
http://www.aimspress.com/journal/Math

AIMS Mathematics, 7(5): 7374–7384.
DOI: 10.3934/math.2022411
Received: 29 October 2021
Revised: 13 January 2022
Accepted: 17 January 2022
Published: 11 February 2022

Research article

On the dynamics of the nonlinear rational difference equation
xn+1 =

αxn−m+δxn
β+γxn−kxn−l(xn−k+xn−l)

A. M. Alotaibi1 and M. A. El-Moneam2,∗

1 Department of Mathematics, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491,
Saudi Arabia

2 Mathematics Department, Faculty of Science, Jazan University, Saudi Arabia

* Correspondence: Email: maliahmedibrahim@jazanu.edu.sa.

Abstract: In this paper, we discuss some qualitative properties of the positive solutions to the
following rational nonlinear difference equation xn+1 = αxn−m+δxn

β+γxn−k xn−l(xn−k+xn−l)
, n = 0, 1, 2, ... where the

parameters α, β, γ, δ ∈ (0,∞), while m, k, l are positive integers, such that m < k < l. The initial
conditions x−m, ..., x−k, ..., x−l, ..., x−1, ..., x0 are arbitrary positive real numbers. We will give some
numerical examples to illustrate our results.
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1. Introduction

The study of solution of nonlinear rational recursive sequence of high order is quite challenging
and rewarding. Every dynamical system an+1 = f (an) determines a difference equation and vice
versa. An interesting class of nonlinear difference equations is the class of solvable difference
equations, and one of the interesting problems is to find equations that belong to this class and to
solve them in closed form or in explicit form [1–13, 15–26]. Note that most of these equation often
show increasingly complex behavior such as the existence of a bounded. The qualitative study of
difference equations is a fertile research area and increasingly attracts many mathematicians. This
topic draws its importance from the fact that many real life phenomena are modeled using difference
equations. The applications of these difference equations can be found on the economy, biology and
so on. It is known that nonlinear difference equations are capable of producing a complicated
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behavior regardless its order. The objective of this article is to investigate some qualitative behavior of
the solutions of the nonlinear difference equation.

xn+1 =
αxn−m+δxn

β + γxn−kxn−l (xn−k + xn−l)
, n = 0, 1, 2, ... (1.1)

where the parameters α, β, γ, δ ∈ (0,∞), while m, k, l are positive integers, such that m < k < l. The
initial conditions x−m, ..., x−k, ..., x−l, ..., x−1, ..., x0 are arbitrary positive real numbers. Eq (1) has been
discussed in [14] when m = 1, k = 2 and l = 4, and in [27] when δ = 0, where some global behavior
of the more general nonlinear rational difference equation (1.1), we need the following well-known
definitions and results [28–34].

Definition 1. A difference equation of order (k + 1) is of the form

xn+1 = F(xn, xn−1, ..., xn−k), n = 0, 1, 2, ..... (1.2)

where F is a continuous function which maps some set Jk+1 into J and J is a set of real numbers. An
equilibrium point x̃ of this equation is a point that satisfies the condition x̃ = F (x̃, x̃, ...., x̃) . That is,
the constant sequence {xn}

∞
n=−k with xn = x̃ f or all n ≥ −k is a solution of that equation.

Definition 2. Let x̃ ∈ (0,∞) be an equilibrium point of the difference equation (1.2). Then
(i) An equilibrium point x̃ of the difference equation (1.2) is called locally stable if for every ε > 0

there exists δ > 0 such that, if x−k, ..., x−1, x0 ∈ (0,∞) with |x−k − x̃| + ... + |x−1 − x̃| + |x0 − x̃| < δ, then
|xn − x̃| < ε for all n ≥ −k.

(ii) An equilibrium point x̃ of the difference equation (1.2) is called locally asymptotically stable
if it is locally stable and there exists γ > 0 such that, if x−k, ..., x−1, x0 ∈ (0,∞) with |x−k − x̃| + ... +

|x−1 − x̃| + |x0 − x̃| < γ, then
lim
n→∞

xn = x̃.

(iii) An equilibrium point x̃ of the difference equation (1.2) is called a global attractor if for every
x−k, ..., x−1, x0 ∈ (0,∞) we have

lim
n→∞

xn = x̃.

(iv) An equilibrium point x̃ of the Eq (1.2) is called globally asymptotically stable if it is locally
stable and a global attractor.

(v) An equilibrium point x̃ of the difference equation (1.2) is called unstable if it is not locally stable.

Definition 3. A sequence {xn}
∞
n=−k is said to be periodic with period p if xn+p = xn for all n ≥ −k. A

sequence {xn}
∞
n=−k is said to be periodic with prime period p if p is the smallest positive integer having

this property.

Definition 4. We say that a sequence {xn}
∞
n=−k is bounded and persisting if there exists positive constants

m and M such that
m ≤ xn ≤ M f or all n ≥ −k.

Definition 5. A positive semicycle of {xn}
∞
n=−k consists of “a string” of terms xl, xl+1, ..., xm all greater

than or equal to x̃, with l ≥ −k and m ≤ ∞ such that

either l = −k or l > −k and xl−1 < x̃,
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and
either m = ∞ or m < ∞ and xm+1 < x̃.

A negative semicycle of {xn}
∞
n=−k consists of “a string” of terms xl, xl+1, ..., xm all less than x̃, with l ≥ −k

and m ≤ ∞ such that
either l = −k or l > −k and xl−1 ≥ x̃,

and
either m = ∞ or m < ∞ and xm+1 ≥ x̃.

Definition 6. The linearized equation of Eq (1.2) about the equilibrium point x̃ is the linear difference
equation

yn+1 =

k∑
i=0

∂F (x̃, x̃, ..., x̃)
∂xn−i

yn−i. (1.3)

Now assume that the characteristic equation associated with Eq (1.3) is

p (λ) = p0λ
k + p1λ

k−1 + ... + pk−1λ + pk = 0, (1.4)

where
pi = ∂F (x̃, x̃, ..., x̃) /∂xn−i.

Theorem 1. Assume that pi ∈ R, i = 1, 2, ..., and k ∈ {0, 1, 2, ...}. Then

k∑
i=1

|pi| < 1,

is a sufficient condition for the asymptotic stability of the difference equation

xn+k + p1xn+k−1 + ..... + pkxn = 0, n = 0, 1, 2, ...

Theorem 2. ( The linearized stability theorem).
Suppose F is a continuously differentiable function defined on an open neighbourhood of the

equilibrium x̃. Then the following statements are true.
(i) If all roots of the characteristic equation (1.4) of the linearized equation (1.3) have an absolute

value less than one, then the equilibrium point x̃ is locally asymptotically stable.
(ii) If at least one root of Eq (1.4) has an absolute value greater than one, then the equilibrium

point x̃ is unstable.

2. Change of variables

By using the change of variables xn =
(
β

γ

) 1
3 yn, the Eq (1) reduces to the following difference equation

yn+1 =
ryn−m+syn

1+yn−kyn−l (yn−k + yn−l)
, n = 0, 1, 2, ... (2.1)

where r = α
β
> 0, s = δ

β
> 0 and the initial conditions y−m, ..., y−k, ..., y−l, y0 ∈ (0,∞). In the next section,

we shall study the global behavior of Eq (2.5).
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3. The dynamics of Eq (2.5)

The equilibrium points ỹ of the Eq (2.5) are the positive solutions of the equation

ỹ =
(r+s) ỹ
1 + 2ỹ3 . (3.1)

Thus ỹ1 = 0 is always an equilibrium point of the Eq (2.5). If (r+s) > 1, then the only positive
equilibrium point ỹ2 of Eq (2.5) is given by

ỹ2 =

(
(r + s)−1

2

) 1
3

. (3.2)

Let us introduce a continuous function F : (0,∞)4 → (0,∞) which is defined by

F(v0, v1, v2, v3) =
rv0+sv1

1 + v2
2v3 + v2v2

3

. (3.3)

Consequently, we get
∂F(v0, v1, v2, v3)

∂v0
=

r
1 + v2

2v3 + v2v2
3

,

∂F(v0, v1, v2, v3)
∂v1

=
s

1 + v2
2v3 + v2v2

3

,

∂F(v0, v1, v2, v3)
∂v2

=
− (rv0+sv1) (2v2v3 + v2

3)

(1 + v2
2v3 + v2v2

3)2 ,

∂F(v0, v1, v2, v3)
∂v3

=
− (rv0+sv1) (v2

2 + 2v2v3)

(1 + v2
2v3 + v2v2

3)2 .

At ỹ1 = 0, we have

∂F(0, 0, 0, 0)
∂v0

= r,
∂F(0, 0, 0, 0)

∂v1
= s,

∂F(0, 0, 0, 0)
∂v2

=
∂F(0, 0, 0, 0)

∂v3
= 0,

and the linearized equation of Eq (2.5) about ỹ1 = 0, is the equation

zn+1 − ρ0zn − ρ1zn−m = 0, (3.4)

where ρ0 = s, ρ1 = r. At ỹ2 =
(

(r+s)−1
2

) 1
3
, we have

∂F(ỹ2, ỹ2, ỹ2, ỹ2)
∂v0

=
r

1 + 2ỹ3
2

=
r

1 + ((r + s) − 1)
=

r
r+s

,

∂F(ỹ2, ỹ2, ỹ2, ỹ2)
∂v1

=
s

1 + 2ỹ3
2

=
s

1 + ((r + s) − 1)
=

s
r+s

,

∂F(ỹ2, ỹ2, ỹ2, ỹ2)
∂v2

=
−3((r + s) − 1)

2 (r + s)
=
∂F(ỹ2, ỹ2, ỹ2, ỹ2)

∂u3
.
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And the linearized equation of Eq (2.5) about ỹ2 =
(

(r+s)−1
2

) 1
3 is the equation

zn+1 − ρ0zn − ρ1zn−m − ρ2zn−k − ρ3zn−l = 0, (3.5)

where ρ0 = s
r+s , ρ1 = r

r+s , ρi =
−3((r+s)−1)

2(r+s) , i = 2, 3.

Theorem 3. (i) If (r + s) < 1, then the equilibrium point ỹ1 = 0 is locally asymptotically stable.
(ii) If (r + s) > 1, then the equilibrium point ỹ1 = 0 is unstable.

(iii) If (r + s) > 1, then the equilibrium point ỹ2 =
(

(r+s)−1
2

) 1
3 is unstable.

Proof. With reference to Theorem 1.1, we deduce from Eq (3.9) that |ρ0| + |ρ1| = (s + r) < 1, and then
the proof of parts (i), (ii) follow. Also, from Eq (3.10) we deduce for (r + s) > 1 that

|ρ0| + |ρ1| + |ρ2| + |ρ3| = 1 +
3((r + s) − 1)

r+s
> 1,

and hence the proof of part (iii) follows.

Theorem 4. Assume that (r + s) > 1, and let {yn}
∞
n=−l be a solution of Eq (5) such that

y−l, y−l+2, ..., y−l+2n, ..., y−k, y−k+2, ..., y−k+2n, ...,

y−m+1, y−m+3, ..., y−m+2n+1, ..., y0 ≥ ỹ2,

y−l+1, y−l+3, ..., y−l+2n+1, ..., y−k+1, y−k+3, ...,

y−k+2n+1, ..., y−m, y−m+2, ..., y−m+2n, ..., y−1 < ỹ2.

(3.6)

Then {yn}
∞
n=−l oscillates about ỹ2 =

(
(r+s)−1

2

) 1
3 with a semicycle of length one.

�

Proof. Assume that (3.11) holds. Then

y1 =
ry−m+sy0

1 + y−ky−l(y−k + y−l)
<

ry−m+sy0

1 + 2ỹ3
2

<
[r+s] ỹ2

1 + ([r+s] − 1)
= ỹ2,

and
y2 =

ry−m+1+sy1

1 + y−k+1y−l+1(y−k+1 + y−l+1)
≥

ry−m+1+sy1

1 + 2ỹ3
2

≥
(r + s) ỹ2

1 + ((r + s) − 1)
= ỹ2,

and hence the proof follows by induction.

Theorem 5. Assume that (r + s) < 1, then the equilibrium point ỹ1 = 0 of Eq (2.5) is globally
asymptotically stable.

�

Proof. We have shown in Theorem 3 that if (r + s) < 1 then the equilibrium point ỹ1 = 0 is locally
asymptotically stable. It remains to show that ỹ1 = 0 is a global attractor. To this end, let {yn}

∞
n=−l be a

solution of Eq (2.5). It suffics to show that lim
n→∞

yn = 0. Since

0 ≤ yn+1 =
ryn−m+syn

1 + yn−kyn−l(yn−k + yn−l)
≤ ryn−m+syn < yn−m.

Then we have lim
n→∞

yn = 0. This completes the proof. �

AIMS Mathematics Volume 7, Issue 5, 7374–7384.



7379

Theorem 6. Assume that (r + s) > 1, then Eq (2.5) possesses an unbounded solution.

Proof. With the aid of Theorem 4, we have

y2n+2 =
ry−m+2n+1+sy2n+1

1 + y−k+2n+1 y−l+2n+1(y−k+2n+1 + y−l+2n+1)
>

ry−m+2n+1+sy2n+1

1 + 2ỹ3
2

>
ry−m+2n+1+sy2n+1

1 + ((r + s) − 1)
=

ry−m+2n+1+sy2n+1

(r + s)
,

and

y2n+3 =
ry−m+2n+2+sy2n+2

1 + y−k+2n+2 y−l+2n+2(y−k+2n+2 + y−l+2n+2)
≤

ry−m+2n+2+sy2n+2

1 + 2ỹ3
2

≤
ry−m+2n+2+sy2n+2

1 + ((r + s) − 1)
=

ry−m+2n+2+sy2n+2

(r + s)
.

From which it follows that

lim
n→∞

y2n = ∞ and lim
n→∞

y2n+1 = 0.

Hence the proof of Theorem 6 is now completed. �

Theorem 7. (1) If m is odd, and k, l are even, Eq (2.5) has prime period two solution if (r − s) < 1 and
has not prime period two solution if (r − s) ≥ 1.

(2) If m is even and k, l are odd, Eq (2.5) has not prime period two solution.
(3) If all m, k, l are even, Eq (2.5) has prime period two solution.
(4) If all m, k, l are odd, Eq (2.5) has prime period two solution if (r − s) > 1, and has not prime

period two solution if (r − s) ≤ 1.
(5) If m, k are even and l is odd, Eq (2.5) has not prime period two solution.
(6) If m, k are odd and l is even, Eq (2.5) has prime period two solution if (r − s) > 1, and has not

prime period two solution if (r − s) ≤ 1.
(7) If m, l are odd and k is even, Eq (2.5) has prime period two solution if (r − s) > 1, and has not

prime period two solution if (r − s) ≤ 1.
(8) If m, l are even and k is odd, Eq (2.5) has not prime period two solution.

Proof. Assume that there exists distinct positive solutions

..., φ, ψ, φ, ψ, ...

of prime period two of Eq (2.5).
(1) If m is odd, and k, l are even, then yn+1 = yn−m and yn = yn−k = yn−l. It follows from Eq (2.5) that

φ =
rφ + sψ
1 + 2ψ3 , ψ =

rψ + sφ
1 + 2φ3 .

Consequently, we have
0 < 2φψ(φ + ψ) = 1 − (r − s) . (3.7)

We deduce that (3.12) is always true if (r − s) < 1 and hence Eq (2.5) has prime period two solution.
If (r − s) ≥ 1, we have a contradiction, and hence Eq (2.5) has not prime period two solution.
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(2) If m is even, and k, l are odd, then yn = yn−m, and yn+1 = yn−k = yn−l. It follows from Eq (2.5) that

φ =
(r + s)ψ
1 + 2φ3 , ψ =

(r + s) φ
1 + 2ψ3 .

Consequently, we have
0 < 2 (φ + ψ) (φ2 + ψ2) = − [(r + s) + 1] . (3.8)

Since (r + s) > 0, we have a contradiction. Hence Eq (2.5) has not prime period two solution.
(3) If all m, k, l are even, then yn = yn−m = yn−k = yn−l. It follows from Eq (2.5) that

φ =
(r + s)ψ
1 + 2ψ3 , ψ =

(r + s) φ
1 + 2φ3 .

Consequently, we get
0 < 2φψ(φ + ψ) = (r + s) + 1. (3.9)

Since (r + s) > 0, the formula (3.14) is always true. Hence Eq (2.5) has prime period two solution.
(4) If all m, k, l are odd, then yn+1 = yn−m = yn−k = yn−l. It follows from Eq (2.5) that

φ =
rφ + sψ
1 + 2φ3 , ψ =

rψ + sφ
1 + 2ψ3 .

Consequently, we get
0 < 2(φ + ψ)(φ2 + ψ2) = (r − s) − 1. (3.10)

If (r − s) > 1, the formula (15) is always true, and hence Eq (2.5) has prime period two solution. If
(r − s) ≤ 1, we have a contradiction and hence Eq (2.5) has not prime period two solution.

(5) If m, k are even, and l is odd, then yn = yn−k = yn−m, and yn+1 = yn−l. It follows from Eq (2.5) that

φ =
(r + s)ψ

1 + ψ2φ + ψφ2 , ψ =
(r + s) φ

1 + φ2ψ + φψ2 .

Consequently, we have
0 < φψ(φ + ψ) = −((r + s) + 1). (3.11)

Since (r + s) > 0, we have a contradiction. Hence Eq (2.5) has not a prime period two solution.
(6) If m, k are odd, and l is even, then yn+1 = yn−m = yn−k, and yn = yn−l. It follows from Eq (2.5) that

φ =
rφ + sψ

1 + φ2ψ + φψ2 , ψ =
rψ + sφ

1 + ψ2φ + ψφ2 .

Consequently, we have
0 < φψ(φ + ψ) = (r − s) − 1. (3.12)

If (r − s) > 1,the formula (3.17) is always true, and hence Eq (2.5) has prime period two solution. If
(r − s) ≤ 1, we have a contradiction. Hence Eq (2.5) has not a prime period two solution.

(7) If m, l are odd, and k is even, then yn+1 = yn−m = yn−l, and yn = yn−k. It follows from Eq (2.5) that

φ =
rφ + sψ

1 + ψ2φ + ψφ2 , ψ =
rψ + sφ

1 + φ2ψ + φψ2 ,

which give the same results of case (6).
(8) If m, l are even, and k is odd, then yn = yn−m = yn−l, and yn+1 = yn−k. It follows from Eq (2.5) that

φ =
(r + s)ψ

1 + ψ2φ + ψφ2 , ψ =
(r + s) φ

1 + φ2ψ + φψ2 ,

which give the same results of case (5). Hence the proof of Theorem 7 is now completed. �
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4. Numerical examples

In order to illustrate the results of the previous section and to support our theoretical discussions,
we consider some numerical examples in this section. These examples represent different types of
qualitative behavior of solutions of Eq (2.5).

Example 1. Figure 1 shows that the solution of Eq (2.5) is bounded if x−3 = 1, x−2 = 2, x−1 = 3, x0 =

4, m = 1, k = 2, l = 3, r = 0.25, s = 0.5, i.e (r + s) < 1.
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Figure 1. The solution of Eq (2.5) is bounded.

Example 2. Figure 2 shows that the solution of Eq (2.5) is unbounded if x−3 = 1, x−2 = 2, x−1 =

3, x0 = 4, m = 1, k = 2, l = 3.
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Figure 2. The solution of Eq (2.5) is unbounded.

Example 3. Figure 3 shows that Eq (2.5) is globally asymptotically stable if x−4 = 1, x−3 = 2, x−2 =

3, x−1 = 4, x0 = 5, m = 2, k = 3, l = 4, r = 0.1, s = 0.6, i.e (r + s) < 1.
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Figure 3. The solution of Eq (2.5) is globally asymptotically stable.

Example 4. Figure 4 shows that Eq (2.5) has no positive prime period two solutions if x−3 = 1, x−2 =

2, x−1 = 3, x0 = 4, m = 2, k = 1, l = 3, r = 100, s = 300.
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Figure 4. The solution of Eq (2.5) has no positive prime period two solutions.

5. Conclusions

In this article, we have shown that Eq (2.5) has two equilibrium points ỹ1 = 0 and ỹ2 =
(

(r+s)−1
2

) 1
3 .

If (r + s) < 1, we have proved that ỹ1 = 0 is globally asymptotically stable, while if (r + s) > 1, the

solution of Eq (2.5) oscillates about the point ỹ2 =
(

(r+s)−1
2

) 1
3 with a semicycle of length one. When

(r + s) > 1, we have proved that the solution of Eq (2.5) is unbounded. The periodicity of the solution
of Eq (2.5) has been discussed in details in Theorem 7.
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