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1. Introduction

Let H be a real Hilbert space. Suppose A : H → 2H be a monotone mapping, that is,

〈u − w, x − y〉 ≥ 0, ∀u,w ∈ D(A) := {z ∈ H : Az , ∅}, x ∈ Au, y ∈ Aw.

The problem of finding an element

w ∈ D(A) such that 0 ∈ Aw (1.1)
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is known as monotone inclusion problem (MIP for short). This problem has vast applications in several
fields of sciences and engineering such as in inverse problems, image recovery, fuzzy theory, game the-
ory, signal processing, robotic control, etc. Due to its applications, several iterative schemes for finding
a solution of (1.1) were developed. The most popular developed scheme is proximal point algorithm
(PPA for short) which can be traced to Martinet [25] and Rockerfellar [30]. With some control condi-
tions, Rockerfeller [30] proved weak convergence of a scheme generated by the PPA. Since then many
researchers have studied and developed different modifications of PPA in consideration of large range
of applications of MIP (see, e.g., [16, 18, 27, 33] and the references therein). It has been observed
recently that several problems can be tackled in a structural metric space called a CAT(0) space. As a
result, several concepts including that of monotone mappings have been extended from linear spaces
and Hadamard manifolds to CAT(0) spaces (see, e.g., [2, 4, 5, 9, 24] and the references therein).

Given a CAT(0) space (X, d), Berg and Nokolaev [3] denoted (u,w) ∈ X × X by −→uw and defined a
quasilinearization map 〈·, ·〉 : (X × X) × (X × X)→ R by

〈
−→uw,−→vy〉 =

1
2

(
d2(u, y) + d2(w, v) − d2(u, v) − d2(w, y)

)
, (u, v,w, y ∈ X).

Using this notion of quasilinearization, Kakavandi and Amini [17] introduced the dual space of a
CAT(0) space (X, d) as follows. Let φ : X → R be a function and let L be the function defined

by L(φ) := sup
{
φ(w) − φ(v)

d(w, v)
: w, v ∈ X,w , v

}
. Consider Θ : R × (X × X) → C(X,R) defined by

Θ(t, u,w)(x) = t〈−→uw,−→ux〉 for all t ∈ R, u,w, x ∈ X, where C(X,R) denotes the space of continuous
real-valued functions on X. Then it is known that the map D on R × X × X defined by

D
(
(t, u,w), (s, x, y)

)
= L

(
Θ(t, u,w) − Θ(s, x, y)

)
is a pseudometric on R × X × X. Moreover, D forms an equivalence relation on R × X × X,
where the equivalence class of (t, u,w) is [t−→uw] :=

{
s−→xy : D

(
(t, u,w), (s, x, y)

)
= 0

}
. Let X∗ :={

t−→uw : (t, u,w) ∈ R × X × X
}
. Then (X∗,D) is the dual space of (X, d) as defined in [17]. Moreover,

X∗ acts on X × X by 〈x∗,−→uw〉 = t〈−→xy,−→uw〉, for x∗ = [t−→xy] ∈ X∗, u,w ∈ X. In addition, the authors
observed that if X is a Hilbert space, then [t−→xy] = t(y − x).

Recently, Khatibzadeh and Ranjbar [21] introduced the concept of monotonicity in a CAT(0) space
X with dual space X∗ as follows. A mapping A : X → 2X∗ is called monotone if

〈u∗ − w∗,−→uw〉 ≥ 0, ∀u,w ∈ {x ∈ X : Ax , ∅} , u∗ ∈ Au,w∗ ∈ Aw.

The authors approximate a solution of MIP by establishing a ∆-convergence theorem for the following
PPA:

vn+1 = JA
µn

vn, v1 ∈ X, (1.2)

where µn ∈ (0,∞) such that
∞∑

n=1
µn = ∞ and JA

µ is the resolvent operator of monotone map A of order

µ > 0, which is defined by

JA
µ z :=

{
w ∈ X :

[
1
µ
−→wz

]
∈ Aw

}
. (1.3)
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Thereafter, Ranjbar and Khatibsadeh [28] proposed the following scheme

vn+1 = σnvn ⊕ (1 − σn)JA
µn

vn, v1 ∈ X, (1.4)

where {µn} ⊂ (0,∞) and {σn} ⊂ [0, 1]. The authors established ∆-convergence of the sequence gen-
erated therefrom to a solution of MIP. For more details on PPA and MIP see [8, 19, 20, 31] and the
references therein.

In 2020, Dehghan et al. [9] introduced a new method of approximating a common solution of a
finite collection of MIP in a complete CAT(0) space and established that the method is faster than that
of Takahashi and Shimoji [33]. For j ∈ {1, 2, · · · ,m}, let each A j : X → 2X∗ be a monotone mapping
with resolvent operator J( j)

µn . Then the authors scheme is as follows:

vn+1 = σnV ⊕ (1 − σn)Tnvn, (1.5)

where V is fixed in X, {σn} is a sequence in [0, 1] such that lim
n→∞

σn = 0,
∞∑

n=1
σn = ∞,

∞∑
n=2
|σn−σn−1| < ∞,

and Tn is a map defined by

U (0)
n v = v

U (1)
n v = a(1)

n J(1)
µn v ⊕ b(1)

n U (0)
n v ⊕ c(1)

n U (0)
n v

U (2)
n v = a(2)

n J(2)
µn v ⊕ b(2)

n U (1)
n v ⊕ c(2)

n U (1)
n v

U (3)
n v = a(3)

n J(3)
µn v ⊕ b(3)

n U (2)
n v ⊕ c(3)

n U (2)
n v

...

U (m−1)
n v = a(m−1)

n J(m−1)
µn v ⊕ b(m−1)

n U (m−2)
n v ⊕ c(m−1)

n U (m−2)
n v

Tnv = a(m)
n J(m)

µn v ⊕ b(m)
n U (m−1)

n v ⊕ c(m)
n U (m−1)

n v,

with {a( j)
n }, {b

( j)
n } and {c( j)

n } in [0, 1] satisfying

a( j)
n + b( j)

n + c( j)
n = 1, j = 1, 2, · · · ,m.

In 2021, Chaipunya et al. [7] observed that although CAT(0) spaces generalize Hilbert spaces and
Hadamard Manifolds, the known concept of monotonicity that resulted in the establishment of the
resolvent operator in (1.3) barely has a relationship with the Hadamard manifolds. To incorporate the
monotonicity of Hadamard manifolds, the authors introduced a new concept of monotonicity called
monotone vector field (MVF for short) using tangent spaces not the dual spaces. They analyzed that
this notion coincides with the notion of monotonicity found in both Hilbert spaces and Hadamard
manifolds unlike the monotonicity structure in [21].

Inspired by the work of Chaipunya et al. [7], Dehghan et al. [9], Ranjbar and Khatibzadeh [28],
Khatibzadeh and Ranjbar [21] and motivated by the research on this direction, we establish some
iterative schemes for approximating a common solution of a countable family of monotone vector field
inclusion problems (MVFIP) in CAT(0) setting. We propose a one step convex combination scheme of
proximal point algorithms and establish convergence theorems for the sequence generated therefrom.
We apply our results to solve a countable family of minimization problems, compute Frechét mean and
geometric median in CAT(0) spaces, and also solve a kinematic problem in robotic motion control.
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Moreover, we give a numerical example to show the applicability and robustness of the proposed
scheme by comparing it with the scheme of Dehghan et al. [9].

The paper is outlined as follows. In Section 2, we recall preliminaries consisting of definitions,
lemmas and some known results that are essential in the subsequent sections. We present the pro-
posed scheme and its convergence analysis in Section 3. Finally, we illustrate the applications and the
example in Section 4.

2. Preliminaries

In this section, we state some basic facts and known results that will be useful in the subsequent
sections. The details can be found in [4, 24, 26], unless otherwise specified.

Let (X, d) be a metric space and u, v be two points in X. A map τv
u : [0, `] ⊂ R → X is called a

geodesic path from u to v if τv
u(0) = u, τv

u(`) = v and d
(
τv

u(t1), τv
u(t2)

)
= |t1 − t2|, for every t1, t2 ∈ [0, `].

The image of τv
u is a geodesic segment joining u and v, and denoted by [u, v] if unique. A metric space

(X, d) is a geodesic space if every two elements u, v in X are joined by a geodesic segment, and is said
to be uniquely geodesic space if every two points u, v are joined by a unique geodesic segment [u, v]
in X. For u, v having unique geodesic segment and for t ∈ [0, 1], we denote by (1 − t)u ⊕ tv the unique
point w ∈ [u, v] such that

d(u,w) = td(u, v) and d(v,w) = (1 − t)d(u, v). (2.1)

Moreover, for finite elements {v j}
m
1 ⊂ X and {t j}

m
1 ⊂ (0, 1), the notation

m⊕
j=1

t jv j is adopted from [10,

p.460], as follows:
m⊕

j=1

t jv j := (1 − tm)
(

t1

1 − tm
v1 ⊕

t2

1 − tm
v2 ⊕ · · · ⊕

tm−1

1 − tm

)
⊕ tmvm.

A geodesic space (X, d) is called a CAT(0) space if and only if it satisfies the CN-inequality of
Bruhat and Tits [6] as follows. Let w, v ∈ X and z be a midpoint of a geodesic segment connecting w
and v, then

d2(z, x) ≤
1
2

d2(w, x) +
1
2

d2(v, x) −
1
4

d2(w, v), (2.2)

for every x ∈ X. CAT(0) spaces include pre-Hilbert spaces, Hilbert balls, Euclidean buildings, R-
trees and Hadamard manifolds. For more details on basics of CAT(0) spaces and their examples see
[4, 5, 15, 22, 24, 29]. As direct consequences of (2.1) and (2.2), the following inequalities hold for
u1, u2, u3 ∈ X and t ∈ [0, 1] (see also [13]):

d((1 − t)u1 ⊕ tu2, u3) ≤(1 − t)d(u1, u3) + td(u2, u3); (2.3)
d2((1 − t)u1 ⊕ tu2, u3) ≤ (1 − t)d2(u1, u3) + td2(u2, u3) − t(1 − t)d2(u1, u2). (2.4)

A subset E of a CAT(0) space X is convex if all geodesic segments connecting any two points of E
are contained in E. A geodesic triangle ∆(u, v,w) in X is a set of three points u, v, w together with three
geodesic segments connecting each pair. For a uniquely geodesic space the triangle ∆ is simply

∆(v, u,w) := [v,w] ∪ [w, u] ∪ [u, v], (2.5)
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where u, v,w ∈ X. A comparison triangle of a geodesic triangle ∆(u, v,w) is a triangle in the Euclidean
space

(
R2, ‖ · ‖2

)
denoted by ∆̄(ū, v̄, w̄) satisfying

d(u, v) = ‖ū − v̄‖2, d(v,w) = ‖v̄ − w̄‖2, d(u,w) = ‖ū − w̄‖2.

For any point z ∈ ∆(u, v,w), if z lies in the segment connecting u and v, then a comparison point of z in
a comparison triangle ∆̄(ū, v̄, w̄) is the point z̄ ∈ [ū, v̄] ⊂ ∆̄(ū, v̄, w̄) with d(u, z) = ‖ū − z̄‖2. For points in
the other segments of ∆(u, v,w), their comparison points are defined in a similar way.

Let ]̄x(u,w) denotes the comparison angle between u and w at x, i.e,

]̄x(x, x) := 0, ]̄x(x,w) = ]̄x(w, x) :=
π

2
, cos ]̄x(u,w) :=

〈ū − x̄, w̄ − x̄〉
‖ū − x̄‖2‖w̄ − x̄‖2

,

where u,w ∈ X\{x} and 4̄(ū, w̄, x̄) is a comparison triangle of 4(u,w, x). Then the Alexandrov angle
between two geodesic issuing from a common point x ∈ X is defined by

αx
(
τ1, τ2

)
= lim

s,t→0+
]̄x

(
τ1(t), τ2(s)

)
.

The Alexandrov angle αx defines a pseudometric on the set of all geodesic issuing from x. We denote
the set of all geodesic issuing from x by S x and the metric identification of the pseudometric space by
(S x, ]̄x). In this work, the elements of S x are denoted by τ ≡ [τ]. As in [7], ∼ forms an equivalence
relation on [0,∞) × S x in the sense that (t, τ1) ∼ (s, τ2) if and only if

tη(τ1) = sη(τ2) = 0 or tη(τ1) = sη(τ2) > 0 with τ1 = τ2,

where η(τ) := 0 if τ is a geodesic connecting only one point and η(τ) := 1 otherwise. Then TxX :=(
[0,∞) × S x

)
/ ∼ together with the metric dx defined by

dx(tτ1, sτ2) :=
√

t2η(τ1) + s2η(τ2) − 2stη(τ1)η(τ2)cos]x(τ1, τ2)

form a metric space (TxX, dx) known as the tangent space of X.
In the sequel, we denote a complete CAT(0) space by (X, d), the tangent space of X at u by (TuX, du)

and a nonempty convex closed subset of X by E. we shall denote the tangent bundle of X,
⋃
u∈X

TuX by

T X, and adopt the notation 0 := {0u : u ∈ X}, where 0u := 0τ = sτu
u for which s > 0 and τ ∈ S u. We

shall say that a vector field A : X → T X satisfies condition (S ) if for any s > 0 and x ∈ X, there exists
u ∈ X such that sd(u, x)τx

u ∈ Au.

Definition 2.1. [7] A vector field A : X → T X is said to be monotone if

Lx
(
ξ, τw

u
)

+ Lx
(
φ, τu

w
)
≤ 0,

for every (u, ξ), (w, φ) ∈ {(x, u) ∈ X × T X : u ∈ Ax}, where

Lx(tτ1, sτ2) = stη(τ1)η(τ2) cos ]̄x(τ1, τ2).

In the sequel, A−1(0) denotes the solution set of MVFIP and Jµ denotes the µ-resolvent of A defined
by

Jµ(z) :=
{

w ∈ X :
1
µ

d(w, z)τz
w ∈ Aw

}
, ∀z ∈ X.

AIMS Mathematics Volume 7, Issue 5, 7385–7402.
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Lemma 2.2. [7, p.15] Let A : X → T X be a monotone vector field satisfying condition (S ) and let Jµ
be the resolvent of A. Then the following statements hold

(i) Jµ is well-defined and singlevalued on X.
(ii) d

(
Jµ(x), Jµ(y)

)
≤ d(x, y) for every x, y in X.

(iii) A−1(0) = {x ∈ X : x = Jµ(x)}.

Definition 2.3. Let {vn} be a bounded sequence in X. Then the asymptotic center A({vn}) of {vn} is
defined by

A({vn}) :=
{
u ∈ Y : lim sup

n→∞
d(u, vn) = inf

u∈X
lim sup

n→∞
d(u, vn)

}
.

Remark 2.4. It is shown in [12, Proposition 7] that A({vn}) has only one element.

Definition 2.5. A bounded sequence {vn} ∆-converges to a point v in X if {v} is the unique asymptotic
centre for every subsequence {vnk} of {vn} and strongly converges to v if lim

n→∞
d(vn, v) = 0.

Lemma 2.6. [23, Proposition 3.7] Let T : E → X be a map such that d(Tu,Tw) ≤ d(u,w) for every
u,w ∈ E. If {wn} ∆-converges to w and d(wn,Twn)→ 0, then w = Tw.

Lemma 2.7. [11] The asymptotic centre of any bounded sequence in E is contained in E.

Lemma 2.8. [23, Proposition 3.6] Every bounded sequence {wn} in E has a ∆-convergent subsequence
{wnk}.

Lemma 2.9. [13, Lemma 2.8] Let {vn} be a sequence in X with A({vn}) = {v}. Suppose that {vnk} is a
subsequence of {vn} with A({vnk}) = {w} and the sequence {d(vn,w)} converges. Then v = w.

3. Main results

In this section, we maintain the notation (X, d) for a complete CAT(0) space, E for a nonempty
closed convex subset of X, T E for the tangent bundle of E and J0

µ for identity map.

Theorem 3.1. For m ∈ N, let A j : E → T E, j = 1, 2, · · · ,m be monotone vector fields satisfying

condition (S ) and Γ :=
m⋂

j=1
A−1

j (0) , ∅. For each j ∈ {1, 2, · · · ,m}, let J j
µ be the µ-resolvent operator of

A j. Let v1 be chosen arbitrarily in E and {vn} be defined iteratively by

vn+1 =

m⊕
j=0

γ j
nJ j

µ(vn), n ≥ 1, (3.1)

where {γ j
n} ⊂ (0, 1) such that

m∑
j=0
γ

j
n = 1 and lim inf

n→∞
γ

j
n > 0 for every j ∈ {0, 1, · · · ,m}. Then {vn}

∆-converges to a point in Γ.

Proof. Let v∗ ∈ Γ. By (3.1), (2.3) and Lemma 2.2, we have

d(vn+1, v∗) = d

 m⊕
j=0

γ j
nJ j

µ(vn), v∗

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≤

m∑
j=0

γ j
nd

(
J j
µ(vn), v∗

)
=

m∑
j=0

γ j
nd

(
J j
µ(vn), J j

µ(v
∗)
)

≤ d
(
vn, v∗

)
. (3.2)

This implies that for every v∗ ∈ Γ, {d(vn, v∗)} is a nonincreasing sequence in R and since it is bounded,
the limit exists.

Now, let n ∈ N and set δ(n)
k =

k⊕
j=0

γ
j
n

βk
J j
µ(vn), where βk :=

k∑
j=0
γ

j
n, k ∈ {0, 2, · · · ,m}. Then βk ∈ (0, 1),

β0 = γ0
n, βm = 1 and δ(n)

0 = J0(vn) = vn. Moreover,

βk−1

βk
≥ γ0

n, and (3.3)

δ(n)
k =

βk−1

βk
δn)

k−1

⊕ γk
n

βk
Jk
µ(vn), (3.4)

for every k ∈ {1, 2, · · · ,m}. Let v∗ ∈ Γ. Then from (3.4), (2.4) and (3.3), we have the following for
every k ∈ {1, 2, · · · ,m}

d2
(
δ(n)

k , v∗
)

= d2
(
βk−1

βk
δn)

k−1

⊕ γk
n

βk
Jk
µ(vn), v∗

)
≤

1
βk

[
βk−1d2

(
δ(n)

k−1, v
∗
)

+ γk
nd2

(
Jk
µ(vn), v∗

)
−
βk−1γ

k
n

βk
d2

(
δ(n)

k−1, J
k
µ(vn)

)]
≤

1
βk

[
βk−1d2

(
δ(n)

k−1, v
∗
)

+ γk
nd2

(
Jk
µ(vn), v∗

)
− γ0

nγ
k
nd2

(
δ(n)

k−1, J
k
µ(vn)

)]
. (3.5)

From (3.1) and (3.5), we have

d2 (vn+1, v∗) = d2
(
δ(n)

m , v∗
)

≤
1
βm

[
βm−1d2

(
δ(n)

m−1, v
∗
)

+ γm
n d2

(
Jm
µ (vn), v∗

)
− γ0

nγ
m
n d2

(
δ(n)

m−1, J
m
µ (vn)

)]
≤ βm−1d2

(
δ(n)

m−1, v
∗
)

+ γm
n d2

(
Jm
µ (vn), v∗

)
− γ0

nγ
m
n d2

(
δ(n)

m−1, J
m
µ (vn)

)
≤

[
βm−2d2

(
δ(n)

m−2, v
∗
)

+ γm−1
n d2

(
Jm−1
µ (vn), v∗

)
− γ0

nγ
m−1
n d2

(
δ(n)

m−2, J
m−1
µ (vn)

)]
+ γm

n d2
(
Jm
µ (vn), v∗

)
− γ0

nγ
m
n d2

(
δ(n)

m−1, J
m
µ (vn)

)
= βm−2d2

(
δ(n)

m−2, v
∗
)

+

m∑
k=m−1

γk
nd2

(
Jk
µ(vn), v∗

)
− γ0

n

m∑
k=m−1

γk
nd2

(
δ(n)

k−1, J
k
µ(vn)

)
.

Continuing in this pattern, we get that

d2 (vn+1, v∗) ≤ βm−3d2
(
δ(n)

m−3, v
∗
)

+

m∑
k=m−2

γk
nd2

(
Jk
µ(vn), v∗

)
− γ0

n

m∑
k=m−2

γk
nd2

(
δ(n)

k−1, J
k
µ(vn)

)
AIMS Mathematics Volume 7, Issue 5, 7385–7402.
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...

≤ β1d2
(
δ(n)

1 , v∗
)

+

m∑
k=2

γk
nd2

(
Jk
µ(vn), v∗

)
− γ0

n

m∑
k=2

γk
nd2

(
δ(n)

k−1, J
k
µ(vn)

)
≤ β0d2

(
δ(n)

0 , v∗
)

+

m∑
k=1

γk
nd2

(
Jk
µ(vn), v∗

)
− γ0

n

m∑
k=1

γk
nd2

(
δ(n)

k−1, J
k
µ(vn)

)
=

m∑
k=0

γk
nd2

(
Jk
µ(vn), v∗

)
− γ0

n

m∑
k=1

γk
nd2

(
δ(n)

k−1, J
k
µ(vn)

)
.

This and Lemma 2.2 imply that

d2 (vn+1, v∗) ≤
m∑

k=0

γk
nd2

(
Jk
µ(vn), v∗

)
− γ0

n

m∑
k=1

γk
nd2

(
δ(n)

k−1, J
k
µ(vn)

)
=

m∑
k=0

γk
nd2

(
Jk
µ(vn), Jk

µ(v
∗)
)
− γ0

n

m∑
k=1

γk
nd2

(
δ(n)

k−1, J
k
µ(vn)

)
≤ d2 (vn, v∗) − γ0

n

m∑
k=1

γk
nd2

(
δ(n)

k−1, J
k
µ(vn)

)
. (3.6)

Consequently, we have that for every j ∈ {1, 2, · · · ,m},

γ0
nγ

j
nd2

(
δ(n)

j−1, J
j
µ(vn)

)
≤ γ0

n

m∑
k=1

γk
nd2

(
δ(n)

k−1, J
k
µ(vn)

)
≤ d2 (vn, v∗) − d2 (vn+1, v∗) . (3.7)

Since lim inf
n→∞

γ0
nγ

j
n ≥ lim inf

n→∞
γ0

n · lim inf
n→∞

γ
j
n > 0 for each j, it follows from (3.2) and (3.7) that

lim
n→∞

d2
(
δ(n)

j−1, J
j
µ(vn)

)
= 0, ∀ j ∈ {1, · · · ,m}.

Thus,
lim
n→∞

d
(
δ(n)

j−1, J
j
µ(vn)

)
= 0, ∀ j ∈ {1, · · · ,m}. (3.8)

From (3.4), (2.1) and (3.8), we get that for every j ∈ {1, · · · ,m},

d
(
δ(n)

j−1, δ
(n)
j

)
≤ d

(
δ(n)

j−1, J
j
µ(vn)

)
→ 0, as n→ ∞. (3.9)

Furthermore, for any j ∈ {1, · · · ,m}, we have

d
(
vn, J j

µ(vn)
)

= d
(
δ(n)

0 , J j
µ(vn)

)
≤ d

(
δ(n)

0 , δ(n)
1

)
+ d

(
δ(n)

1 , δ(n)
2

)
+ · · · + d

(
δ(n)

j−2, δ
(n)
j−1

)
+ d

(
δ(n)

j−1, J
j
µ(vn)

)
=

j−1∑
k=1

d
(
δ(n)

k−1, δ
(n)
k

)
+ d

(
δ(n)

j−1, J
j
µ(vn)

)
. (3.10)
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It follows from (3.10), (3.8) and (3.9) that

lim
n→∞

d
(
vn, J j

µ(vn)
)

= 0, ∀ j ∈ {1, · · · ,m}. (3.11)

From (3.2), {vn} is bounded. Suppose that x is an arbitrary point in the union of asymptotic centers of all
subsequences of {vn} and let

{
vnk

}
be a subsequence of {vn} with A({vnk}) = {x}. Since {vnk} is bounded,

Lemma 2.8 gives the existence of a subsequence
{
vnk j

}
of {vnk} that ∆-converges to v and Lemma 2.7

implies that v ∈ E. Now by Lemma 2.6 and (3.11), we have that v = J j
µ(v) for every j ∈ {1, 2, · · · ,m}.

Thus v ∈ Γ, by Lemma 2.2(iii). By (3.2), {d(vn, v)} converges and by Lemma 2.9, x = v. Thus, the
union of asymptotic centers of all subsequences of {vn} (denoted by ωA({vn})) is in Γ. To complete the
proof, it suffices to show that ωA({vn}) consists of only one element. Let A({vn}) = {v} and suppose that
there exists w ∈ ωA({vn}) with v , w. Now, let {vnk} be the subsequence of {vn} with A({vnk}) = {w}.
Then by (3.2) and the definition of asymptotic center, we have

lim sup
n→∞

d(vn, v) < lim sup
n→∞

d(vn,w)

= lim
n→∞

d(vn,w)

= lim sup
k→∞

d(vnk ,w)

< lim sup
k→∞

d(vnk , v)

≤ lim sup
n→∞

d(vn, v),

which contradicts v , w. Therefore, ωA({vn}) ⊆ Γ consists of exactly one element.

Corollary 3.2. Let E, A j, Γ, J j
µ and {vn} be as in Theorem 3.1. Suppose E is compact. Then {vn}

converges strongly to a member of Γ.

Proof. We have seen in (3.2) that {vn} is a bounded sequence in E. Since E is compact, there exists
a subsequence {vnk} of {vn} that converges strongly to some point v in E. Thus, {vnk} ∆-converges to
v ∈ E. Then v ∈ ωA({yn}) ⊂ Γ. Consequently, by (3.2), we have

lim
n→∞

d(vn, v) = lim
k→∞

d(vnk , v) = 0,

which completes the proof.

Theorem 3.3. Let A j : E → T E, j ≥ 1 be monotone vector fields satisfying condition (S ) and

Γ :=
∞⋂
j=1

A−1
j (0) , ∅. For each j ∈ N, let J j

µ be the µ-resolvent operator of A j. Let v1 be chosen

arbitrarily in E and {vn} be defined iteratively by

vn+1 =

n⊕
j=0

γ j
nJ j

µ(vn), n ≥ 1, (3.12)

where {γ j
n} ⊂ (0, 1) such that

n∑
j=0
γ

j
n = 1 and lim inf

n→∞
γ

j
n > 0 for every j ∈ N. Then {vn} ∆-converges to a

point in Γ.
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The proof of Theorem 3.3 follows similar lines as in the proof of Theorem 3.1. But for complete-
ness, we sketch the proof as follows.

Proof. Let v∗ ∈ Γ. By (3.1), (2.3) and Lemma 2.2, we have

d(vn+1, v∗) = d

 n⊕
j=0

γ j
nJ j

µ(vn), v∗


≤

n∑
j=0

γ j
nd

(
J j
µ(vn), v∗

)
=

n∑
j=0

γ j
nd

(
J j
µ(vn), J j

µ(v
∗)
)

≤ d
(
vn, v∗

)
. (3.13)

This implies that for every v∗ ∈ Γ, {d(vn, v∗)} is a nonincreasing sequence in R and since it is bounded,
the limit exists.

Now let n ∈ N and set δ(n)
k =

k⊕
j=0

γ
j
n

βk
J j
µ(vn), where βk :=

k∑
j=0
γ

j
n, k ∈ {0, 2, · · · , n}. Then βk ∈ (0, 1),

β0 = γ0
n, βn = 1 and δ(n)

0 = J0(vn) = vn. Moreover,

βk−1

βk
≥ γ0

n, and (3.14)

δ(n)
k =

βk−1

βk
δn)

k−1

⊕ γk
n

βk
Jk
µ(vn), (3.15)

for every k ∈ {1, 2, · · · , n}. Let v∗ ∈ Γ. Following similar arguments as in obtaining (3.6) with (3.15),
we get

d2 (vn+1, v∗) ≤ d2 (vn, v∗) − γ0
n

n∑
k=1

γk
nd2

(
δ(n)

k−1, Jk(vn)
)
. (3.16)

Let j ≥ 1, we have from (3.16) that for any n ≥ j,

γ0
nγ

j
nd2

(
δ(n)

j−1, J j(vn)
)
≤ γ0

n

n∑
k=1

γk
nd2

(
δ(n)

k−1, J
k
µ(vn)

)
≤ d2 (vn, v∗) − d2 (vn+1, v∗) . (3.17)

Moreover, since lim inf
n→∞

γ0
nγ

j
n ≥ lim inf

n→∞
γ0

n · lim inf
n→∞

γ
j
n > 0 for each j ∈ N, we have from (3.13) and (3.17)

that
lim
n→∞

d
(
δ(n)

j−1, J
j
µ(vn)

)
= 0, ∀ j ∈ N. (3.18)

From (3.15), (2.1) and (3.18), we get that for every j ∈ N,

d
(
δ(n)

j−1, δ
(n)
j

)
≤ d

(
δ(n)

j−1, J
j
µ(vn)

)
→ 0, as n→ ∞. (3.19)
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Furthermore, for any j ∈ N, we have that

d
(
vn, J j

µ(vn)
)

= d
(
δ(n)

0 , J j
µ(vn)

)
≤ d

(
δ(n)

0 , δ(n)
1

)
+ d

(
δ(n)

1 , δ(n)
2

)
+ · · · + d

(
δ(n)

j−2, δ
(n)
j−1

)
+ d

(
δ(n)

j−1, J
j
µ(vn)

)
=

j−1∑
k=1

d
(
δ(n)

k−1, δ
(n)
k

)
+ d

(
δ(n)

j−1, J
j
µ(vn)

)
. (3.20)

It follows from (3.18), (3.19) and (3.20), that

lim
n→∞

d
(
vn, J j

µ(vn)
)

= 0, ∀ j ∈ N. (3.21)

The proof is completed as in similar arguments of proof of Theorem 3.1 from (3.11) to end.

Remark 3.4. It is important to note that the result in Theorem 3.1 can be obtain from Theorem 3.3 by
taking each A j to be the set containing only the zero of the tangent bundle T E for any j ∈ {m + 1,m +

2,m + 3, · · · }, and (3.1) coincides with (3.12) for n ≥ m.

Corollary 3.5. Let E, A j, Γ and {vn} be as in Theorem 3.3. Suppose that E is compact. Then {vn}

converges strongly to a member of Γ.

Proof. The proof follows similar arguments as in the proof of Corollary 3.2 with (3.13) in place of
(3.2).

4. Applications and numerical example

In the following discussion, we apply the proposed scheme to solve a countable family of minimiza-
tion problems, to compute Frechét mean and geometric median in CAT(0) spaces and also to solve a
kinematic problem in robotic motion control. Furthermore, we give a numerical example to show the
computational overview of our scheme by comparing it with the scheme (1.5) of Dehghan et al. [9].

4.1. Application to minimization problems

A function g : X → (−∞,+∞] is called convex if

g(tu ⊕ (1 − t)v) ≤ tg(x) + (1 − t)g(y) for all t ∈ (0, 1) and x, y ∈ X.

If the set D(g) := {x ∈ X : g(x) < +∞} , ∅, then g is proper. The function g is said to be lower
semi-continuous at a point u ∈ D(g) if g(w) ≤ lim inf

n→∞
g(wn) for any convergent sequence {wn} with

limit w ∈ D(g). If g is lower semi-continuous at every point in D(g), then it is lower semi-continuous
on X. The problem of finding

u ∈ X such that g(u) ≤ g(v), ∀v ∈ X (4.1)

is a well-known minimization problem (MP). The subdifferential of g (as given in [7, p.11]) is a vector
field ∂g : X → T X defined by

∂g(x) =
{
x∗ ∈ TxX : g(y) ≥ g(x) + d(x, y)Lx(x∗, γy

x), (y ∈ X)
}
,

where Lx(tγ1, sγ2) = tsζ(γ1)ζ(γ2) cos ]x(γ1, γ2) for any tγ1, sγ2 ∈ TxX.
It has been shown in [7] that:
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(a) ∂g is a monotone vector field that satisfies condition (S ),
(b) the solution of (4.1) coincides with the set (∂g)−1(0).

In view of (a) and (b) above, we obtain the following results.

Corollary 4.1. Let g j : X → (−∞,+∞], j = 1, 2, · · · ,m be a family of convex, proper and lower

semi-continuous functions with Γ :=
m⋂

j=1
arg min

x∈X
g j(x) , ∅. For each j ∈ {1, 2, · · · ,m}, let J j

µ be the

µ-resolvent operator of ∂g j. For v1 ∈ X, let {vn} be generated by

vn+1 =

m⊕
j=0

γ j
nJ j

µ(vn), n ≥ 1, (4.2)

where {γ j
n} ⊂ (0, 1) such that

m∑
j=0
γ

j
n = 1 and lim inf

n→∞
γ

j
n > 0 for every j ∈ {0, 1, · · · ,m}. Then {vn}

∆-converges to a point in Γ.

Corollary 4.2. Let g j : X → (−∞,+∞], j ∈ N be a family of convex, proper and lower semi-continuous
functions with Γ :=

⋂
j≥1

arg min
x∈X

g j(x) , ∅. For each j ∈ N, let J j
µ be the µ-resolvent operator of ∂g j. For

v1 ∈ X, let {vn} be generated by

vn+1 =

n⊕
j=0

γ j
nJ j

µ(vn), n ≥ 1, (4.3)

where {γ j
n} ⊂ (0, 1) such that

n∑
j=0
γ

j
n = 1 and lim inf

n→∞
γ

j
n > 0 for every j ∈ N. Then {vn} ∆-converges to a

point in Γ.

4.2. Application in computing mean and median:

Frechét mean and geometric median in CAT(0) spaces have many applications toward real-life
setting. Some of the applications come from diffusion tensor imaging, consensus algorithms, compu-
tational phylogenetics and modeling of airway systems in human lungs and blood vessels [1, 2, 14].

Let {vi}
p
i=1 be elements of X and let {αi}

p
i=1 be positive weights satisfying

p∑
i=1
αi = 1. The Frechét

mean of {vi}
p
i=1 is given by

argmin
w∈X

 p∑
i=1

αid2(w, vi)

 (4.4)

and the geometric median of {vi}
p
i=1 is

argmin
w∈X

 p∑
i=1

αid(w, vi)

 . (4.5)

Let f and g be two real-valued functions on X defined by

f (w) =

p∑
k=1

αid2(w, vk), g(w) =

p∑
k=1

αid(w, vk) for every w ∈ X.

Then by properties of metric d, f and g are convex proper and lower semi-continuous functions on X.
Consequently we have the following results from Theorem 4.1.
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Corollary 4.3. Let Jµ be the µ-resolvent operator of ∂ f . Then, for v1 ∈ X, the sequence {vn} generated
by

vn+1 = γ0
nvn ⊕ (1 − γ0

n)Jµ(vn), n ≥ 1, (4.6)

where {γ0
n} ⊂ (0, 1) such that lim inf

n→∞
γ0

n > 0, approximates the Frechét mean of {vi}
p
i=1.

Corollary 4.4. Let Jµ be the µ-resolvent operator of ∂g. Then, for v1 ∈ X, the sequence {vn} generated
by

vn+1 = γ0
nvn ⊕ (1 − γ0

n)J(vn), n ≥ 1, (4.7)

where {γ0
n} ⊂ (0, 1) such that lim inf

n→∞
γ0

n > 0, approximates the geometric median of {vi}
p
i=1.

4.3. Two-arm robotic motion control

Let l ∈ N. For k ∈ {1, 2, · · · , l}, consider gk : X → R be defined by gk(w) = d2(w, σk), for every
w ∈ X and some σk ∈ X. Then by properties of metric d, each gk is convex proper and lower semi-
continuous function. The problem of finding the minimizers of gk at each k takes many forms and has
been of great interest in optimization problems such as least square, time variant, total variations and
so on. In this context, we consider a special case, when X = R2 equipped with the Euclidean distance d
and apply our method to solve discrete-time kinematics problem of two-arm robotic manipulator. This
problem is to solve the following at each instant of time:

min gk(δk), (4.8)

where δk = f (φk) is the end effector and f is the kinematic mapping define by

f (φ) = f (φ1, φ2) =


r1 cos(φ1) + r2 cos(φ1 + φ2)

r1 sin(φ1) + r2 sin(φ1 + φ2)

 ,
in which r1, r2 are lengths of the arms (see, e.g. [32] for more details).

In this work, we track the curve

σk =


3
2 + 1

5 sin(tk)

1
2 + 1

5 sin
(
3tk + π

2

)
 .

We split the time frame of ten seconds into 200 instants, making l = 200 and take the unit arms lengths,
i.e., r1 = r2 = 1. We set the starting point v1 =

(
0, π4

)T
, γ0

n =
n

3n + 1
, µ = 1, Jk

µ is the subdifferential of
gk and observe that the proposed scheme in (3.1), which reduces to

vn+1 = γ0
nvn + (1 − γ0

n)J(vn), n ≥ 1 (4.9)

solves the problem in (4.8) for each k. The generated results are plotted in Figure 1. Specifically, Figure
1a shows synthesized trajectories generated through (4.9), Figure 1b displays end effector trajectory
and desired path. Figure 1c and 1d shows the tracking of the residual error on horizontal and vertical
axes, respectively. It can be observed from Figure 1a and 1b that the process is completed successfully.
Moreover, Figure 1c and 1d show that the residual error is about 10−5.
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(c) Tracking error on horizontal axis
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(d) Tracking error on vertical axis

Figure 1. Numerical display for two-arm robotic motion control.

4.4. Numerical example

Consider R2 equipped with the Euclidean distance d. For j ∈ {1, 2}, we defined

A jx = A j(x1, x2) =

{(
(1 − j)x1 + x2, (1 − j)x2 − x1

)}
.

It follows from [34] that, each A j is monotone on X. Thus they are vector fields since the known
monotone mappings on Hilbert spaces are monotone vector fields. Moreover, their corresponding
resolvent operators are:

J1
µx = J1

µ(x1, x2) =

(
x1 − µx2

1 + µ2 ,
x2 + µx1

1 + µ2

)
and

J2
µx = J2

µ(x1, x2) =

(
(1 + µ)x1 − µx2

2µ2 + 2µ + 1
,

(1 + µ)x2 + µx1

2µ2 + 2µ + 1

)
.
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It can be observed that the proposed iterative scheme in (3.1) becomes

vn+1 = γ0
nvn + γ1

n J1
µ(vn) + γ2

n J2
µ(vn), n ≥ 1, (4.10)

and the scheme in (1.5) becomes
U (1)

n vn = a(1)
n J(1)

µn (vn) + b(1)
n vn + c(1)

n vn,

U (2)
n vn = a(2)

n J(2)
µn (vn) + b(2)

n U (1)
n vn + c(2)

n U (1)
n vn,

vn+1 = σnV + (1 − σn)U (2)
n vn, n ≥ 1.

(4.11)

In this example, we use V = (1, 0.2), σn = 1
2(n+1) , γ

0
n = a(1)

n = a(2)
n = 1

2 , γ1
n = b(1)

n = b(2)
n = 1

5 and
γ2

n = c(1)
n = c(2)

n = 3
10 . The comparison results between the proposed scheme (3.1) and the scheme (1.5)

of [9] is shown in Table 1. For each algorithms, we record the number of iteration (Iter.) of which
En := ‖vn+1 − vn‖ < 10−6, the execution time (Time) and the value of the sequence {vn} at the final state.

Table 1. Convergence analysis of the proposed scheme in comparison to the scheme of [9].
{vn} generated by (3.1) {vn} generated by (1.5)

v1 µ Iter. Time value of vn Iter. Time value of vn

(21, 16) 0.2 236 0.0022 (-1.0179e-06, 9.014e-06) 1811 0.00923 (0.00092203, 0.0015568)
3 31 0.0007 (8.9575e-07, -4.2359e-07) 880 0.00285 (0.00080785, 0.00034527)

12 26 0.0006 (-3.9751e-07, 7.3048e-07) 837 0.00267 (0.00080889, 0.00020842)
50 25 0.0031 (5e-07, 7.717e-07) 827 0.00525 (0.00080853, 0.00017292)

(-11, -23) 0.2 236 0.0008 (4.845e-06, -7.2983e-06) 1811 0.00448 (0.00092203, 0.0015568)
3 31 0.0002 (-9.5638e-07, -3.051e-08) 880 0.00198 (0.00080785, 0.00034527)

12 26 0.0001 (6.6336e-07, -4.5269e-07) 837 0.00187 (0.00080889, 0.00020842)
50 25 0.0001 (-8.9799e-08, -8.8343e-07) 827 0.00206 (0.00080853, 0.00017292)

(-31, 25) 0.2 243 0.0008 (-5.1672e-06, -7.1231e-06) 1811 0.004 (0.00092203, 0.0015568)
3 32 0.0005 (2.861e-08, 8.6054e-07) 880 0.00207 (0.00080785, 0.00034527)

12 27 0.0002 (-4.5256e-07, -4.6037e-07) 837 0.00187 (0.00080889, 0.00020842)
50 26 0.0001 (-6.6243e-07, 2.1957e-07) 827 0.00185 (0.00080853, 0.00017292)

(6, -12) 0.2 226 0.0009 (5.2649e-06, -6.8775e-06) 1811 0.00403 (0.00092203, 0.0015568)
3 30 0.0003 (-6.2497e-07, -6.1114e-07) 880 0.00201 (0.00080785, 0.00034527)

12 25 0.0001 (7.9441e-07, 2.0826e-07) 837 0.00191 (0.00080889, 0.00020842)
50 24 0.0002 (6.6279e-07, -6.5062e-07) 827 0.00203 (0.00080853, 0.00017292)

(-2, 100) 0.2 257 0.0009 (-2.8778e-06, -8.6754e-06) 1811 0.00634 (0.00092203, 0.0015568)
3 33 0.0002 (8.3806e-07, 9.2163e-07) 880 0.00205 (0.00080785, 0.00034527)

12 28 0.0002 (-8.3412e-07, 1.9723e-08) 837 0.00239 (0.00080889, 0.00020842)
50 27 0.0002 (-3.3721e-07, 8.1482e-07) 827 0.0024 (0.00080853, 0.00017292)

5. Conclusions

In this work, we introduced one step schemes involving convex combination of proximal point
algorithms in CAT(0) spaces and established ∆-convergence theorems of the generated sequence to a
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common solution of countable family of monotone vector field inclusion problems. We also deduced
strong convergence results. Furthermore, we apply the proposed scheme to solve a countable family
of minimization problems, to compute Frechét mean and geometric median in CAT(0) spaces and
also to solve a kinematic problem in robotic motion control. We finally give a numerical example to
demonstrate the efficiency of the proposed scheme in comparison to that of Dehghan et al. [9]. Our
results herein generalised some results in the literature. For example, Theorem 4.3 of [21] and Theorem
4.1 of [28] are generalized from one monotone to a countable number of MVF, Theorem 3 of [18] is
generalised from Hilbert spaces to CAT(0) spaces and from one monotone mapping to a number of
MVF, and the results of [9] is generalized from finite family to countable family.
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