http://www.aimspress.com/journal/Math

Research article

An improved upper bound for the dynamic list coloring of 1-planar graphs

Xiaoxue Hu ${ }^{1}$ and Jiangxu Kong ${ }^{2, *}$
${ }^{1}$ School of Science, Zhejiang University of Science \& Technology, Hangzhou 310023, China
${ }^{2}$ School of Science, China Jiliang University, Hangzhou 310018, China

* Correspondence: Email: kjx @cjlu.edu.cn; Tel: +8615088625356.

Abstract

A graph is 1-planar if it can be drawn in the plane such that each of its edges is crossed at most once. A dynamic coloring of a graph G is a proper vertex coloring such that for each vertex of degree at least 2 , its neighbors receive at least two different colors. The list dynamic chromatic number $c h_{d}(G)$ of G is the least number k such that for any assignment of k-element lists to the vertices of G, there is a dynamic coloring of G where the color on each vertex is chosen from its list. In this paper, we show that if G is a 1-planar graph, then $c h_{d}(G) \leq 10$. This improves a result by Zhang and Li [16], which says that every 1 -planar graph G has $c h_{d}(G) \leq 11$.

Keywords: 1-planar graph; dynamic coloring; list coloring
Mathematics Subject Classification: 05C10, 05C15

1. Introduction

Graphs in this paper are simple and finite. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. For a vertex $v \in V(G)$, the neighborhood of v in G is $N_{G}(v)=\{u \in V(G): u$ is adjacent to v in $G\}$. Vertices in $N_{G}(v)$ are called neighbors of v, and $d_{G}(v)=\left|N_{G}(v)\right|$ is the degree of v in G. A proper k-coloring is a mapping $\phi: V(G) \rightarrow\{1,2, \ldots, k\}$ such that any adjacent vertices receive different colors. A proper vertex coloring is called a dynamic coloring if for every vertex v of degree at least 2 , the neighbors of v receive at least two different colors. The smallest integer k such that G has a proper (resp. dynamic) k-coloring is the chromatic number (resp. dynamic chromatic number) of G, denoted by $\chi(G)$ (resp. $\chi_{d}(G)$). The concept of dynamic coloring was first introduced in [12], which is a generalization of the classical graph coloring.

A graph is said to be planar, if it can be drawn in the plane so that its edges intersect only at their ends. The well-known Four-Color Theorem states that $\chi(G) \leq 4$ for every planar graph G. Chen et al. [5] showed that $\chi_{d}(G) \leq 5$ if G is a planar graph, and it is conjectured that $\chi_{d}(G) \leq 4$ if G is a planar graph other than C_{5}. In 2013, Kim, Lee and Park [8] proved this conjecture. Furthermore, Kim, Lee
and Oum [9] proved the same conclusion for K_{5}-minor-free graphs. The dynamic coloring of graphs has been extensively investigated in past decades, we refer to [1-5,7,10-14].

For each integer $k \geq 3$, let $S K_{k}$ denote the graph obtained from complete graph K_{k} by inserting a new vertex to each of the edges in K_{k}. Thus for a fixed $k \geq 3, S K_{k}$ is a bipartite graph with a bipartition (X, Y) where $|X|=k$ and $|Y|=\left|E\left(K_{k}\right)\right|$, such that each vertex in Y is adjacent to exactly two vertices in X, and distinct vertices in X are adjacent to $k-1$ vertices in Y as do in K_{k}. Thus, $\chi\left(S K_{k}\right)=2$ and $\chi_{d}\left(S K_{k}\right)=k$. So it is an example showing that the gap $\chi_{d}(G)-\chi(G)$ can be arbitrarily big. There is a vast literature dealing with the relationship between $\chi(G)$ and $\chi_{d}(G)$, see [2,10,12].

For every vertex $v \in V(G)$, let $L(v)$ denote a list of colors available at v. An L-coloring is a proper coloring φ such that $\varphi(v) \in L(v)$ for every vertex $v \in V(G)$. A graph G is k-choosable if it has an L coloring whenever all lists have size at least k. The list chromatic number $\operatorname{ch}(G)$ of G is the least integer k such that G is k-choosable. A dynamic L-coloring is a dynamic coloring of G such that each vertex is colored by a color from its list. A graph G is called dynamically k-choosable if it has a dynamic L-coloring whenever all lists have size at least k. The dynamic list chromatic number $c h_{d}(G)$ of G is the least integer k such that G is dynamically k-choosable.

Note that $\chi(G) \leq \chi_{d}(G) \leq c h_{d}(G)$ for every graph G. Esperet [6] showed that there is a planar bipartite graph G with $\operatorname{ch}(G)=\chi_{d}(G)=3$ and $c h_{d}(G)=4$ and moreover, there exists for every $k \geq 5$ a bipartite graph G_{k} with $c h\left(G_{k}\right)=\chi_{d}\left(G_{k}\right)=3$ and $c h_{d}\left(G_{k}\right) \geq k$. Hence the gap between $\chi_{d}(G)$ and $c h_{d}(G)$ can be any large. For further information on the dynamic list coloring of graphs, we refer the reader to [2] and [9].

A 1-planar graph is a graph that can be drawn in the plane so that each edge has at most one crossing. Recently, Zhang and Li [16] considered the dynamic list coloring of 1-planar graphs and proved $7 \leq \chi_{d}(G) \leq c h_{d}(G) \leq 11$ for every 1-planar graph G. Hence a natural problem is proposed.
Problem 1. (Zhang and Li [16]) Determine the minimum integers l_{1} and l_{2} so that every 1-planar graph is dynamically l_{1}-colorable and dynamically l_{2}-choosable, respectively.

The purpose of this paper is to close the gap between the lower and upper bound by proving the following theorem.
Theorem 1. Every 1-planar graph is dynamically 10-choosable.

2. Notations and terminology

A plane graph is a particular drawing in the Euclidean plane of a certain planar graph. Let G be a plane graph. We use $F(G)$ to denote the set of faces in G. For a face $f \in F(G)$, we use $\partial(f)$ to denote the boundary walk of f and write $f=\left[u_{1} u_{2} \cdots u_{n}\right]$ if $u_{1}, u_{2}, \ldots, u_{n}$ are the vertices of $\partial(f)$ in clockwise order. The degree of a face is the number of edge-steps in its boundary walk. For $x \in V(G) \cup F(G)$, let $d_{G}(x)$ denote the degree of x in G. A vertex of degree k (at most k, at least k, respectively) is called a k-vertex (k^{-}-vertex, k^{+}-vertex, respectively). Similarly, we can define k-face, k^{-}-face, and k^{+}-face. If X is the set of vertices and edges deleted, the resulting subgraph is denoted by $G-X$.

Let G be a plane drawing of a 1-planar graph such that each edge has at most one crossing and the number of such crossings are as few as possible. Let $C(G)$ denote the set of crossings in G. The associated plane graph, denoted G^{\times}, of G is a plane graph with

$$
V\left(G^{\times}\right)=V(G) \cup C(G), E\left(G^{\times}\right)=E_{0}(G) \cup E_{1}(G),
$$

where $E_{0}(G)$ is the set of non-crossed edges in G and

$$
E_{1}(G)=\left\{x z, z y \mid x y \in E(G) \backslash E_{0}(G) \text { and } z \text { is a crossing point on } x y\right\} .
$$

Vertices in $V(G)$ are said to be true vertices of G^{\times}, and vertices in $C(G)$ are false vertices of G^{\times}. It is easy to observe that $d_{G^{\times}}(v)=d_{G}(v)$ for each $v \in V(G)$, and $d_{G^{\times}}(v)=4$ for each $v \in C(G)$. A 3-face is false if it is incident to a false vertex in G^{\times}, and is true otherwise.

A 4-face $f=[u x v y]$ in G^{\times}is called a special 4-face if $d_{G^{\times}}(u) \geq 10, d_{G^{\times}}(v)=2, x$ and y are false vertices, in this case, the vertex v is called a special 2-vertex. And non-special 2-vertex otherwise. A 5-face $f=[u x v y w]$ in G^{\times}is called a special 5-face if $d_{G^{\times}}(v)=2, d_{G^{\times}}(u), d_{G^{\times}}(w) \geq 10, x$ and y are false vertices. A 10 -vertex is bad if, which is incident with three special 4 -faces and seven 3 -faces in G^{\times}, and non-bad otherwise.

In the figure of this paper, black (white) bullets represent vertices whose degrees are exactly (at least) the one shown in the figure.

3. Proof of Theorem 1

We shall argue by contradiction to prove Theorem 1. Throughout the rest of this section, we assume that G is a counterexample to Theorem 1 such that $|V(G)|+|E(G)|$ is minimized, which is called a dynamically minimal graph. Specifically, there exists a 10 -list assignment L to the vertices of G such that G is not dynamically L-choosable. By the minimality of G, for any 1-planar graph H with $|V(H)|+|E(H)|<|V(G)|+|E(G)|$ is dynamically L-choosable.

In the following two subsections, we first exhibit the structure of this minimum counterexample G. Secondly, relying on these properties, we use the Discharging Method to obtain a contradiction.

3.1. Structure and properties of a counterexample to Theorem 1

Zhang and Li [16] investigated the propositions of the dynamically minimal graphs. They gave the following lemma.
Lemma 1. (Zhang and Li [16]) Let G be a dynamically minimal graph. Then the following assertions hold.
(1) $\delta(G) \geq 2$.
(2) Each edge of G is incident with at least one 10^{+}-vertex.
(3) If u is a vertex incident with a triangle in G, then $d_{G}(u) \geq 10$.
(4) If u is a true vertex incident with a false 3 -face of G^{\times}, then $d_{G}(u) \geq 8$.
(5) Let $f=\left[w u v x_{1} \cdots x_{s}\right]$ be a 4^{+}-face of G^{\times}with $d_{G}(u) \leq 7$, then both w and v are false.
(6) Each 6-face in G^{\times}is incident with at most two special 2-vertices.

Lemma 2. G does not contain k-vertices, where $3 \leq k \leq 7$.
Proof. Suppose not, let v be a k-vertex with $3 \leq k \leq 7$. Let $N_{G}(v)=\left\{u, w, x_{1}, \ldots, x_{t}, y_{1}, \ldots, y_{s}\right\}$, where $d_{G}\left(x_{i}\right)=2$ for each $1 \leq i \leq t$ and $d_{G}\left(y_{j}\right) \geq 3$ for each $1 \leq j \leq s$. Let $x_{i}^{\prime}=N_{G}\left(x_{i}\right) \backslash\{v\}$ for $1 \leq i \leq t$, $u^{\prime} \in N_{G}(u) \backslash\{v\}, w^{\prime} \in N_{G}(w) \backslash\{v\}$ and $y_{j}^{\prime} \in N_{G}\left(y_{j}\right) \backslash\{v\}$ for $1 \leq j \leq s$. Note that t or s may be 0 , in which case $N_{G}(v)=\left\{u, w, y_{1}, \ldots, y_{k}\right\}$ or $N_{G}(v)=\left\{u, w, x_{1}, \ldots, x_{k}\right\}$, respectively. Let $H=G-\left\{x_{1}, \ldots, x_{t}\right\}-$ $\left\{v y_{1}, \ldots, v y_{s}\right\}$, which is a 1 -plane graph. By the minimality of G, H has a dynamic L-coloring ϕ such that $\phi(u) \neq \phi(w)$. Firstly, we recolor v with a color form $L(v) \backslash\left\{\phi(u), \phi(w), \phi\left(u^{\prime}\right), \phi\left(w^{\prime}\right), \phi\left(y_{1}\right), \ldots, \phi\left(y_{s}\right)\right\}$. Next, for each $1 \leq i \leq t$, we color x_{i} by a color from $L\left(x_{i}\right) \backslash\left\{\phi(v), \phi\left(x_{i}^{\prime}\right), \phi\left(x_{i}^{\prime \prime}\right)\right\}$, where $x_{i}^{\prime \prime} \in N_{G}\left(x_{i}^{\prime}\right) \backslash\left\{x_{i}\right\}$. So we get a dynamic L-coloring of G, a contradiction.
Lemma 3. G dose not contain two 2 -vertices u and v such that $N_{G}(u)=N_{G}(v)$.

Proof. Suppose, to the contrary, that G has 2-vertices u and v with $N_{G}(u)=N_{G}(v)=\{x, y\}$. By Lemma 1(2), x and y are 10^{+}-vertices. Let $H=G-\{u\}$, which is still 1-planar. By the minimality of G, H has a dynamic L-coloring ϕ. It follows that $\phi(x) \neq \phi(y)$, as $d_{G}(v)=2$. We obtain a dynamic L-coloring of G by coloring u with a color from $L(u) \backslash\{\phi(x), \phi(y)\}$, a contradiction.

3.2. Discharging

We will complete the proof of Theorem 1 in this subsection. Let G^{\times}be the associated plane graph of G corresponding to a plane embedding of G with the following properties:
(P1) Every edge is crossed by at most one other edge.
$(\mathbf{P} 2)$ The number of crossing points is as small as possible.
For a k-vertex $v \in V\left(G^{\times}\right)$, we denote the neighbors of v in G^{\times}by $v_{0}, v_{1}, \ldots, v_{k-1}$ in clockwise order, and the faces of G^{\times}incident to v by $f_{0}, f_{1}, \ldots, f_{k-1}$ with $v v_{i}, v v_{i+1} \in \partial\left(f_{i}\right)$ for $i=0,1, \ldots, k-1$, where the indices are taken as modulo k. For a fixed face $f \in F\left(G^{\times}\right)$and an edge $e \in E(f)$, we use f_{e} to denote the other face adjacent to f and incident to e. In particular, $f=f_{e}$ if e is a cut edge.

We first define an initial weight function $\omega(x)=d_{G^{\times}}(x)-4$ for each $x \in V\left(G^{\times}\right) \cup F\left(G^{\times}\right)$. Since G^{\times} is a connected plane graph, by Euler's formula $\left|V\left(G^{\times}\right)\right|-\left|E\left(G^{\times}\right)\right|+\left|F\left(G^{\times}\right)\right|=2$ and the relation

$$
\sum_{v \in V\left(G^{\times}\right)} d_{G^{\times}}(v)=\sum_{f \in F\left(G^{\times}\right)} d_{G^{\times}}(f)=2\left|E\left(G^{\times}\right)\right|,
$$

we obtain the following identity:

$$
\sum_{v \in V\left(G^{\times}\right)}\left(d_{G^{\times}}(v)-4\right)+\sum_{f \in F\left(G^{\times}\right)}\left(d_{G^{\times}}(f)-4\right)=-8 .
$$

Next, we design some discharging rules and redistribute weights accordingly. Once the discharging is finished, a new weight function ω^{\prime} is produced. However, the total sum of weights is kept fixed when the discharging is in process. Nevertheless, we will show that $\omega^{\prime}(x) \geq 0$ for all $x \in V\left(G^{\times}\right) \cup F\left(G^{\times}\right)$. This leads to the following contradiction

$$
0 \leq \sum_{x \in V\left(G^{\times}\right) \cup F\left(G^{\times}\right)} \omega^{\prime}(x)=\sum_{x \in V\left(G^{\times}\right) \cup F\left(G^{\times}\right)} \omega(x)=-8,
$$

which completes the proof.
For x, y and $z \in V\left(G^{\times}\right) \cup F\left(G^{\times}\right)$, let $\tau(x \rightarrow y)$ and $\tau(x \xrightarrow{z} y)$ denote the amount of weight that x transfers to y directly and across z, respectively. Our discharging rules are defined in G^{\times}as follows.
(R1) Every true 3 -face in G^{\times}receives $\frac{1}{3}$ from each of its incident 10^{+}-vertices. Every false 3 -face in G^{\times}receives $\frac{1}{2}$ from each of its incident 8^{+}-vertices.
(R2) Every 10^{+}-vertices incident with a special 4-face f sends 1 to special 2-vertex through f.
(R3) Every 5^{+}-face in G^{\times}sends 1 to each of its incident special 2-vertices if there are some ones.
(R4) Suppose that $f=\left[v_{0} v_{1} \cdots v_{m}\right]$ is a 5^{+}-face in G^{\times}and v_{i} is a non-special 2-vertex.
(R4.1) If both of v_{i-2} and v_{i+2} are 10^{+}-vertices, then $\tau\left(f \rightarrow v_{i}\right)=2$;
(R4.2) If exactly one of v_{i-2} and v_{i+2} is a 10^{+}-vertex, then $\tau\left(f \rightarrow v_{i}\right)=1$.
(R5) Every 10^{+}-vertex sends $\frac{1}{2}$ to its each incident special 5 -face.
(R6) Suppose v is a bad 10 -vertex and $f=[v x u y]$ is a special 4 -face with u is a special 2-vertex, x and y are false vertices. Let $v v_{1}$ (resp. $v v_{2}$) cross $v_{0} u$ (resp. $v_{3} u$) in G at the crossing x (resp. y). Say the
other face incident with u is f^{*}. Assume that $d\left(v_{1}\right) \leq d\left(v_{2}\right)$ by symmetry, we carry out the following subrules (see Figure 1):
(R6.1) If $d\left(v_{1}\right)=2$ and $d\left(v_{2}\right) \geq 10$, then $\tau\left(f^{*} \xrightarrow{u} v\right)=\frac{1}{9}$ provided that $d_{G^{\times}}\left(f^{*}\right)=7$ and $\tau\left(v_{2} \xrightarrow{f^{*} \text { and } u}\right.$ $v)=\frac{1}{9}$ provided that $d_{G^{\times}}\left(f^{*}\right)=6$;
(R6.2) If $8 \leq d\left(v_{1}\right) \leq 9$, then $\tau\left(v_{1} \xrightarrow{x} v\right)=\frac{1}{9}$;
(R6.3) If $d\left(v_{1}\right) \geq 10$ and $5 \leq d_{G^{\times}}\left(f^{*}\right) \leq 7$, then $\tau\left(f^{*} \xrightarrow{u} v\right)=\frac{1}{9}$;
(R6.4) If $d_{G^{\times}}\left(f^{*}\right) \geq 8$, then $\tau\left(f^{*} \xrightarrow{u} v\right)=\frac{1}{9}$.

(R6.1)

(R6.2)

(R6.3)

(R6.4)

Figure 1. The discharging rule (R6).

Let $f=\left[v_{0} v_{1} \cdots v_{m}\right]$ be a 5^{+}-face in G^{\times}. For $0 \leq i \leq m$, we define some notations as follows.
$V_{2}^{s}(f)=\left\{v_{i} \in V\left(G^{\times}\right) \mid v_{i}\right.$ is a special 2-vertex incident with $\left.f\right\}$ and $n_{2}^{s}(f)=\left|V_{2}^{s}(f)\right| ;$
$V_{2}^{\prime}(f)=\left\{v_{i} \in V\left(G^{\times}\right) \mid v_{i}\right.$ is a non-special 2-vertex incident with f and both of v_{i-2} and v_{i+2} are 10^{+}-vertices $\}$and $n_{2}^{\prime}(f)=\left|V_{2}^{\prime}(f)\right|$;
$V_{2}^{\prime \prime}(f)=\left\{v_{i} \in V^{\prime}\left(G^{\times}\right) \mid v_{i}\right.$ is a non-special 2-vertex incident with f and exactly one of v_{i-2} and v_{i+2} is a 10^{+}-vertex $\}$and $n_{2}^{\prime \prime}(f)=\left|V_{2}^{\prime \prime}(f)\right|$.
Claim 1. $2\left(n_{2}^{s}(f)+n_{2}^{\prime \prime}(f)\right)+4 n_{2}^{\prime}(f) \leq d(f)$.
Proof. By Lemma 1(5), every 2-vertex is adjacent to false vertices in G^{\times}. If $n_{2}^{\prime}(f)=0$, then $n_{2}^{s}(f)+$ $n_{2}^{\prime \prime}(f) \leq \frac{d(f)}{2}$. It follows that $2\left(n_{2}^{s}(f)+n_{2}^{\prime \prime}(f)\right)+4 n_{2}^{\prime}(f) \leq d(f)$. So assume that $n_{2}^{\prime}(f) \geq 1$. Let $v_{i_{0}}, v_{i_{1}}, \ldots, v_{i_{t-1}} \in V_{2}^{\prime}(f)$ incident to f in clockwise order, where $t=n_{2}^{\prime}(f)$. For $0 \leq j \leq t-1$, let $v_{i_{j}-2}, v_{i_{j-1}}, v_{i_{j}}, v_{i_{j}+1}, v_{i_{j}+2}$ be five corresponding vertices incident to f, where $v_{i_{j}} \in V_{2}^{\prime}(f)$, and $v_{i_{j-1}}, v_{i_{j+1}}$ false, and $v_{i_{j}-2}, v_{i_{j}+2}$ are 10^{+}-vertices. It follows that the following vertices

$$
v_{i_{0}-1}, v_{i_{0}}, v_{i_{0}+1}, v_{i_{1}-1}, v_{i_{1}}, v_{i_{1}+1}, \ldots, v_{i_{t-1}-1}, v_{i_{t}}, v_{i_{t-1}+1}
$$

are mutually distinct, and $n_{2}^{\prime}(f) \leq n_{10^{+}}(f)$, where $n_{10^{+}}(f)$ denote the number of 10^{+}-vertices incident with f. Thus, $n_{2}^{s}(f)+n_{2}^{\prime \prime}(f) \leq \frac{d(f)-3 n_{2}^{\prime}(f)-n_{10^{+}}(f)}{2}$. Consequently, $2\left(n_{2}^{s}(f)+n_{2}^{\prime \prime}(f)\right)+4 n_{2}^{\prime}(f) \leq d(f)$.
Claim 2. If $f=[u x v y w]$ is a special 5 -face in G^{\times}such that v is a 2 -vertex, x, y are false vertices and $d_{G^{\times}}(u), d_{G^{\times}}(w) \geq 10$, then $f_{x u}, f_{u w}$ and $f_{w y}$ are not special 4-faces.
Proof. Assume $v v_{1}$ crosses $u u_{1}$ in G at the point x. Since $d_{G^{\times}}(v)=2, d_{G^{\times}}\left(v_{1}\right) \geq 10$ by Lemma 1(2). It follows that $f_{x u}$ is not special 4-face according to the definition of special 4-face. Similarly, $f_{u w}$ and $f_{w y}$ are not special 4-faces.
Lemma 4. Every face in G^{\times}has a nonnegative final charge.
Proof. Let $f=\left[v_{0} v_{1} \cdots v_{k-1}\right]$ be a k-face in G^{\times}, where $k \geq 3$.
Case 1. $d_{G^{\times}}(f)=3$.
Then $\omega(f)=-1$. If f is a true 3-face, then every vertex incident with f is a 10^{+}-vertex by Lemma 1(3), and thus $\omega^{\prime}(f) \geq-1+\frac{1}{3} \times 3=0$ by (R1). If f is a false 3-face, then f is incident to two 8^{+}-vertices by Lemma 1(4). It follows that $\omega^{\prime}(f)=-1+\frac{1}{2} \times 2=0$ by (R1).
Case 2. $d_{G^{\times}}(f)=4$.
No rule is valid for f and thus $\omega^{\prime}(f)=\omega(f)=0$.
Case 3. $d_{G^{\times}}(f)=5$.
Then f is incident to at most one 2-vertex. If not, then there exists an edge is crossed two times by Lemma 1(5). Assume that f is incident to a 2 -vertex, say v_{0}, then v_{1} and v_{4} are false by Lemma 1(5). Moreover, at least one of v_{2} and v_{3} is a 10^{+}-vertex by Lemma 1 (2). If exactly one of v_{2} and v_{3} is a 10^{+}-vertex, then $\omega^{\prime}(f) \geq 5-4-1=0$ by (R3) and (R4.2). So assume that v_{2} and v_{3} are 10^{+}-vertices, then f is a special 5 -face. If v_{0} is a non-special 2-vertex, then $\omega^{\prime}(f) \geq 5-4-2+\frac{1}{2}+\frac{1}{2}=0$ by (R4.1) and (R5). Otherwise, v_{0} is a special 2-vertex. By (R3), (R5) and (R6.3), $\omega^{\prime}(f) \geq 5-4-1+\frac{1}{2}+\frac{1}{2}-\frac{1}{9}=\frac{8}{9}$. Case 4. $d_{G^{\times}}(f)=6$.

By Lemma 1(6) and Claim 1, $n_{2}^{s}(f) \leq 2$ and $n_{2}^{\prime}(f) \leq 1$, respectively. If $n_{2}^{\prime}(f)=1$, assume $v_{0} \in V_{2}^{\prime}(f)$, then v_{0} is a non-special 2-vertex, v_{1} and v_{5} are false vertices, v_{2} and v_{4} are 10^{+}-vertices. It follows that $n_{2}^{s}(f)+n_{2}^{\prime \prime}(f)=0$. Hence, $\omega^{\prime}(f)=6-4-2=0$ by (R4.1). Now, assume that $n_{2}^{\prime}(f)=0$.

Suppose $n_{2}^{s}(f)=2$. Without loss of generality, assume that v_{0} is a special 2 -vertex. Then v_{1} and v_{5} are false vertices. If v_{3} is also a special 2 -vertex, then v_{2} and v_{4} are false vertices. There exists an edge is crossed two times, this is impossible. So assume v_{2} is another special 2 -vertex. Then f sends 1 to v_{0} and v_{2} by (R3), respectively, and (R6.3) is not applied. Thus, $\omega^{\prime}(f)=6-4-2=0$.

Suppose $n_{2}^{s}(f)=1$. Similarly, we may assume that v_{0} is a special 2 -vertex. Then v_{1} and v_{5} are false vertices. If v_{2} and v_{4} are 10^{+}-vertices, then v_{3} is a 8^{+}-vertex by Lemma $1(5)$. This implies that f sends 1 to v_{0} by (R3), and $\frac{1}{9}$ through v_{0} by (R6.3), respectively. Therefore, $\omega^{\prime}(f)=6-4-1-\frac{1}{9}=\frac{8}{9}$. Otherwise, (R6.3) is not applied, and $\omega^{\prime}(f) \geq 6-4-1-1=0$ by (R3) and (R4.2).

Suppose $n_{2}^{s}(f)=0$. Then $n_{2}^{\prime \prime}(f) \leq 3$ by Claim 1. If $n_{2}^{\prime \prime}(f) \leq 2$, then $\omega^{\prime}(f) \geq 6-4-1-1=0$ by (R4.2). Otherwise, $n_{2}^{\prime \prime}(f)=3$, this is impossible.
Case 5. $d_{G^{\times}}(f)=7$.
Then $n_{2}^{s}(f)+n_{2}^{\prime \prime}(f) \leq 3$ and $n_{2}^{\prime}(f) \leq 1$ by Claim 1. If $n_{2}^{\prime}(f)=1$, then $n_{2}^{s}(f)+n_{2}^{\prime \prime}(f) \leq 1$ by Claim 1. Assume $v_{0} \in V_{2}^{\prime}(f)$, then v_{0} is a non-special 2-vertex, v_{1} and v_{6} are false vertices, v_{2} and v_{5} are 10^{+}-vertices. This implies that $n_{2}^{s}(f)=0$. Hence, $\omega^{\prime}(f)=7-4-2-1=0$ by (R3) and (R4). Next, assume that $n_{2}^{\prime}(f)=0$. If $n_{2}^{s}(f)+n_{2}^{\prime \prime}(f) \leq 2$, then $\omega^{\prime}(f) \geq 7-4-2 \times 1-2 \times \frac{1}{9}=\frac{7}{9}$ by (R3), (R4.2), (R6.4) and (R6.3). Now, we have $n_{2}^{s}(f)+n_{2}^{\prime \prime}(f)=3$. This implies that f is incident with three 2 -vertices, and
four false vertices by Lemma 1(5). Hence, there exists an edge is crossed two times, which contradicts the property ($\mathbf{(P 1)}$.
Case 6. $d_{G^{\times}}(f)=8$.
Then $n_{2}^{s}(f)+n_{2}^{\prime \prime}(f) \leq 4$ and $n_{2}^{\prime}(f) \leq 2$ by Claim 1. If $n_{2}^{\prime}(f)=2$, then $n_{2}^{s}(f)+n_{2}^{\prime \prime}(f)=0$ by Claim 1, and hence $\omega^{\prime}(f)=8-4-2 \times 2=0$ by (R4.1). If $n_{2}^{\prime}(f)=1$, then $n_{2}^{s}(f)+n_{2}^{\prime \prime}(f) \leq 1$ by the definition of $V_{2}^{\prime}(f)$, and hence $\omega^{\prime}(f)=8-4-2-\frac{10}{9}=\frac{8}{9}$ by (R3) and (R4). Now assume that $n_{2}^{\prime}(f)=0$. By the definition of $V_{2}^{\prime \prime}(f)$ and Lemma 3, we may derive that $n_{2}^{s}(f)+n_{2}^{\prime \prime}(f) \leq 3$. Hence, $\omega^{\prime}(f) \geq 8-4-3 \times \frac{10}{9}=\frac{2}{3}$ by (R3) and (R4.2).
Case 7. $d_{G^{\times}}(f) \geq 9$.
By Claim 1, (R3), (R4) and (R6.4), we have the following inequality.

$$
\begin{aligned}
\omega^{\prime}(f) & \geq d(f)-4-2 n_{2}^{\prime}(f)-\left(1+\frac{1}{9}\right)\left(n_{2}^{s}(f)+n_{2}^{\prime \prime}(f)\right) \\
& \left.\geq d(f)-4-2\left(\frac{1}{4} d(f)-\frac{1}{2}\left(n_{2}^{s}(f)+n_{2}^{\prime \prime}(f)\right)\right)-\frac{10}{9}\left(n_{2}^{s}(f)+n_{2}^{\prime \prime}(f)\right)\right) \\
& =\frac{d(f)}{2}-4-\frac{1}{9}\left(n_{2}^{s}(f)+n_{2}^{\prime \prime}(f)\right) \\
& \geq \frac{d(f)}{2}-4-\frac{1}{9} \times \frac{d(f)}{2} \\
& =\frac{4 d(f)-36}{9} \geq 0
\end{aligned}
$$

Lemma 5. Every 2-vertex in G^{\times}has a nonnegative final charge.
Proof. By Lemma 1(3) and (4), we derive that v is not incident with a triangle in G^{\times}. By Lemma 1(5), the neighbors of v in G^{\times}, say x and y, are both false vertices.

Assume that v is a special 2-vertex. Let $f=[v x u y]$ be a special 4 -face, and f^{*} be the other face incident to v. Then v receives 1 from f by (R2). Since G is a simple graph, $d_{G^{\times}}\left(f^{*}\right) \geq 5$, then v receives 1 from f^{*} by (R3). Hence, $\omega^{\prime}(v) \geq 2-4+2 \times 1=0$. We may assume that v is a non-special 2 -vertex.

If v is incident with a 4-face, say $f=[u x v y]$, then $d(u) \leq 9$. Let u_{1} (resp. u_{2}) be the vertices in G such that $u u_{1}$ (resp. $u u_{2}$) passes through the crossing x (resp. y). Since G is a simple graph, $u_{1} \neq u_{2}$, and u_{1} and u_{2} are 10^{+}-vertices by Lemma 1(2). Hence, v is incident with a 5^{+}-face, which sends 2 to v by (R4.1). It follows that $\omega^{\prime}(v)=2-4+2=0$.

If v is incident with two 5^{+}-faces f_{1} and f_{2}, then let $u_{1} u_{2}$ (resp. $w_{1} w_{2}$) be edge of G that pass through the crossing x (resp. y), such that u_{1} and w_{1} (resp. u_{2} and w_{2}) are vertices on f_{1} (resp. f_{2}). By Lemma 1(2), there are at least two 10^{+}-vertices among u_{1}, u_{2}, w_{1} and w_{2}. Therefore, either $v \in V_{2}^{\prime}\left(f_{1}\right)$ or $v \in V_{2}^{\prime}\left(f_{2}\right)$, or both $v \in V_{2}^{\prime \prime}\left(f_{1}\right)$ and $v \in V_{2}^{\prime \prime}\left(f_{2}\right)$. In each case v receives at least 2 from f_{1} and f_{2} by (R4.1) and (R4.2), and thus $\omega^{\prime}(v) \geq 2-4+2=0$.
Remark 1. Let v be a 10^{+}-vertex, which is incident with a 6 -face $f^{*}=\left[\nu v_{1} v_{2} v_{3} v_{4} v_{5}\right]$. If v sends out weight through f^{*} by (R6.1), then v_{1}, v_{3} and v_{5} are false vertices, v_{2} and v_{4} are 2 -vertices. We call such face a special 6 -face, and denote $f_{6}^{s}(v)$ by the number of special 6 -faces incident with v.
Claim 3. Let $f=[v x u y]$ be a special 4-face with $d(v) \geq 10$. Then the faces $f_{v x}$ and $f_{v y}$ are neither special 4-faces nor special 6-faces.
Proof. Let $v v_{1}$ (resp. $v v_{2}$) cross $u u_{1}$ (resp. $u u_{2}$) in G at the crossing x (resp. y). The definition of the special 4 -face implies that u is a 2 -vertex. Therefore, u_{1} and u_{2} are 10^{+}-vertices by Lemma 1(2), and
the Claim holds.
Claim 4. Let v be a 10^{+}-vertex, and let f_{1}, f_{2} and f_{3} be three consecutive faces that are incident with v in G^{\times}.
(1) If f_{1}, f_{2} and f_{3} are not special 4-faces, then v totally sends to f_{1}, f_{2} and f_{3} or to bad 10 -vertex through these faces at most $\frac{3}{2}$;
(2) If at least one of f_{1}, f_{2} and f_{3} is a special 4-faces, then v totally sends to f_{1}, f_{2} and f_{3} or to bad 10 -vertex through these faces at most 2 .
Proof. By (R1), (R2) and (R5), v sends 1 to its incident special 4-face and at most $\frac{1}{2}$ to its incident 3 -face or special 5 -face. In addition, v sends $2 \times \frac{1}{9}$ to bad 10 -vertex through special 6 -face by (R6.4).

1) Suppose f_{1}, f_{2} and f_{3} are not special 4 -faces. It follows that v sends at most $\frac{1}{2} \times 3=\frac{3}{2}$ to f_{1}, f_{2} and f_{3} or to bad 10 -vertex through these faces.
2) Suppose that at least one of f_{1}, f_{2} and f_{3} is a special 4-faces. Furthermore, there are at most two special 4-faces among f_{1}, f_{2} and f_{3} by Claim 3. This implies that either exactly one of f_{1}, f_{2} and f_{3} is a special 4 -faces, or f_{1} and f_{3} are special 4-faces. In the latter case, f_{2} is not 3 -face, nor special 5 -face by Claim 2, nor special 6-face by Claim 3. Hence, in each case, v sends to f_{1}, f_{2} and f_{3} or to bad 10 -vertex through these faces at most 2 .
Remark 2. Let v be a 10^{+}-vertex and $f_{0}, f_{1}, \ldots, f_{d-1}$ be the faces in clockwise order around v, where $d=d(v)$. For $0 \leq i \leq d-1$, let a_{i} be the weight that v sends to f_{i} or to bad 10 -vertex through f_{i}, and $\mu_{i}=a_{i-1}+a_{i}+a_{i+1}$, where the subscripts are taken modular d. By Claim 4, we conclude that $\sum_{i=0}^{d-1} a_{i}=\frac{1}{3} \sum_{i=0}^{d-1} \mu_{i} \leq \frac{2}{3} d$.

For a true vertex v, denote by $f^{3}(v)$ and $n^{c}(v)$ the number of 3-faces incident with v and and the number of crossing vertices that are adjacent to v in G^{\times}, respectively.
Lemma 6. [15] Let G be a 1 -plane graph. If $d_{G}(v) \geq 5$, then $f^{3}(v)+n^{c}(v) \leq\left\lfloor\frac{3 d_{G}(v)}{2}\right\rfloor$.
Claim 5. Let $v \in V\left(G^{\times}\right)$with $8 \leq d(v) \leq 9$. If v is adjacent to bad 10 -vertices in G, then $f^{3}(v) \leq d(v)-1$. Proof. Suppose that v is adjacent to a bad 10 -vertex u. By the definition of bad 10 -vertex and Lemma 1(2), $u v$ passes through a crossing, say x. Let $z w$ be the other edge in G passes through x, and let f_{1}, f_{2}, f_{3} and f_{4} be the face that is incident with the path $v x w, w x u, z x u$ and $z x v$ in G^{\times}. Then one of f_{2} and f_{3} is a 3-face and the other is a special 4-face. Without loss of generality, assume that f_{2} is a triangle and f_{3} is a special 4 -face. It follows that z is a 2 -vertex, and so f_{4} is not a 3 -face. Hence, $f^{3}(v) \leq d(v)-1$.
Lemma 7. Every vertex in G^{\times}with $8 \leq d_{G^{\times}}(v) \leq 9$ or $d_{G^{\times}}(v) \geq 11$ has a nonnegative final charge. Proof. Assume that $8 \leq d(v) \leq 9$. If v is not incident with any bad 10 -vertex, then $\omega^{\prime}(v) \geq d(v)-4-$ $\frac{1}{2} d(v) \geq 0$ by (R1). Otherwise, v is incident with bad 10 -vertices. By (R1) and (R6.2), we have

$$
\begin{aligned}
\omega^{\prime}(v) & \geq d(v)-4-\frac{1}{2} f^{3}(v)-\frac{1}{9} n^{c}(v) \\
& \geq d(v)-\frac{1}{2} f^{3}(v)-\frac{1}{9}\left(\left\lfloor\frac{3 d(v)}{2}\right\rfloor-f^{3}(v)\right)-4 \\
& \geq \frac{5}{6} d(v)-\frac{7}{18} f^{3}(v)-4 \\
& \geq \frac{5}{6} d(v)-\frac{7}{18}(d(v)-1)-4 \\
& =\frac{8 d(v)-65}{18} .
\end{aligned}
$$

Hence, if $d(v)=9$ or $d(v)=8$ and $f^{3}(v) \leq 6$, then $\omega^{\prime}(v) \geq 0$. We may assume that $d(v)=8$ and $f^{3}(v)=7$ by Claim 5. Since false vertices are not adjacent in $G^{\times}, n^{c}(v) \leq 4$. Thus, $\omega^{\prime}(v) \geq$ $8-4-7 \times \frac{1}{2}-4 \times \frac{1}{9}=\frac{1}{18}$.

Assume that $d(v) \geq 12$. According to Remark 2, we have $\omega^{\prime}(v) \geq d(v)-4-\sum_{i=1}^{d} a_{i} \geq \frac{1}{3} d-4 \geq 0$.
Now suppose that $d(v)=11$. If v is incident with at most three special 4 -faces, then $\omega^{\prime}(v) \geq$ $11-4-3 \times 1-8 \times \frac{1}{2}=0$ by (R1) and (R2). Otherwise, v is incident with at least four special 4 -faces. This implies that there are two faces f_{i} and f_{i+2} are special 4-faces, where the subscripts are taken modular 11. Without loss of generality, we may suppose that $i=1$. In this case, by Claim $2, f_{2}$ is not 3-face, nor special 5-face, nor special 6-face, and therefore $a_{2}=0$. Furthermore, f_{4} and f_{0} are not special 4 -faces by Claim 3. Thus, $\mu_{1}=\frac{1}{2}+1+0=\frac{3}{2}$ and $\mu_{3}=0+1+\frac{1}{2}=\frac{3}{2}$. Therefore, by Remark 2, we have:

$$
\sum_{i=0}^{10} a_{i}=\frac{1}{3} \sum_{i=0}^{10} \mu_{i}=\frac{1}{3}\left(\mu_{1}+\mu_{3}+\sum_{\substack{0 \leq i \leq 10 \\ i \neq 1,3}} \mu_{i}\right) \leq \frac{1}{3} \times\left(\frac{3}{2}+\frac{3}{2}+2 \times 9\right)=7 .
$$

It follows that $\omega^{\prime}(v)=d(v)-4-\sum_{i=0}^{10} a_{i} \geq 11-4-7=0$.
Lemma 8. Every 10 -vertex in G^{\times}has a nonnegative final charge.
Proof. Assume that v is a bad 10 -vertex. Let $f=[v x u y]$ be a special 4 -face with u is a special 2 vertex, x and y are false vertices. Let $v v_{1}$ cross $v_{0} u$ in G at the crossing x. We denote f^{*} by the other face incident with u. Since G is a simple graph, $d_{G^{\times}}\left(f^{*}\right) \geq 5$. Lemma 2 implies that v_{1} and v_{2} are both 2 -vertices or 8^{+}-vertices. Assume that $d\left(v_{1}\right) \leq d\left(v_{2}\right)$ by symmetry. Note that if $8 \leq d\left(v_{1}\right) \leq 9$, then $\tau\left(v_{1} \xrightarrow{x} v\right)=\frac{1}{9}$ by (R6.2). Thus it suffices to suppose that $d\left(v_{1}\right)=d\left(v_{2}\right)=2$, or $d\left(v_{1}\right)=2$ and $d\left(v_{2}\right) \geq 10$, or $d\left(v_{1}\right) \geq 10$. Assume that $d\left(v_{1}\right)=d\left(v_{2}\right)=2$. It is easy to see that $d_{G^{\times}}\left(f^{*}\right) \geq 8$ by Lemma 1(5). By (R6.4), $\tau(u \xrightarrow{f} v)=\frac{1}{9}$. Assume that $d\left(v_{1}\right)=2$ and $d\left(v_{2}\right) \geq 10$, then $d_{G^{\times}}\left(f^{*}\right) \geq 6$ by Lemma 1(5). If $d_{G^{\times}}\left(f^{*}\right) \geq 8$, then $\tau(u \xrightarrow{f} v)=\frac{1}{9}$ as above. By (R6.1), if $d_{G^{\times}}\left(f^{*}\right)=7$, then $\tau\left(f^{*} \xrightarrow{u} v\right)=\frac{1}{9}$; if $d_{G^{\times}}\left(f^{*}\right)=6$, then $\tau\left(v_{2} \xrightarrow{f^{*} \text { and } u} v\right)=\frac{1}{9}$. Assume that $d\left(v_{1}\right) \geq 10$. If $d_{G^{\times}}\left(f^{*}\right) \geq 8$, then $\tau(u \xrightarrow{f} v)=\frac{1}{9}$ as above. If $5 \leq d_{G^{\times}}\left(f^{*}\right) \leq 7$, then $\tau\left(f^{*} \xrightarrow{u} v\right)=\frac{1}{9}$ by (R6.3). In summary, v receives at least $\frac{1}{9}$ from element according to special 4 -face. Since v is incident with three special 4 -faces, $\omega^{\prime}(v) \geq 10-4-3 \times 1-6 \times \frac{1}{2}-\frac{1}{3}+3 \times \frac{1}{9}=0$ by (R1) and (R2).

Assume that v is a non-bad 10 -vertex. We denote the number of special 4 -faces incident with v by $f_{4}^{s}(v)$. Thus, $f_{4}^{s}(v) \leq 5$ by Claim 3. We need to consider two cases:
Case 1. $f_{6}^{s}(v)=0$
If $f_{4}^{s}(v) \leq 2$, then $\omega^{\prime}(v) \geq 10-4-2 \times 1-8 \times \frac{1}{2}=0$ by (R1), (R2) and (R5).
If $f_{4}^{s}(v)=3$, then v is incident with at most six 3 -faces in G^{\times}. Otherwise, v is a bad 10 -vetrex. Furthermore, if v is incident with six 3 -faces, then the remaining face is not a special 5 -face. Thus, v sends at most $6 \times \frac{1}{2}=3$ to 3 -faces and special 5 -faces by (R1) and (R5). This implies that $\omega^{\prime}(v) \geq$ $10-4-3 \times 1-3=0$.

If $f_{4}^{s}(v)=4$, then there are three faces f_{i-2}, f_{i} and f_{i+2} are special 4-faces, where the subscripts are taken modular 10. Assume, without loss of generality, $i=1$. If so, f_{0} and f_{2} are neither 3-faces nor special 5 -faces, which implies that v sends out at most $4 \times \frac{1}{2}=2$ by (R1) and (R5). Consequently, $\omega^{\prime}(v) \geq 10-4-4 \times 1-2=0$.

If $f_{4}^{s}(v)=5$, without loss of generality, assume that f_{i} are special 4-faces by Claim 3, where $i=1,3,5,7,9$. Then f_{j} are neither 3 -faces nor special 5 -faces by Claim 2 , where $j=0,2,4,6,8$. Therefore, $\omega^{\prime}(v) \geq 10-4-5 \times 1=1$.
Case 2. $f_{6}^{s}(v) \geq 1$
Without loss of generality, assume that f_{0} is a special 6 -face. Let $f_{0}=[v w x y z u]$ with w, y and u are false vertices, x and z are 2-vertices. Let $z z_{1}$ be another edge of G that passes through the crossings u, where $z_{1} \in \partial\left(f_{1}\right)$. It follows from Lemma $1(2)$ that z_{1} is a 10^{+}-vertices. This implies that f_{1} is neither special 4-face nor special 5 -face. By symmetry, f_{9} is neither special 4-face nor special 5 -face. Thus, $\mu_{0} \leq 2 \times \frac{1}{2}+2 \times \frac{1}{9}=\frac{11}{9}$ by (R1) and (R6.1). If f_{2} is a special 4-face, then f_{1} is not 3-face, nor special k-face, where $k \in\{4,5,6\}$. Otherwise, $a_{2} \leq \frac{1}{2}$. In each case, $\mu_{1} \leq 1+2 \times \frac{1}{9}=\frac{11}{9}$. Similarly, $\mu_{9} \leq \frac{11}{9}$. Therefore, by Claim 4 and Remark 2, we have:

$$
\sum_{i=0}^{9} a_{i}=\frac{1}{3} \sum_{i=0}^{9} \mu_{i}=\frac{1}{3}\left(\mu_{0}+\mu_{1}+\mu_{9}+\sum_{\substack{0 \leq i \leq 9 \\ i \neq 0,1,9}} \mu_{i}\right) \leq \frac{1}{3} \times\left(3 \times \frac{11}{9}+2 \times 7\right)=\frac{53}{9}
$$

This yields $\omega^{\prime}(v) \geq 10-4-\frac{53}{9}=\frac{1}{9}$.

4. Conclusions and future works

In this paper, we closed the gap between the lower and upper bound of Problem 1 by proving that 1 -planar graphs are dynamically 10 -choosable. It is interesting to determine the smallest integer c, where $7 \leq c \leq 10$, such that every 1 -planar graph is dynamically c-choosable.

A graph is IC-planar (independent-crossing-planar) if it has a 1-planar drawing so that each vertex is incident with at most one crossing edge. A graph is NIC-planar (near-independent-crossing-planar) if it admits a drawing in the plane with at most one crossing per edge and such that two pairs of crossing edges share at most one common end vertex. Both of them specialize 1-planarity, but generalize planarity. Thus, the following is a natural problem:
Problem 2. What is the smallest integers l_{1} and l_{2} such that every IC-planar (or NIC-planar graph) graph is dynamically l_{1}-colorable and dynamically l_{2}-choosable, respectively.

Recently, Hu and Kong proved that IC-planar is dynamically 7-choosable (in preparation). One can see Figure 2, which is an IC-planar graph with dynamic chromatic number is 6 . Hence, we have $6 \leq l_{1} \leq l_{2} \leq 7$ for IC-planar graph.

Figure 2. An IC-planar graph.

Acknowledgements

The first author was supported by the National Natural Science Foundation of China (No. 11801512, 11971437 and 11901525). The second author was supported by China Postdoctoral Science Foundation (2020M681927) and the Fundamental Research Funds for the Provincial Universities of Zhejiang (2021YW08).

Conflict of interest

The authors have contributed to this work equally and declare that they have no conflict of interest.

References

1. A. Ahadi, S. Akbari, A. Dehghan, M. Ghanbari, On the difference between chromatic number and dynamic chromatic number of graphs, Discrete Math., 312 (2012), 2579-2583. https://doi.org/10.1016/j.disc.2011.09.006
2. M. Alishahi, On the dynamic coloring of graphs, Discrete Appl. Math., 159 (2011), 152-156. https://doi.org/10.1016/j.dam.2010.10.012
3. P. Borowiecki, E. Sidorowicz, Dynamic coloring of graphs, Fund. Inform., 114 (2012), 105-128. https://doi.org/10.3233/FI-2012-620
4. N. Bowler, J. Erde, F. Lehner, M. Merker, M. Pitz, K. Stavropoulos, A counterexample to montgomery's conjecture on dynamic colourings of regular graphs, Discrete Appl. Math., 229 (2017), 151-153. https://doi.org/10.1016/j.dam.2017.05.004
5. Y. Chen, S. Fan, H. J. Lai, H. Song, L. Sun, On dynamic coloring for planar graphs and graphs of higher genus, Discrete Appl. Math., 160 (2012), 1064-1071. https://doi.org/10.1016/j.dam.2012.01.012
6. L. Esperet, Dynamic list coloring of bipartite graphs, Discrete Appl. Math., 158 (2010), 1963-1965. https://doi.org/10.1016/j.dam.2010.08.007
7. D. Karpov, Dynamic proper colorings of a graph, J. Math. Sci., 179 (2011), 601-615. https://doi.org/10.1007/s10958-011-0612-3
8. Y. Kim, S. Lee, S. Oum, Dynamic coloring of graphs having no K_{5} minor, Discrete Appl. Math., 206 (2016), 81-89. https://doi.org/10.1016/j.dam.2016.01.022
9. S. J. Kim, S. Lee, W. J. Park, Dynamic coloring and list dynamic coloring of planar graphs, Discrete Appl. Math., 161 (2013), 2207-2212. https://doi.org/10.1016/j.dam.2013.03.005
10. H. J. Lai, J. Lin, B. Montgomery, T. Shuib, S. Fan, Conditional colorings of graphs, Discrete Math., 306 (2006), 1997-2004. https://doi.org/10.1016/j.disc.2006.03.052
11. S. Loeb, T. Mahoney, B. Reiniger, J. Wise, Dynamic coloring parameters for graphs with given genus, Discrete Appl. Math., 235 (2018), 129-141. https://doi.org/10.1016/j.dam.2017.09.013
12. B. Montgomery, Dynamic coloring of graphs, West Virginia University, 2001.
13. S. Saqaeeyan, E. Mollaahamdi, Dynamic chromatic number of bipartite graphs, Sci. Ann. Comput. Sci., 26 (2016), 249-261. https://doi.org/10.7561/SACS.2016.2.249
14. N. Vlasova, D. Karpov, Bounds on the dynamic chromatic number of a graph in terms of its chromatic number, J. Math. Sci., 232 (2018), 21-24. https://doi.org/10.1007/s10958-018-3855-4
15. X. Zhang, J. Wu, On edge coloring of 1-planar graphs, Inform. Process. Lett., 111 (2011), 124-128. https://doi.org/10.1016/j.ipl.2010.11.001
16. X. Zhang, Y. Li, Dynamic list coloring of 1-planar graphs, Discrete Math., 344 (2021), 112333. https://doi.org/10.1016/j.disc.2021.112333

AIMS Press
© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

