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1. Introduction

An important tool for describing the natural process is a system of fractional differential
equations [1, 2]. An ordinary system of fractional differential equations (FDEs) is described by

C
0 Dα

t (q(t)) = p(t,q(t)), t ∈ [0, a] (1.1)

where a ∈ R, q : [0, a]→ Rν is a ν-dimensional vector function and p : [0, a] ×Rν → Rν. Here, C
0 Dα

t is
the Caputo fractional derivative of order α > 0.
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FDEs of the form (1.1) are used in an extensive amount of published papers for describing diverse
evolutionary processes. Pollution model for lake [3], dynamical models of happiness [4] and Irving-
Mullineux oscillaton [5] are among them.

A system of type (1.1) has at least n = dαe (ceil of α) degree of freedom due to the presence of
n the integer-order derivative. To have a unique solution more information of the system’s states is
required. In most applied problems this information on the boundary is known. These problems are
referred to as boundary value problems. Initial value problems, terminal value problems (TVPs) and
Sturm-Liouville problems are among boundary value problems. For initial value problems, the states
of the system in the beginning time of the model are known. These states may include derivatives
or more complex operators of the modeled process in the initial time. For initial value problems, the
states of the system in the beginning time/point of the model are known. These states may include
derivatives or more complex operators of the modeled process in the initial time. For terminal value
problems, the system’s states are known at the end terminal. However, for Sturm-Liouville problems
states of the system are known in both initial and end boundaries. These systems have completely
different dynamics and behaviors [6].

Adding boundaries information is not the only way to reduce the degree of freedom. For example,
the information in the intermediate point/time can be used [7] for such a reduction. Such problems are
known as intermediate value problems.

Recently, TVPs for fractional systems of the order less than one (0 < α < 1) have received some
extensive attention and interest [8–14]. These problems can be described by

Dαq(t) = p(t,q(t)), t ∈ [0, a],
q(a) = qa.

(1.2)

where Dα is fractional derivative and qa is a given ν-dimensional vector. At the first glance, these
systems seem to be well-posed with regular source functions [15,16]. Surprisingly, Cong and Tuan [17]
revealed some counterexamples. The papers [14, 18] pointed out that the well-posedness depends on
the terminal value a. For larger a we may not obtain a unique solution.

Surprisingly, TVPs for fractional differential equations of higher-order derivatives α ≥ 1 are not
well-studied. An order α ∈ (1, 2] problem on an infinite interval have been studied in [19]. These
problems have the form

C
0 Dα

t q(t) = p(t,q(t),q′(t)), t ∈ [0,M],
q(∞) = q∞,
q′(∞) = 0.

(1.3)

where q′(∞) ∈ R is a given number and C
0 Dα

t stands for Caputo derivative.
This paper’s important aim is to study the existence results and regularity of the higher-order

terminal value problem for systems of FDEs. The other important aim of this paper is to introduce
an analyzed high-order numerical method for solving such problems. Thus, the piecewise polynomial
collocation method (PPCM) as a numerical solver is introduced and analyzed in detail.

The PPCMs have some superior advantages in solving differential or integral equations. For
example, if we use polynomials collocation methods (known as spectral methods) we may encounter
Runge-phenomena. The piecewise characteristic of the PPCMs avoids such probable divergence.
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In comparison with Runge-Kutta methods, the coefficient and parameters of the given methods are
obtained constructively. It is remarkable to mention that for ordinary differential equations PPCMs,
for some piecewise polynomial spaces are equivalent to Runge-Kutta methods. Conclusively, having
more parameters (collocation parameters, degree of polynomial space, step size, meshing method)
for controlling error, complexity and order of convergence makes the PPCMs competitively superior
category of methods.

This paper is organized as follows: In Sections 2 and 3 we obtain the existence and uniqueness
of a mild solution for higher-order FDEs. The regularity for the linear case is studied in Section 4.
A numerical method is introduced in Section 5 and analysand in Section 6. Supportive numerical
experiments are given in Section 7.

2. Higher order terminal value problem

Consider the system (1.1) with terminal values

q(a) = q(0)
a ,

Dq(a) = q(1)
a ,

...

D(n−1)q(a) = q(n−1)
a

(2.1)

where n − 1 < α < n and n ∈ N. The ν-dimensional vector function q = [q1, . . . , qν] is an unknown
vector and q(i)

a ∈ R
ν (i = 0, . . . , n − 1) are known vectors.

Further, we impose the Lipschitz condition on components of the function p : [0, a] × Rν → Rν.
Thus, we suppose

|pi(t,q1) − pi(t,q2)| ≤ Li‖q1 − q1‖, ∀q1,q2 ∈ R
ν

where Li (i = 0, . . . , ν) are constants and are not depend on t. Let z = q(n−1), (z′ = q(n)). Taking
repeatedly integrals and using terminal values, we obtain

q(t) =

n−2∑
i=0

(t − a)i

i!

(
q(i)

a −

∫ a

0

(a − x)n−2−i

(n − 2 − i)!
z(x)dx

)
+

∫ t

0

(t − x)n−2

(n − 2)!
z(x)dx.

(2.2)

By definition of Caputo derivative, we have
C
0 Dα

t q(t) = C
0 Dα−n+1

t Dn−1q(t) = C
0 Dα−n+1

t z.

Acting Riemann-Liouville integral 0Jα−n+1
t on both sides of Eq (1.1), we obtain

z(t) − z(0) = 0Jα−n+1
t f (t,q(t)). (2.3)

Finally, putting t = a and using terminal conditions, we obtain

z(t) =
−1

Γ(α − n + 1)

(∫ a

0

p(x,q(x))
(a − x)n−αdx −

∫ t

0

p(x,q(x))
(t − x)n−α dx

)
+ q(n−1)

a . (2.4)

Remark 1. The solution of the coupled system of (2.2) and (2.4) can be regarded as a mild solution of
the system (2.1).
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3. Existence of a unique solution

Since we use vector functions, we need a norm combined with vector norm and function norm. This
combinations brings us to face complexity in calculating induced norm. In this respect, the max norm
defined by

‖q‖∞ = max
i=1,...,ν

‖qi(t)‖∞ = max
i=1,...,ν
t∈[0,a]

|qi(t)|, qi ∈ C[0, a]

seems to be more easier. We establish well-posedness of the inverse problems (1.1) and (2.1). We
define the operators P and Q : (C[0, a])2ν → (C[0, a])ν by the right hand sides of systems (2.2) and
(2.4), i. e.,

P([q, z])(t) =

n−2∑
i=0

(t − a)i

i!

(
q(i)

a −

∫ a

0

(a − x)n−2−i

(n − 2 − i)!
z(x)dx

)
+

∫ t

0

(t − x)n−2

(n − 2)!
z(x)dx

(3.1)

and

Q([q, z])(t) =q(n−1)
a −

1
Γ(α − n + 1)

∫ a

0

p(x,q(x))
(a − x)n−αdx

+
1

Γ(α − n + 1)

∫ t

0

p(x,q(x))
(t − x)n−α dx.

(3.2)

Let Pi and Qi : (C[0, a])2ν → C[0, a] be the ith component of the operator P and Q, respectively.
Setting w = [q, z] and defining the operator T : R2×ν → R2×ν by

Tw = [Pw,Qw],

the Eqs (2.2) and (2.4) can be compactly written as

w = Tw. (3.3)

It is straightforward to show that for w1 and w2 ∈ (C[0, a])2ν. We can write

|Pi(w1)(t) − Pi(w2)(t)| ≤
2tn−1

(n − 1)!
‖w1 − w2‖∞. (3.4)

and

|Qi(w1)(t) − Qi(w2)(t)| ≤
2LMaα−n+1

Γ(α − n + 2)
‖w1 − w2‖∞. (3.5)

where LM = maxi=1,...,ν Li. Now, the Eqs (3.4) and (3.5) give

‖Tw1 − Tw2‖∞ ≤ max{
2an−1

(n − 1)!
,

2LMaα−n+1

Γ(α − n + 2)
}‖w1 − w2‖∞. (3.6)

Conclusively, we can estate the following theorem.
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Theorem 3.1. Let each component of the continuous function p : [0, a] × Rν → Rν (ν ∈ N) satisfy the
Lipschitz condition with the Lipschitz constant Li and let

LM = max
i=1,··· ,ν

{Li}.

Then, the problem (1.1) with terminal conditions (2.1) has a unique mild solution on (C[0, a])2ν if

λ := max{
2an−1

(n − 1)!
,

2LMaα−n+1

Γ(α − n + 2)
} < 1 (3.7)

Proof. Suppose w ∈ (C[0, a])2ν. Since all integral operators involving in the definition of T transform
a continuous functions into a continuous functions, therefore, T (w) ∈ (C[0, a])2ν. The operator T is
contractor by (3.6) and the space (C[0, a])2ν is a Banach space by the norm ‖.‖∞. Thus, by contraction
mapping theorem w = T (w) has a unique solution which completes the proof. �

The next corollary is an important result of Theorem 3.1 which shows the regularity of the solution
on more smooth spaces.

Corollary 1. Suppose the hypotheses of Theorem 3.1 are satisfied. Then, the mild solution q obtained
from solving systems (2.2) and (2.4) satisfies the system (1.1) with terminal conditions (2.1). Moreover,

q ∈ (Cn−1[0, a])ν.

Proof. Taking derivative from Eq (2.2) and using Theorem 3.1 results q(n−1) = z ∈ (C[0, a])ν. Thus,
q ∈ (Cn−1[0, a])ν. Similarly, putting t = a in Eq (2.2) and its derivatives, proves that q satisfies terminal
conditions. Replacing z = q(n−1) in (2.2) we obtain

q(n−1) =q(n−1)
a −

1
Γ(α − n + 1)

∫ a

0

p(x,q(x))
(a − x)n−αdx

+ aJ
α−n+1
t p(x,q(x))

(3.8)

where aJ
α−n+1
t is the Riemann-Liouville fractional integral. Noting that α − n + 1 > 0, we can take a

fractional derivative of order α − n + 1 from (3.8) to obtain

C
0 Dα−n+1

t q(n−1) = C
0 Dα−n+1

t aJ
α−n+1
t p(x,q(x)) = p(x,q(x)) (3.9)

which shows that the component q of the mild solutions satisfies (1.1). �

4. Regularity for linear FDEs

The regularity of the solution is important for analyzing numerical methods, especially finite
difference methods and methods based on projection [20]. The regularity speaks about the order
of differentiability of solutions. Usually, the regularity is investigated in the space Cm[a, b], (see
Corollary 1). But, some good functions such as

√
t ∈ C[a, b] do not belong to Cm[a, b]. The space

Cm(a, b] ∩ C[a, b] contains such functions. This space is not Banach or complete. Therefore, we need
to introduce another Banach space such that

Cm[a, b] ⊂ X ⊂ Cm(a, b] ∩ C[a, b].

In this paper, we study regularity on the following weighted space Cm,α(0, a] introduced in [13].
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Definition 4.1. [13] Let 0 ≤ α < 1 and m ∈ N. Then q ∈ Cm,α(0, a] if there exist functions qi ∈ C[0, a]
for i = 0, · · · ,m + 1 such that q = tαq0 + q1 and

Diq(t) = tα−iqi+1(t), i = 1, · · · ,m.

Theorem 4.2. The space Cm,α(0, a] with the norm

‖q‖α,m := ‖q‖∞ +

m∑
i=1

‖qi+1‖∞ (4.1)

is a Banach space.

Proof. Let qn ∈ C
m,α(0, a], n ∈ N be a Cauchy sequence with norm ‖.‖α,m. Thus, by the definition of

Cm,α(0, a] there exists functions qn,i in C[0, a] for i = 0, · · · ,m + 1 such that qn(t) = tαqn,0(t) + qn,1(t)
and

Diqn(t) = tα−iqn,i+1(t), i = 1, · · · ,m, t ∈ (0, a].

From the definition of the norm ‖.‖α,m, the sequences qn,i for a fixed i are Cauchy sequence in the
Banach space C[0, a] and thus have a unique limit say qi. Let q defined by q(t) = tαq0(t) + q1(t) on
[0, a]. Following items show that q ∈ Cm,α(0, a].

• limn→∞ qn(t) = limn→∞ tαqn,0(t) + qn,1(t) = tαq0(t) + q1(t) = q for all t ∈ [a, b];
• q ∈ C[0, a], since q0 ∈ C[0, a] and q1 ∈ C[0, a];
• limn→∞ Diqn(t) = limn→∞ tα−iqn,i+1(t) = tα−iqi+1(t). For each t ∈ (a, b] we can find ε > 0 such that

Dε = [t− ε, t] ⊂ (a, b]. It is trivial that Diqn(t) converges uniformly to tα−iqi+1(t) on Dε . According
to Theorem 7.17 of [21] Diq(t) = limn→∞ Diqn(t) on Dε . Thus Diq(t) = tα−iqi+1(t) for all t ∈ Dε

and hence for all t ∈ (a, b].

�

Let ν ∈ N. For a ν dimensional vector functions, p = [ f1, . . . , fν] in (Cm,α(0, a] ⊂ (Cm(0, a])r, we use
the max norm defined by

‖p‖ = max
i=1,...,ν

‖ fi‖α,m.

The system (1.1) with
p(t,q(t)) = A(t)q(t) + b(t), t ∈ [0, a], (4.2)

is a system of linear FDEs. Here A is a given ν × ν dimensional matrix function and b ∈ (C[0, a])ν is a
given source function. To study linear systems we introduce the operatorsW1 andW2 : (C[0, a])2ν →

(C[0, a])ν by

W1([q, z])(t) = −

n−2∑
i=0

(t − a)i

i!

(∫ a

0

(a − x)n−2−i

(n − 2 − i)!
z(x)dx

)
+

∫ t

0

(t − x)n−2

(n − 2)!
z(x)dx,

(4.3)
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and

W2([q, z])(t) = −
1

Γ(α − n + 1)

∫ a

0

A(x)q(x)
(a − x)n−αdx

+
1

Γ(α − n + 1)

∫ t

0

A(x)q(x)
(t − x)n−αdx.

(4.4)

Let us also define the vector valued functions G2 and G1 : [0, a]→ Rν by

G1(t) =

n−2∑
i=0

(t − a)i

i!

(
q(i)

a

)
, (4.5)

and

G2(t) =q(n−1)
a −

1
Γ(α − n + 1)

∫ a

0

b(x)
(a − x)n−αdx

+
1

Γ(α − n + 1)

∫ t

0

b(x)
(t − x)n−αdx.

(4.6)

Let T = [W1,W2]T and G = [G1,G2]T . Then, the Eqs (2.2) and (2.4) can be written as an
inhomogeneous system

w − T(w) = G (4.7)

where w = [q, z]T .

Theorem 4.3. Let a ∈ R and α > 0. Assume each component of A and b are in Cm,α(0, a]) and the
hypotheses of Theorem 3.1 are satisfied for related p : [0, a]×Rν → Rν (ν ∈ N). Then, the problem (1.1)
with terminal conditions (2.1) has a unique mild solution on (Cm,α(0, a])2ν.

Proof. Since T is a combination of weakly singular integral operators, it is a compact linear operator
on (C[0, a])2ν and (Cm,α(0, a])2ν. Also, it is clear that

T(Cm,α(0, a])2ν) ⊂ (Cm,α(0, a])2ν.

System (25) has a unique solution on (C[0, a])2ν by Theorem 3.1. Therefore, the homogeneous system
w − T(w) = 0 has the trivial null space in (C[0, a])2ν and thus (Cm,α(0, a])2ν. Conclusively, alternative
Fredholm theorem asserts that the system (4.7) has a unique solution on (Cm,α(0, a])2ν. �

Remark 2. Regularity of the nonlinear case needs further investigations.

Example 1. Consider the system (1.1) with a = 0.5, α = 2.5 and p defined by (4.2)

A =

(
0 0.5

0.5 0

)
, b(t) =

(
1
t

)
.

Obviously, L1 = 0.5, L2 = 0.5. and thus LM = 0.5. Therefore,

max{
2an−1

(n − 1)!
,

2LMaα−n+1

Γ(α − n + 2)
} = 0.7979 < 1

and Condition (3.7) holds. By Theorem 3.1 the terminal value problem (1.1) with arbitrary terminal
value (2.1) has a unique solution on C[0, a]. Since all components of A and b belong to Cm,α(0, a],
(m ∈ N) the mild solution belongs to (Cm,α(0, a])4, by Theorem 4.3. Furthermore, we obtain the
regularity of the solution of the system (1.1) on the closed interval [0, a] by Corollary 1 and we have

q = (C2[0, a])2.

AIMS Mathematics Volume 7, Issue 5, 7489–7506.



7496

5. Numerical method

Considering the memory, one of the best methods for solving the coupled systems (2.2)–(2.4) is to
use collocation methods on piecewise polynomial spaces. To implement such methods we partition the
solution interval [0, a] into sub-intervals σi = [ti, ti+1], i = 0, . . . ,N − 1, with length hi := ti+1 − ti where
0 = t0 < . . . < tN = a are nodes of a chosen mesh (uniform or graded mesh) and N ∈ N. A graded mesh
with exponent r ≥ 1 is described by

ti = a
( i
N

)r

, i = 0, . . . ,N.

Let 0 < c1 < . . . < cm ≤ 1 (m ∈ N) be collocation parameters, tn,i = tn + cihn (n = 0, . . . ,N − 1)
be collocation points and let q̂N(t) and ẑN(t) be approximate solutions. The restriction of approximate
functions to the σk is fully determined by Lagrange polynomials interpolation formula

q̂N(t)
∣∣∣
σk

= q̂N(tk + hs) =

m∑
j=1

Qn, jL j(s), s ∈ (0, 1] (5.1)

and

ẑN(t)
∣∣∣
σk

= ẑN(tk + hs) =

m∑
j=1

Zn, jL j(s), s ∈ (0, 1] (5.2)

where Qk, j = q̂N(tn, j), Zk, j = ẑN(tk, j), tk, j = tk + hc j and L j ( j = 1, . . . ,m) are Lagrange polynomials of
degree m − 1. The integrals in the operators P and Q of systems (3.1) and (3.2) can be discretized as:∫ a

0

(a − x)n−2−i

(n − 2 − i)!
ẑN(x)dx =

N−1∑
l=0

m∑
j=1

hlγn,i,l, jZl, j (5.3)

where

γn,i,l, j =

∫ 1

0

(a − tl − shl)n−2−i

(n − 2 − i)!
L j(s)ds.

For t ∈ [tk, tk+1] (k = 0, . . . ,N − 1) we have∫ t

0

(t − x)n−2

(n − 2)!
ẑN(x)dx =

k−1∑
l=0

hl

m∑
j=1

ηn,l, j(v)Zl, j + hk

m∑
j=1

η̄n,k, j(v)Zk, j (5.4)

where
v =

t − tk

hk
∈ [0, 1],

ηn,k,l, j(v) =

∫ 1

0

(tk − tl + vhk − shl)n−2

(n − 2)!
L j(s)ds

and

η̄n,k, j(v) =

∫ v

0

((v − s)hk)n−2

(n − 2)!
L j(s)ds.
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Similarly, we discretize integrals of the operator Q. We have∫ a

0

p(x, q̂N(x))
(a − x)n−α dx =

N−1∑
l=0

hl

∫ 1

0

p(tl + shl, q̂N(tl + shl))
(a − tl − shl)n−α ds. (5.5)

By interpolating p(tl + shl,q(tl + shl)) on ci we obtain

p(tl + shl, q̂N(tl + shl)) ≈
m∑

j=1

p(tl, j,Ql, j)L j(s)

and thus ∫ a

0

p(x, q̂N(x))
(a − x)n−α dx ≈

N−1∑
l=0

hl

m∑
j=1

p(tl, j,Ql, j)%n,l, j (5.6)

where

%n,l, j =

∫ 1

0

L j(s)
(a − tl − shl)n−αds

and finally ∫ t

0

p(x, q̂N(x))
(t − x)n−α dx ≈

k−1∑
l=0

hl

m∑
j=1

p(tl, j,Ql, j)ζn,l, j

+ hk

m∑
j=1

p(tk, j,Qk, j)ζ̄n,k, j(v)

(5.7)

where

ζn,l, j(v) =

∫ 1

0

L j(s)
(t − tl − shl)n−αds,

ζ̄n,k, j(v) =

∫ v

0

L j(s)
((v − s)hk)n−αds.

The discretized mappings PN and QN : (C[0, a])2ν → (PC[0, a])ν (PC stands for piecewise continuous
space) related to systems (3.1) and (3.2) can be defined by

PN([q̂N(t), ẑN])(t) =

n−2∑
i=0

(t − a)i

i!

q(i)
a −

N−1∑
l=0

hl

m∑
j=1

γn,i,l, jZl, j


+

k−1∑
l=0

hl

m∑
j=1

ηn,l, j(v)Zl, j + hk

m∑
j=1

η̄n,k, j(v)Zk, j

(5.8)

and

QN([q̂N , ẑN])(t) = q(n−1)
a −

1
Γ(α − n + 1)

N−1∑
l=0

hl

m∑
j=1

p(tl, j,Ql, j)%n,l, j

+

k−1∑
l=0

hl

m∑
j=1

p(tl, j,Ql, j)ζn,l, j(v)
Γ(α − n + 1)

+ hk

m∑
j=1

p(tk, j,Qk, j)ζ̄n,k, j(v)
Γ(α − n + 1)

.

(5.9)
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on σk. Setting TN = [PN ,QN], unknowns vectors Ql, j and Zl, j can be obtained by solving the nonlinear
system

TN([q̂N(tk,o), ẑN(to,p)]) = [q̂N(tk,o), ẑN(tk,o)] (5.10)

for k = 0, . . . ,N − 1 and o = 1, . . . ,m. Taking into account that

[Qk,o,Zk,o] = [q̂N(tk,o), ẑN(tk,o)],

the dense solution can be evaluated in all points of the desired interval by Eqs (5.1) and (5.2). We note
that the six parameters γn,i,l, j, ηn,l, j, η̄n,k, j, %n,l, j, ζn,l, j and ζ̄n,k, j fully determines the method for each m.
The equations of these six parameters for m = 1 and m = 2 are provided in Tables 1 and 2, respectively.

Table 1. The coefficient of the collocation method of order m = 1.

parameter j = 1, i = 0, . . . , n − 2, l = 0, . . . , k − 1, k = 0, . . . ,N − 1
L j(s) 1
γn,i,l, j

(
(a − tl)n−1−i − (a − tl − hl)n−1−i

)
/ (hl(n − 1 − i)!)

ηn,k,l, j(v)
(
(tk − tl + vhk)n−1 − (tk − tl + vhk − hl)n−1

)
/ (hl(n − 1)!)

η̄n,k, j(v) (vhk)n−1 / (hk(n − 1)!)
%n,l, j

(
(a − tl)α−n+1 − (a − tl − hl)α−n+1)

)
/ (hl(α − n + 1))

ζn,l, j(v)
(
(tk + vhk − tl)α−n+1 − (tk + vhk − tl − hl)α−n+1)

)
/ (hl(α − n + 1))

ζ̄n,k, j(v) (vhk)α−n+1 / (hk(α − n + 1))

Table 2. The coefficient of the collocation method of order m = 2. Here, we used $k =

tk + vhk − tl and Θ = a − tl for simplifying the presentation of formulas.

parameter j = 1, 2 i = 0, . . . , n − 2, l = 0, . . . , k − 1, k = 0, . . . ,N − 1

L j(s) (s−c3− j)(−1) j

c2−c1

γn,i,l, j
(−1) j+1

(n−2−i)!h2
l (c2−c1)

(
(Θ − c3− jhl)

(Θ−hl)n−1−i−Θn−1−i

n−1−i −
(Θ−hl)n−i−Θn−i

n−i

)
ηn,k,l, j(v) (−1) j+1

(n−2)!h2
l (c2−c1)

(
($k − c3− jhl)

($k−hl)n−1−$n−1
k

n−1 −
($k−hl)n−$n

k
n

)
η̄n,k, j(v) (−1) j

(n−2)!h2
k (c2−c1)

(
(vhk − c3− jhk)

(vhk)n−1

n−1 −
(vhk)n

n

)
%n,l, j

(−1) j+1

(c2−c1)h2
l

(
(Θ − hlc3− j)

(Θ−hl)α−n+1−Θα−n+1

α−n+1 −
(Θ−hl)α−n+2−Θα−n+2

α−n+2

)
ζn,l, j(v) (−1) j+1

(c2−c1)h2
l

(
($k − c3− jhl)

($k−hl)α−n+1−$α−n+1
k

α−n+1 −
($k−hl)α−n+2−($k)α−n+2

α−n+2

)
ζ̄n,k, j(v) (−1) j

(c2−c1)h2
k

(
(vhk − c3− jhk)

(vhk)α−n+1

α−n+1 −
(vhk)α−n+2

α−n+2

)

6. Numerical analysis

For simplifying our analysis we recall some notations. Let S −1
m−1(Ih) be the space of piecewise

polynomials of degree less than m, (m ∈ N) on the mesh partitioning Ih = {ti : i = 0, · · · ,N}. The
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projection operator Πm−1,N : (C[0, a])2ν →
(
S −1

m−1(Ih)
)2ν

is uniquely determined by interpolation on
collocation points such that

Πm−1,N(q(tn,i)) = q(tn,i), n = 0, . . . ,N − 1, i = 1, . . . ,m, ∀ q ∈ (C[0, a])2ν .

Since ŵN(t) := [q̂N(t), ẑN(t)] ∈
(
S −1

m−1(Ih)
)2ν

we have

ΠN(ŵN(t)) = ŵN(t).

Thus, Eq (5.10) can be written as

Πm−1,NTN(ŵN(t)) = ŵN(t), ŵN(t) ∈
(
S −1

m−1(Ih)
)2ν
. (6.1)

A useful theorem regarding Πm−1,N that simplifies existence and convergence analysis is the following
theorem.

Theorem 6.1. Let m,N ∈ N. Then, Πm−1,N is a bounded linear operator. Let

Λ = ‖Πm−1,N‖

be induced norm of Πm−1,N and

Λ1 = max
t∈[0,1]

m∑
i=1

|Li(s)|. (6.2)

Then, Λ ≤ Λ1 and
‖Πm−1,Nq‖∞ ≤ Λ‖q‖∞.

Proof. In each sub-interval σn of [0, a] by Lagrange interpolation formula, we have

Πm−1,Nq(tn + shn) =

m∑
i=1

Li(s)qn,i, s ∈ [0, 1].

The rest of the proof is straightforward by taking the max norm. �

6.1. Existence results for the proposed numerical method

One of the most fundamental questions is whether the system (6.1) has a unique solution? The
answer is affirmative. For ŵN(t) in

(
S −1

m−1(Ih)
)2ν

the operators PN of (5.8) and P of (3.1) are equivalent
and we have

PN(ŵN(t)) = P(ŵN(t)). (6.3)

Thus, the inequality (3.4) holds for PN and

|(PN)iw1 − (PN)iw2| ≤
2tn−1

(n − 1)!
‖w1 − w2‖∞ (6.4)
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for all w1,w2 ∈
(
S −1

m−1(Ih)
)2ν
. However, QN is different from Q in this space and we need further

computing. Actually, QN can be described by

QN(w)(t) =q(n−1)
a −

1
Γ(α − n + 1)

∫ a

0

Πm−1,Np(s,q(s))
(a − s)n−α ds

+
1

Γ(α − n + 1)

∫ t

0

Πm−1,Np(s,q(s))
(t − s)n−α ds.

(6.5)

where q is the first ν element of w. More precisely

‖QN(w1) − QN(w2)‖∞ =

1
Γ(α − n + 1)

∫ a

0

1
(a − s)n−αds‖Πm−1,Np(.,q1) − Πm−1,Np(.,q2)‖∞

+
1

Γ(α − n + 1)

∫ t

0

1
(t − s)n−αds‖Πm−1,Np(.,q1) − Πm−1,Np(.,q2)‖∞

≤
2aα−n+1

Γ(α − n + 2)
‖Πm−1,N‖∞‖p(.,q1) − p(.,q2)‖∞

≤
2aα−n+1ΛLM

Γ(α − n + 2)
‖q1 − q2‖∞.

(6.6)

Therefore,

‖Πm−1,NTN(w1) − Πm−1,NTN(w2)‖∞ ≤ Λ‖TN(w1) − TN(w2)‖∞

≤ Λ max
{

2aα−n+1ΛLM

Γ(α − n + 2)
,

2an−1

(n − 1)!

}
‖w1 − w2‖∞.

(6.7)

Theorem 6.2. Let

λΛ := max
{

2aα−n+1Λ2LM

Γ(α − n + 2)
,

2an−1Λ

(n − 1)!

}
≤ 1. (6.8)

Then, the numerical solution of system (1.1) obtained by (6.1) exists and is unique.

Proof. The operator Πm−1,NTN :
(
S −1

m−1(Ih)
)2ν
→

(
S −1

m−1(Ih)
)2ν

is a contractor by (6.7). Thus, by using
contraction mapping theorem, Πm−1,NTN admits a unique fixed-point. �

Remark 3. Obviously, if

max
{

2aα−n+1Λ2
1LM

Γ(α − n + 2)
,

2an−1Λ1

(n − 1)!

}
≤ 1 (6.9)

holds, then Eq (6.8) holds too. For m = 1 we have Λ1 = 1, and Eq (3) matches with Eq (3.7).
However, our estimate may not be optimal for higher degrees of approximations. Also, we guess
using the convergence properties of Πm−1,N when N → ∞, we may obtain a convergence result without
dependency on Λ1.
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6.2. Detailed implementation: Solving nonlinear system

An important question is how to solve the nonlinear Eq (6.1). There are many methods available
in literature that we can employ. The Newton iteration method is one of them [14]. The advantage is
that it is fast. The disadvantage is that it needs computation of Jacoby as well as a good initial value
for an iteration. It increases competition cost for higher dimension (computation of ν2 function for
each iteration) and complexity of the implementation. However, strict restriction of λΛ and analytic
discussion of the previous section is constructive and suggests the use of an iterative method. Since
the operator Πm−1,NTN is a contractor operator, beginning with an arbitrary initial value grantees the
convergence of the related iterative method. In our algorithm, we initialize the iteration by

ŵN,0 = [q(0)
a ,q(n−1)

a ]T .

Then, we estimate the solution by the recursive formula

ŵN,k = Πm−1,NTN(ŵN,k−1(t)), k ∈ N. (6.10)

The computation of iteration (6.10) continues with the smallest κ such that

‖ŵN,κ − ŵN,κ−1‖ < Tol

where Tol is a desired user tolerance. We report such κ as a number of iteration to achieve the given
tolerance.

6.3. Convergence analysis

Theorem 6.3. Suppose ŵN = [ŵN , ŵN] (N ∈ N) be a discretized collocation solution of (2.2)
and (2.4) described by (6.1). Let the conditions of Theorems 3.1 and 6.2 be fulfilled. Then, the
coupled systems (2.2) and (2.4) have a unique solution w on (C[0, a])2ν and the ŵN converges to the w.
Furthermore, supposing w ∈ (Cm,α(0, a])2ν implies

‖ŵN − w‖∞ =

 O(N−rβmin), 1 ≤ r < m
βmin
,

O(N−m), r ≥ m
βmin
.

Proof. Let w be the solution of the coupled systems (2.2) and (2.4). Define the residue operator by

R(w)(t) := (T − ΠNTN)(w)(t) (6.11)

and let e = ŵN − w. Subtracting Eq (3.3) from (6.1), we obtain

ŵN(t) − w = ΠNTN(ŵN(t)) − Tw
= ΠNTN(ŵN(t)) − ΠNTN(w)(t) − R(w)(t).

(6.12)

Taking maximum norm, we obtain

‖e‖∞ ≤ ‖ΠNTN(ŵN(t)) − ΠNTN(w)(t)‖∞ + ‖R(w)(t)‖∞.

Applying Eq (6.8), we obtain

‖e‖∞ ≤ λΛ‖ŵN(t) − w‖∞ + ‖R(w)(t)‖∞
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and finally
‖e‖∞ ≤ (1 − λΛ)−1‖R(w)(t)‖∞, if λΛ , 1. (6.13)

This is a good news since we can obtain the asymptotic behavior of ‖R(w)‖∞ for the known w. Thanks
to Theorem 8 of [20], one can easily prove that

‖R(w)‖∞ = O(N−m) + O(N−rβmin)

which completes the proof. �

7. Examples

All numerical experiments is implemented in MATLAB software. The tolerance number for solving
related nonlinear equations is Tol = 10−14. This tolerance is close to the floating-point relative accuracy
2.2204e − 16 for data type of double-precision (64 bit) in standard machine. The numerical examples
show theoretically the obtained order of convergence is sharp and can not be improved more.

Example 2. Let 1 < α ≤ 2 and

p(t,q) =

 0.1 sin(y1 + y2) − 0.1 sin(t2.5 + t2) +
Γ(3.5)

Γ(3.5−α) t
2.5−α

0.1 cos(y1 − y2) − 0.1 sin(t2.5 − t2) +
Γ(3)

Γ(3−α) t
2−α


on [0, 0.15]. We note that p(t, .) ∈ (C[0, 0.25])2 but p(t, .) < (C1[0, 0.25])2. Since LM = 0.1, one
can check that the conditions of Theorem 3.1 for a = 0.25 hold and the system (2.1) with boundary
condition

y(a) = [0.0225, 0.058095]T

and
Dy(a) = [0.3, 0.58095]T

has a unique solution on [0, a]. The solution by Corollary 1 belongs to (C1[0, a])2.We apply a numerical
method based on collocation parameter c = [0.5, 1]. Thus, the dense solution on each sub-interval σk

(k = 0, · · · ,N − 1) of a given partition can be described by

ŵN(tk + hs) = 2(Wn,1(1 − s) + (s − 0.5)Wn,2), s ∈ (0, 1]. (7.1)

An estimated norm of the given method can be determined by (6.2) and we have

Λ1 = max
s∈[0,1]

2(|1 − s| + |s − .5|) = 2(1.5) = 3.

Taking into account (6.8), we obtain

λΛ1 = max{0.78663, 0.9} = 0.9.

Consequently, by using Theorem 6.2 the nonlinear Eq (6.1) has a unique solution and the iteration
process (6.10) converges to that solution. Theorem 6.3 implies the numerical solution converges to the
exact solution by following order (O)

O =

{
0.5r, r ≤ 4,
2, r > 4.

(7.2)
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In Tables 3 and 4, we provided the maximum error

E(r,N) = ‖ŵN − w‖∞,

estimated order of proposed method (ON) and the number of iteration for required tolerance. As we
see ON = 0.5, 1, 1.5, 2 for r = 1, 2, 3, 4 respectively, which is in agreement with theoretical result
(see Eq (7.2)).

Table 3. Numerical results of the proposed collocation method with c = [0, 1], m = 2 and
r = 1, 2.

N E(1,N) ON It E(2,N) ON It
2 0.17015 0.49 10 0.12032 1.00 9
4 0.12032 0.49 10 0.06016 1.00 10
8 0.08507 0.50 10 0.03008 1.00 10
16 0.06016 0.50 10 0.01504 0.99 10
32 0.04254 0.50 10 0.00752 1.00 10
64 0.03008 0.50 10 0.00376 1.00 10
128 0.02127 - 10 0.00188 - 10

Table 4. Numerical results of the proposed collocation method with c = [0, 1], m = 2 and
r = 3, 4.

N E(3,N) ON It E(4,N) ON It
2 0.08509 1.50 9 0.12054 1.78 9
4 0.03008 1.50 10 0.03486 1.95 10
8 0.01063 1.50 10 0.00896 1.98 10
16 0.00376 1.50 10 0.00226 2.00 10
32 0.00133 1.50 10 0.0006 1.99 10
64 0.00047 1.50 10 0.00014 1.99 10
128 0.00017 - 10 3.5439e-05 - 10

Remark 4. Theorem 1 provides a sharp result when we consider all the components of the state of the
system 1 (w = [q, z]). However, it can be improved for the desired state of the solution q. According
to Corollary 1, q has better regularity for n ≥ 1. Thus, we guess that the order of convergence for q
component with uniform mesh r = 1, can be greater than or equal to n − 1. Thus, for that component,
a greater graded mesh exponent is not necessary. The error Eq(r,N) = ‖q̂N − q‖∞ and the estimated
order of convergence of Example 2 is reported in Table 5. The order 2 is achieved with r = 1.5.

To show the sharpness of theoretical results, we add numerical experiments for the case m = 1 with
c = 0.5 (for other choice of c on [0, 1] we have similar results). The dense solution on each sub-interval
σk can be described by

ŵN(tk + hs) = Wn,1, s ∈ (0, 1]. (7.3)

In this case Λ1 = 1 and by (6.8)

λΛ1 = max{0.087404, 0.3} = 0.3.
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Consequently, by using Theorem 6.2 the nonlinear Eq (6.1) related to m = 1 has a unique solution and
the iteration process (6.10) converges to the exact solution. By Theorem 6.3 we expect

Order =

{
0.5r, r ≤ 2,
1, r > 2.

(7.4)

The sharpness of this result can be seen in Table 6.

Table 5. Numerical results of the proposed collocation method with c = [0, 1], m = 2 and
r = 1, 2 for y component.

N Eq(1,N) ON It Eq(4,N) ON It
2 0.00593 1.46 10 0.00544 1.91 10
4 0.00214 1.47 10 0.00145 1.96 10
8 0.00077 1.48 10 0.00037 1.97 10
16 0.00027 1.48 10 9.501e-05 2.01 10
32 9.803e-05 1.49 10 2.354e-05 1.94 10
64 3.484e-05 1.49 10 6.122e-06 2.01 10
128 1.236e-05 NaN 10 1.522e-06 NaN 10

Table 6. Numerical results of the proposed collocation method with c = 0.5, m = 1 and
r = 1, 2.

N E(1,N) ON It E(2,N) ON It
2 0.29073 0.50008 8 0.20597 0.99 9
4 0.20556 0.50024 9 0.10305 0.99 9
8 0.14533 0.50024 10 0.051533 0.99 10
16 0.10275 0.50019 10 0.025768 1.00 10
32 0.072644 0.50015 10 0.012884 1.00 10
64 0.051362 0.50011 10 0.006442 1.00 10
128 0.036316 - 10 0.003221 - 10

Remark 5. The low order method have the advantage of supporting larger class of terminal value
problem with large value of a. The reason is that with m = 1, we have Λ1 = 1 which is three times
smaller than Λ1 for the case m = 2.

8. Conclusions

TVPs for higher-order (greater than one) fractional differential equations are rarely studied in the
literature. In this paper, we tried to have a comprehensive study with a simple analysis to cover all
general interests. Many questions in this topic deserve to study with more scrutiny. The regularity of
nonlinear cases as well as optimal bound for obtaining well-posed problems are among them. We think
the terminal value problem is important in applied since it monitors the past evolution of a dynamical
system. Also, it can be regarded as a control problem for having the desired future by finding suitable
initial value. We think this topic will catch more interest similar to the initial value problem.
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