurability of attractors for non-
autonomous stochastic lattice systems, J. Math. Anal. Appl., 479 (2019), 2007-2031.
http://dx.doi.org/10.1016/j.jmaa.2019.07.038

J. Shen, K. Lu, W. Zhang, Heteroclinic chaotic behavior driven by a Brownian motion, J. Differ.
Equations, 255 (2013), 4185-4225. http://dx.doi.org/10.1016/j.jde.2013.08.003

H. Su, S. Zhou, L. Wu, Random exponential attractor for second-order nonautonomous
stochastic lattice systems with multiplicative white noise, Stoch. Dyn., 19 (2019), 1950044.
http://dx.doi.org/10.1142/S0219493719500448

B. Wang, Existence and upper semicontinuity of attractors for stochastic equations
with deterministic non-autonomous terms, Stoch. Dyn., 14 (2014), 1450009.
http://dx.doi.org/10.1142/S0219493714500099

X. Wang, D. Li, J. Shen, Wong-Zakai approximations and attractors for stochastic wave
equations driven by additive noise, Discrete Contin. Dyn. Syst. B, 26 (2021), 2829-2855.
http://dx.doi.org/10.3934/dcdsb.2020207

R. Wang, Y. Li, B. Wang, Random dynamics of fractional nonclassical diffusion equations
driven by colored noise, Discrete Contin. Dyn. Syst., 39 (2019), 4091-4126.
http://dx.doi.org/10.3934/dcds.2019165

X. Wang, S. Li, D. Xu, Random attractors for second-order stochastic lattice dynamical systems,
Nonlinear. Anal. Theor., 72 (2010), 483-494. http://dx.doi.org/10.1016/j.na.2009.06.094

X. Wang, K. Lu, B. Wang, Wong-Zakai approximations and attractors for stochastic reaction-
diffusion equations on unbounded domains, J. Differ. Equations, 264 (2018), 378-424.
http://dx.doi.org/10.1016/j.jde.2017.09.006

X. Wang, K. Lu, B. Wang, Stationary approximations of stochastic wave equations on
unbounded domains with critical exponents, J. Math. Phys., 62 (2021) 092702.
http://dx.doi.org/10.1063/5.0011987

X. Wang, J. Shen, K. Lu, B. Wang, Wong-Zakai approximations and random attractors for
non-autonomous stochastic lattice systems, J. Differ. Equations, 280 (2021), 477-516.
http://dx.doi.org/10.1016/j.jde.2021.01.026

R. Wang, L. Shi, B. Wang, Asymptotic behavior of fractional nonclassical diffusion
equations driven by nonlinear colored noise on RY, Nonlinearity, 32 (2019), 4524-4556.
http://dx.doi.org/10.1088/1361-6544/ab32d7

R. Wang, B. Wang, Random dynamics of P-Laplacian lattice systems driven by
infinite-dimensional nonlinear noise, Stoch. Proc. Appl., 130 (2020), 7431-7462.
http://dx.doi.org/10.1016/j.spa.2020.08.002

R. L. Winalow, A. L. Kimball, A. Varghese, Simulating cartidiac sinus and atrial network
dynamics on connection machine, Physica D, 64 (1993), 281-298. http://dx.doi.org/10.1016/0167-
2789(93)90260-8

AIMS Mathematics Volume 7, Issue 5, 7569-7594.


http://dx.doi.org/http://dx.doi.org/10.1016/j.jmaa.2019.123384
http://dx.doi.org/http://dx.doi.org/10.1016/j.jmaa.2019.07.038
http://dx.doi.org/http://dx.doi.org/10.1016/j.jde.2013.08.003
http://dx.doi.org/http://dx.doi.org/10.1142/S0219493719500448
http://dx.doi.org/http://dx.doi.org/10.1142/S0219493714500099
http://dx.doi.org/http://dx.doi.org/10.3934/dcdsb.2020207
http://dx.doi.org/http://dx.doi.org/10.3934/dcds.2019165
http://dx.doi.org/http://dx.doi.org/10.1016/j.na.2009.06.094
http://dx.doi.org/http://dx.doi.org/10.1016/j.jde.2017.09.006
http://dx.doi.org/http://dx.doi.org/10.1063/5.0011987
http://dx.doi.org/http://dx.doi.org/10.1016/j.jde.2021.01.026
http://dx.doi.org/http://dx.doi.org/10.1088/1361-6544/ab32d7
http://dx.doi.org/http://dx.doi.org/10.1016/j.spa.2020.08.002
http://dx.doi.org/http://dx.doi.org/10.1016/0167-2789(93)90260-8
http://dx.doi.org/http://dx.doi.org/10.1016/0167-2789(93)90260-8

7594

34.C. Wu, A general approach to the asymptotic behavior of traveling waves in a class of
three-component lattice dynamical systems, J. Dyn. Differ. Equ., 28 (2016), 317-338.
http://dx.doi.org/10.1007/s10884-016-9524-8

35. X. Xiang, S. Zhou, Random attractor for stochastic second-order non-autonomous stochastic
lattice equations with dispersive term, J. Differ. Equ. Appl., 22 (2016), 235-252.
http://dx.doi.org/10.1080/10236198.2015.1080694

36. L. Xu, W. Yan, Stochastic FitzHugh-Nagumo systems with delay, Taiwan. J. Math., 16 (2012),
1079-1103. http://dx.doi.org/10.11650/twjm/1500406680

37. W. Yan, Y. Li, S. Ji, Random attractors for first order stochastic retarded lattice dynamical systems,
J. Math. Phys., 51 (2010), 032702. http://dx.doi.org/10.1063/1.3319566

38. C. Zhang, L. Zhao, The attractors for 2nd-order stochastic delay lattice systems, Discrete Contin.
Dyn. Sys., 37 (2017), 575-590. http://dx.doi.org/10.3934/dcds.2017023

39. S. Zhou, Attractors for second-order lattice dynamical systems with damping, J. Math. Phys., 43
(2002), 452-465. http://dx.doi.org/10.1063/1.1418719

40. S. Zhou, Random exponential attractor for cocycle and application to non-autonomous stochastic
lattice systems with multiplicative white noise, J. Differ. Equations, 263 (2020), 2247-2279.
http://dx.doi.org/10.1016/j.jde.2017.03.044

©2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

@ AIMS Press

AIMS Mathematics Volume 7, Issue 5, 7569-7594.


http://dx.doi.org/http://dx.doi.org/10.1007/s10884-016-9524-8
http://dx.doi.org/http://dx.doi.org/10.1080/10236198.2015.1080694
http://dx.doi.org/http://dx.doi.org/10.11650/twjm/1500406680
http://dx.doi.org/http://dx.doi.org/10.1063/1.3319566
http://dx.doi.org/http://dx.doi.org/10.3934/dcds.2017023
http://dx.doi.org/http://dx.doi.org/10.1063/1.1418719
http://dx.doi.org/http://dx.doi.org/10.1016/j.jde.2017.03.044
http://creativecommons.org/licenses/by/4.0

	Introduction
	Stochastic lattice system with additive white noise
	Wong-Zakai approximation of second order lattice system
	Upper semicontinuity of pullback attractors
	Conclusions

