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Abstract: This study aims to propose and analyze a mathematical model of the competitive 

interaction of the pathogen-immune system. Some effects of the existence of natural delays and the 

addition of therapeutic proteins are considered in the model. A delay arises from the indirect response 

of the host body when a pathogen invades. The other comes from the maturation of immune cells to 

produce immune memory cells since the immune system and antigenic substances responsible for 

provoking the production of immune memory cells. Analytical investigations suggest several 

sufficient conditions for the existence of a positive steady-state solution. There is a critical pair of 

delays at which oscillatory behavior appears around the positive steady-state solution. Numerical 

simulations were carried out to describe the results of the analysis and show that the proposed model 

can describe the speed of pathogen eradication due to the addition of therapeutic proteins as 

antigenic substances. 
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1. Introduction 

The immune system is a complex system consisting of many interrelated processes that form a 
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coordinating system that aims to protect the integrity and identity of the host. This system has a role 

in preventing the invasion of harmful substances such as pathogens in the environment that can self-

destruct [1,2]. The major role of the immune system is to effectively protect the host against 

pathogens by identifying and destroying pathogen-infected cells. Identification and destruction 

processes of pathogens involve two stages, namely innate immunity and adaptive immunity which 

influence each other because the innate immune response plays an important role in infection control 

during periods of delayed activation of the adaptive immune response. In addition, cells of the innate 

immune system initiate and determine the subsequent direction of the adaptive immune response and 

participate in the elimination of pathogens that are targets of the adaptive immune response [1,3]. 

All cells in the immune system are produced and reproduced in the bone marrow as immature 

cells. The immature cells are then educated to become mature cells of the immune system which can 

be categorized as lymphocytes, neutrophils, and macrophages [4]. T cells are a subset of 

lymphocytes which are the main cellular component of the adaptive immune response because they 

can directly attack infected cells. T cells consist of three types of cells namely cytotoxic, helper, and 

regulatory that react strongly to foreign antigens to be effective for immunity. As part of the immune 

system, T cells focus on identifying certain foreign particles and circulating them until they 

encounter specific antigens [3]. Since T cells are self-tolerant, they have the ability to recognize 

harmful antigens and self-produced antigens by identifying molecules on the cell surface. In addition 

to T cells, lymphocytes also have a subset called B cells, specialized cells with the main function of 

producing antibodies, i.e. the main proteins that are produced when cells of the immune system react 

with foreign protein antigens. B cells also mature in memory cells so that the system can respond 

quickly when a similar attack is encountered. Together with proteins, cells collaborate to recognize 

and react to foreign substances in providing defense against invading pathogens. Therefore the 

immune system becomes a wonderful collaboration between cells and proteins which also results in a 

very complex system with inherent nonlinear properties [2–4]. The development of science and 

technology, especially in recombinant technology, has made great progress in the development of 

proteins such as laboratory-engineered therapeutic proteins which showed highly effective in 

replacing abnormal or deficient proteins in the host's body as well as increasing the body's supply of 

beneficial proteins to help reduce the effects of disease or chemotherapy [5–9]. 

Over the past decade, theoretical studies have been continuously developed to capture and 

understand the complex multiscale dynamics of the immune system and its immunogenicity that may not 

be captured directly in experiments. Eftimie et al. in [10] presented a study review regarding the 

development of mathematical model tools as a theoretical approach in studying immunology systems 

qualitatively and quantitatively. Moreover, some mathematical approaches were also developed and 

analyzed to study the complexities of the immune system involving many interacting processes [11–17]. 

Some of them are focused on the innate immunity stage and some on the adaptive immune stage or 

both which include humoral aspects such as antibodies, cell-mediated aspects, and immunity effects 

and their responses to some deadly diseases such as tumors and other infectious diseases [11–15,17]. 

Some researchers are also concerned to study and observe the effects of delays occurring in the 

immune system [18–29]. Mathematical models were developed as a series of structured population 

models to describe interactions between infectious agents and immune cells with a series of delay 

differential equations. However, for simplicity, some assumptions and limitations about the nature of 

various processes were made such as regarding the time delay between pathogen injection and 

immune activation. For example, Fenton et al. [18] considered a structured population model 
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showing the presence of specific immune cells that were not directly activated and reached their 

maximal efficacy. Gradual enhancement of immune efficacy was considered to be a major aspect in 

changing the interaction dynamics of the pathogen immune system and the ability of the immune 

response to eliminate pathogens [18]. However, the distributed immune system model (immune 

pathway) produces a structured population model chain with high-dimensional variables that are not 

easy to analyze analytically. In this paper, we intend to extend the study of Fenton et al. by proposing 

another approach and developing a mathematical model which considers the distributed immune 

system (the immune pathway) as a lumped process. This extension considers only major parts of the 

immune pathway called primary and specific immune cells, and replaces long distributed responses 

with specific natural delays i.e. a delay between early pathogen infection and immune response, and 

a delay of immune cell maturation. Other delay is also considered from the first invasion of 

pathogens until the initial formation of memory cells. We consider a competitive interaction between 

the pathogen and the host immune system under the influence of adding therapeutic proteins to 

trigger the immune system. The model is generated as a system of five nonlinear delay differential 

equations involving three discrete delays. We believe that the proposed model will complement the 

results of the previous theoretical studies on the complex dynamics of the immune response system 

with inherent nonlinear nature. 

2. Mathematical model formulation 

A mathematical model of the immune system is formulated to study the interactions between 

pathogens and immune cells with the addition of antigens contained in a therapeutic protein that 

triggers antibody production. Our model follows the line of Fenton et al. [18] with some extensions 

in their model. As we have stated before that the distributed immune system model in Fenton et al. is 

considered as a lumped pathway such that we consider only the main part of the immune system. 

Here, we focus on the five compartments namely P which states as the number of pathogens in the 

host body, Is which states the number of specific immune cells, Ip which states the number of primary 

immune cells, M which determines the number of memory cells, and D which states as the number of 

therapeutic proteins injected into the host body to enhance the production of primary cells (see Figure 1 

for illustration of the interaction between compartment). Moreover, our mathematical model was 

formulated based on the following general assumptions: 

1. Pathogens have the ability to reproduce themselves in the cell’s body by using facilities and 

nutrients from the host body. 

2. Host body is unable to respond directly to the pathogen injection such that a delay occurs on the 

first injection until the primary immune cells are activated. 

3. On the other hand, the primary immune cells cannot directly act to attack the pathogens. It 

requires a certain time for maturation and growth to become specific immune cells that are ready 

to operate the immunity function. On the other hand, the specific immune cells are produced after 

pathogens have passed through a non-specific immune system. 

4. Pathogens can quickly evolve after an interaction with the immune cells so that they can pass 

through immune cells. This is a part of pathogen self-defense through producing low protein so 

that it can not be detected by the immune cells. 
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5. Therapeutic proteins are not produced by the host body. It is injected into the body as antigens 

which are needed by the body and stimulate the production of primary immune cells. Doses of 

therapeutic proteins are assumed constant over the period of taking. 

6. Immune cells have the ability to remember antigens entered the body by producing memory cells 

such that when similar antigens reenter the body, the primary immune response will be faster. 

Therefore, there is a lag by the inclusion of an explicit delay term before initiation of the immune 

memory. 

7. Interaction between pathogens and cells is a competitive interaction where the pathogens are 

stronger than the immune cells. The number of immune cells will be reduced but the brain will 

instruct the body to produce more optimal immune cells to destroy the pathogens. 

 

Figure 1. Compartment diagram of pathogen responses to the therapeutic protein 

addition to the host immune system. 

More specifically, assumptions for deriving the mathematical model are explained as follows: 

1. Pathogens can replicate to multiply by using the facilities needed by the host such as nutrition so 

that the pathogen will grow exponentially with the replication rate  . Pathogen cells will die due 

to age or other factors with natural death rate  . Because pathogens need nutrition in their 

development there will be competition between fellow pathogens so that there is a logistical 

growth model by including environmental carrying capacity as  . The existence of immune cells 

will cause a number of pathogens because the immune cells will destroy objects that are 

considered foreign to the body with   state the reduction rate of pathogens. The pathogen 

evolution process causes pathogens to avoid detection of immune cells so the number of 

pathogens will increase at the rate  . 

2. The presence of pathogens in the body will stimulate the production of primary immune cells. 

However, there is a delay between the injection of pathogens and the initiation of primary 

immune cell production symbolized by   , where   is the rate of cellular and biochemical 

reactions in the body and    is the level of immunity depending on the infection. The addition of 

therapeutic protein drugs will stimulate the formation of primary immune cells because they are 

considered as antigens by the body, so the number of primary immune cells produced will 
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increase by   which states the binding rate of therapeutic protein drugs by immune cells. When 

the same pathogen injection occurs in the future, the components of memory cells will be 

activated to stimulate the formation of immune cells again at the rate of   and will destroy 

pathogens as before. 

3. Specific immune cells need time to mature their cells so that their functions become more 

effective in destroying pathogens and symbolized as   . The body produces specific immune 

cells to fight pathogens and will be reduced by competition but the brain will send signals so that 

regeneration will occur and new stronger immune cells will be produced where   is the rate of 

regeneration of immune cells and   is the rate of reduction of immune cells because it loses 

against pathogens. The number of immune cells will increase if  > , namely the rate of 

regeneration is greater than the rate of competition with pathogens and will decrease if  > . 

4. The production of memory cells usually takes place 14 days after the first pathogen invasion, 

therefore a delay of    occurs. Memory cells will be produced together with primary immune 

production at the rate of   and decay at the rate of  . The doses of therapeutic protein drugs in 

the body depend on two things, increasing because the rate of input of therapeutic protein drug 

doses which are symbolized as   , and decreasing because it is bound and fused with primary 

immune cells which is symbolized as  . 

Based on these general and specific assumptions, we formulate a nonlinear delay differential 

system as follows: 

     

  
                                      

      

  
                                         

      

  
                                   (1) 

     

  
                    

     

  
                 

with initial conditions                       and the historical functions:      
                                                           , for             . 

3. Steady state solution and asymptotic stability analysis 

Now, let us turn our consideration to the existence of steady states for the system (1). We admit 

steady state solutions defined in the restriction region,   
                           

               . Since the vector field does not point to the exterior of   
  then Eq (1) is 

defined in the region   
 . Steady state of (1) is the stationary solution          

    
         that 

fulfills, 

                     ,      (2) 
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                     ,      (3) 

              ,         (4) 

         , 

         .          (5) 

With several mathematical processes we have the following results. 

Proposition 1. System (1) has a nontrivial positive steady state solution          
    

         

with    
 

   
,   

   
              

           
,   

   
              

          
,       

              

           
  and    

               

               
 if it fulfills conditions    ,            ,                and    , 

or                and    . 

Next, we focus on the analysis of the asymptotic stability of   . To this aim, we linearize (1) 

about    and determine the associated characteristic equation. System (1) can be written as, 
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By linearizing system (6) near the equilibrium point   , we get a linear form of (6) as follow: 

 
 
 
 
 
 
     

      

      

     

      
 
 
 
 
 

   

 
 
 
 
 
    
     

     
    
     

 
 
 
 

   

 
 
 
 
 
       
        

        
       
        

 
 
 
 

   

 
 
 
 
 
       
        

        
       
        

 
 
 
 

   

 
 
 
 
 
       
        

        
       
        

 
 
 
 

,   (7) 

where 

   

 
 
 
 
 
       
         

       
       
         

 
 
 
 

     

 
 
 
 
 

     
       
     
     
       

 
 
 
 

,    

 
 
 
 
 
     
     
     
     
       

 
 
 
 

,  



7477 

AIMS Mathematics  Volume 7, Issue 5, 7471–7488. 

and    
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The characteristic equation associated with (7) is given by 
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with 
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                                                             ,  

                                                              

                                     ,  

                                                                    
                       ,  
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                                         ,  

                                               ,  

                     ,  

        ,  

                      ,  

                                    ,  

                     ,  

        ,  

                 ,  

             ,   

                                       . 

Equation (8) is a five-degree exponential polynomial in  . The local asymptotic stability 

analysis of the steady state    can be performed by identifying the sign of the real parts of the roots 

of (8). The steady state    is locally asymptotically stable if and only if all roots of (8) have negative 

real parts, and its stability can only be lost if purely imaginary roots appear. Note that Eq (8) depends 
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only on two discrete delays, i.e.,    and    with free    meaning that stability of    is only influenced 

by    and   . Nevertheless, it is not easy to perform the stability analysis directly via investigating 

the coefficients of the polynomial (8) due to its implicit relation with  . Therefore, analysis of the 

roots of Eq (8) will be presented in some cases as follow.  

 

Case 1:         with      

Assume that         (there is no delays on the maturation of primary cells and activation of 

memory cells or the delays can be ignored), then the characteristic Eq (8) can be written as a five-

degree polynomial equation, 

      
     

     
          ,      (9) 

with 

        ,  

            ,  

                ,  

                ,  

                 . 

Proposition 2. Based on the Routh-Hurwitz stability criteria, Eq (9) has roots with negative real part 

if and only if it meets the following conditions (H1): 
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Case 2:              

Assumed that the pathogen has invaded the host body meaning that the memory cells already exist 

and can quickly stimulate the formation of primary immunity (so that     ). It means that the body 

can quickly respond the invasion of pathogen such that infection occurred (it also can make      . 

Then Eq (8) becomes, 

      
     

     
             

     
     

          
        (10) 

with 

         , 
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         , 

         , 

          , 

         , 

         , 

         .  

Since Eq (10) will become Eq (9) when     , then based on the Proposition 2, the equilibrium 

point    is locally asymptotically stable. When     , the roots of Eq (10) are not easy to obtain 

explicitly. The eigenvalues of Eq (10) will depend on   . Suppose that the eigenvalue of Eq (10) is in 

a complex form,                    with     . To find out whether    is stable when    
  or has a limit cycle, the analysis will be processed by assuming the eigenvalue of Eq (10) is in an 

imaginary form,          . If    is a purely imaginary root of (10), then it fulfills 

                                       

                                      
         

Simplifying the equation, we get 
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By taking its real part and imaginary part become zero, we have 
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From Eq (11) we have  

         
                                   

          
,    (13) 

         
                               

              
 .    (14) 

While from Eq (12) we have  

         
                              

              
,   (15) 

         
                                  

          
.   (16) 

From Eqs (13) and (15) we get 

         
         

  
    

 ,        (17) 
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with       
     ,       

     
    ,          

     , and       
     

  

  . From Eqs (14) and (16) we get 

         
         

  
    

 .        (18) 

If   is the solution of Eqs (17) and (18) then    is also the solution of both equations. Therefore, in 

the following, we only look for positive solutions   of (17) and (18). Adding the squares of Eqs (17) 

and (18) we obtain, 
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Then Eq (19) can be written as 

       
     

     
     

        

If we consider      then we have 
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Assume 

         ,     ,     ,     , and     . 

If condition    is fulfilled then all roots of      are positive, say             such that    

   . Therefore condition    guarantees the existence of imaginary eigenvalues of (10) where a 

Hopf bifurcation will probably arise. This presumption can be adjusted by investigating the sign of 
      

   
. 

Now, consider Eqs (17) and (18). For     , we have the solutions of both equations, 
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Lemma 1. Suppose that     
  is an element of either the sequence      

   
  or      

   
  with   . Then the 

characteristic equation (10) has a pair of conjugate pure imaginary roots        that fulfils 
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Proof: 

Consider the roots of (10),                    where       
     and       

     . By 

differentiating (10) with respect to   , we get  
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From Eq (10) we have        
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By rewritten Eq (21) as  
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Consider Eq (20). By differentiating Eq (20) with respect to     
 , we get  
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By substituting (23) into (22) we obtain 
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Summarizing our analysis results for this case, we have the following theorem.  

Theorem 1. Suppose that the conditions      and      are fulfilled. Let 

  
                      

   
     

   
 . Then when      

   the equilibrium point    is locally 

asymptotically stable. Furthermore, if      
     then a Hopf bifurcation occurs at    when 

     
 .  
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Case 3:              

For this case, we assume that a new type of pathogen has entered the host body. It is assumed that 

there has been no previous contact between the pathogen and the host immune system. As a result, 

the body cannot directly respond to pathogens such that we have           .  

Lemma 2. If all roots of Eq (10) have negative real parts for     , then there exists a   
        

such that all roots of Eq (10) have negative real parts when      
     . 

 

Proof: 

For     , we assume that Eq (10) has no roots with nonnegative real part. Then Eq. (10) with 

     and      has no root with nonnegative real part. Suppose      then Eq (8) is analytic in 

  and   . Furthermore, as    increases, the stability of the equilibrium point will be lost. Since Eq (8) 

with      has no root with nonnegative real part then there exists   
        such that all roots of 

Eq (8) with      
      have negative real part. 

Theorem 2. Suppose that the conditions      and      are fulfilled. Let 

  
                      

   
     

   
 . Then there exists a   

       , for any         
  , such that 

equilibrium point   is locally asymptotically stable when         
      . 

Proof: 

Using Theorem 1, we have that the roots of Eq (10) have negative real parts for         
  . Using 

Lemma 2, we conclude that the equilibrium point   is locally asymptotically stable when    

     
      . 

4. Numerical simulation 

We present a numerical simulation for the system by assuming that the pathogen invades the 

host for the first time so that no memory cells are preformed. As a result, there is a certain time for 

the immune system to respond by producing primary immune cells along with the formation of 

memory cells after pathogen injection, i.e.,           . The delays are chosen at the critical delays, 

the conditions for the existence of oscillatory behavior, i.e.,         days and          days 

while    is assumed 1.2 days. The parameter values for the numerical simulations are presented in 

Table 1. The simulations are presented in two cases, with and without the addition of therapeutic 

protein. This is intended to study how the therapeutic proteins affect the dynamics of pathogens and 

immune cells systems. The initial values and the historical functions are chosen as follows:      

                                                          
                          . These initial conditions show that the immune system could not 

destroy the pathogen such that assistance in the addition of the therapeutic proteins was needed.  

We first present a simulation of the system without the addition of the protein drug to study how 

the state of the system was initially, and how the protein drug affects the dynamics of the system. 

The simulation results are given in Figure 2. We can observe that the number of pathogens in the 

body increase as time increase in days without intervention of the drug therapy. It means that the 

body's immune system cannot reduce the number of pathogens by itself due to the highest of 

pathogenesis in the system. This is also due to the existence of delays in producing primary immune 

cells and maturing specific immune cells. As shown in Figure 2-a, the pathogen will continue to 

multiply, increase exponentially, and converge to its carrying capacity even though occasionally it 

decreases due to the interactions with the specific immune cells. Around 17 days, the pathogen 
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reaches a saturation point and does not increase again. In Figure 2-b, we can observe that the number 

of primary immune cells increases as a result of pathogen infection. However, primary cells cannot 

stop the invasion of pathogens due to their inefficiency. Since there exists a delay in the maturation 

of primary cells into specific cells, the existing specific cells cannot avoid the increasing of 

pathogens due to the higher number of pathogenic replications compared to the number of the 

existing specific cells. In Figure 2-c, we show that the oscillatory behavior that appears in the system 

is clearly observed in the dynamic of the specific immune cells which means that natural delays 

greatly affect the number of specific immune cells that play an important role in fighting pathogens. 

The specific immune cell solution shows a fluctuation at the beginning of time observation. However, 

for a long time, the number of specific immune cells goes to zero caused by the high pathogenesis of 

the pathogen. Even though the host body produces many immune cells, the cells will die after their 

interaction with the pathogens. On the other hand, initially, the number of the memory cells is very 

small due to the existence of a time delay in the generation of the new memory cells. After the delay, 

the number of memory cells increases as time increase and converge to its stationary point.  

After observing the condition of the system without protein drug intervention, we next present 

the simulation results for the system with therapeutic protein intervention. Figure 3 shows the 

dynamics of the pathogen which is decreases as time increase. It decreases from the initial 

observation time until it reaches zero at 18 days. This behavior is quite different from the previous 

simulation in which the number of pathogens increases as time increase. This means that the addition 

of therapeutic proteins has succeeded in reducing the invasion of pathogens and even eliminating 

pathogens in the host's body. Due to the decreasing of the pathogen, the number of primary immune 

cells is also decreasing at the final time. The host body will reduce the production of primary 

immune cells when the number of pathogens decrease. In addition, the presence of protein drugs also 

affects the dynamics of specific immune cells where the addition of therapeutic proteins has reduced 

fluctuations in specific immune solutions with relatively small oscillatory effects. For the memory 

cells, the addition of protein drug increases the number of memory cells as a result of the initial 

increase in primary cells that triggered by the presence of protein drug.  

Table 1. Definition and value of model parameters. 

Parameter Definition Value and Unit 

  Pathogen replication rate 0.02 mol/days 

  Carrying capacity of the host body environment 0.0035 mol/days 

  Pathogen natural death rate 0.01 mol/days 

  Pathogen death rate due to interactions with immune cells 2.5 × 10
1
 mol/days 

  Pathogen evolution rate 0.0015 mol/days 

  The rate of cellular and biochemical reactions in the body 5.073 mol/days 

   Immunity level from the burden of infection 1.5 mol/days 

   Immune cell regeneration rate 1.467 × 10
−3 

mol/days 

   Time delay for immune cell regeneration rate (after pathogen 

invasion) 

1.2 days 

  
  Critical delay for maturation of immune cells 2.64 days 

  
  Critical delay for formation of memory cells 7.776 days 

  Therapeutic protein drug binding rate by immune cells 36 mol/days 

  Immune cell regeneration rate 1 × 10
3 
mol/days 

  Immune cell reduction rate 3.8 × 10
3
 mol/days 
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Parameter Definition Value and Unit 

  Immune cell production rate 2.3 × 10
−3

 mol/days 

  Immune cell decay rate 0.2 mol/days 

   Protein drug input dose rate 3.5 × 10 −2
days 

 

Figure 2. The transient behavior of the: (a) pathogen; (b) primary immune cell; (c) 

specific immune cell; (d) memory cell in the body without intervention of protein drug. 

Pathogens replicate exponentially and fuse with their carrying capacity while specific 

immune cells as the pathogen barrier decay by following their oscillatory dynamics 

towards zero at the fifteen’ day. 

 

 

Figure 3. The transient behavior of the: (a) pathogen; (b) primary immune cell; (c) 

specific immune cell; (d) memory cell in the host body after the addition of the protein 

drug. The existence of protein drugs triggers the production of primary cells which 

directly affect the decreasing of pathogens which exponentially converge to zero in no 

more than fifteen days.  
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5. Conclusions  

A modified mathematical model of immune system was proposed by considering the immune 

long pathway as a simple lumped pathway. It was assumed that the interaction of pathogens and 

immune cells is a competitive interaction, and under the influences of therapeutic protein, the 

production of primary immune cells was triggered. Some natural discrete delays were introduced into 

the model to accommodate the slow response of primary cells to the pathogen attack, and to consider 

the slow maturation rate of the primary cells. We found that there exists a pair of critical delays for 

which the system appearance oscillatory behavior. However, the presence of natural delays has the 

greatest effect on the dynamics of specific immune cells, i.e. immune cells that are responsible for 

attacking pathogens directly. It was numerically observed that the fluctuation of specific immune 

cells was quite high when the protein drug was not injected into the host body. Moreover, the number 

of pathogens increases when the number of specific immune cells decreases, and converges to their 

stationary point when the number of specific immune cells converges to zero. After the addition of 

therapeutic proteins, the invasion of pathogens can be reduced or even eliminated from the system, 

and protein drugs were also successful in reducing the fluctuations of specific immune cells. Based 

on the presented numerical simulations, it concluded that the proposed model can capture the 

dynamic of the delayed system with or without drug intervention. The existence of therapeutic 

protein was successfully minimizing the number of pathogens and accelerated the elimination of 

pathogens in the host body. It also observed that the existence of therapeutic protein minimized the 

oscillation in the system especially in the specific immune cells dynamic. It meant that the protein 

drugs successfully speed up the specific immune performance in eliminating pathogens invasion in 

the host body. 
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