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Abstract: A graph is 1-planar if it can be drawn in the plane such that each of its edges is crossed
at most once. A dynamic coloring of a graph G is a proper vertex coloring such that for each vertex
of degree at least 2, its neighbors receive at least two different colors. The list dynamic chromatic
number chd(G) of G is the least number k such that for any assignment of k-element lists to the vertices
of G, there is a dynamic coloring of G where the color on each vertex is chosen from its list. In this
paper, we show that if G is a 1-planar graph, then chd(G) ≤ 10. This improves a result by Zhang and
Li [16], which says that every 1-planar graph G has chd(G) ≤ 11.
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1. Introduction

Graphs in this paper are simple and finite. Let G be a graph with vertex set V(G) and edge set
E(G). For a vertex v ∈ V(G), the neighborhood of v in G is NG(v) = {u ∈ V(G) : u is adjacent
to v in G}. Vertices in NG(v) are called neighbors of v, and dG(v) = |NG(v)| is the degree of v in G.
A proper k-coloring is a mapping φ : V(G) → {1, 2, . . . , k} such that any adjacent vertices receive
different colors. A proper vertex coloring is called a dynamic coloring if for every vertex v of degree at
least 2, the neighbors of v receive at least two different colors. The smallest integer k such that G has
a proper (resp. dynamic) k-coloring is the chromatic number (resp. dynamic chromatic number) of G,
denoted by χ(G) (resp. χd(G)). The concept of dynamic coloring was first introduced in [12], which is
a generalization of the classical graph coloring.

A graph is said to be planar, if it can be drawn in the plane so that its edges intersect only at their
ends. The well-known Four-Color Theorem states that χ(G) ≤ 4 for every planar graph G. Chen et
al. [5] showed that χd(G) ≤ 5 if G is a planar graph, and it is conjectured that χd(G) ≤ 4 if G is a planar
graph other than C5. In 2013, Kim, Lee and Park [8] proved this conjecture. Furthermore, Kim, Lee
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and Oum [9] proved the same conclusion for K5-minor-free graphs. The dynamic coloring of graphs
has been extensively investigated in past decades, we refer to [1–5,7,10–14].

For each integer k ≥ 3, let S Kk denote the graph obtained from complete graph Kk by inserting a
new vertex to each of the edges in Kk. Thus for a fixed k ≥ 3, S Kk is a bipartite graph with a bipartition
(X,Y) where |X| = k and |Y | = |E (Kk)|, such that each vertex in Y is adjacent to exactly two vertices
in X, and distinct vertices in X are adjacent to k − 1 vertices in Y as do in Kk. Thus, χ(S Kk) = 2 and
χd(S Kk) = k. So it is an example showing that the gap χd(G) − χ(G) can be arbitrarily big. There is a
vast literature dealing with the relationship between χ(G) and χd(G), see [2,10,12].

For every vertex v ∈ V(G), let L(v) denote a list of colors available at v. An L-coloring is a proper
coloring ϕ such that ϕ(v) ∈ L(v) for every vertex v ∈ V(G). A graph G is k-choosable if it has an L-
coloring whenever all lists have size at least k. The list chromatic number ch(G) of G is the least integer
k such that G is k-choosable. A dynamic L-coloring is a dynamic coloring of G such that each vertex
is colored by a color from its list. A graph G is called dynamically k-choosable if it has a dynamic
L-coloring whenever all lists have size at least k. The dynamic list chromatic number chd(G) of G is
the least integer k such that G is dynamically k-choosable.

Note that χ(G) ≤ χd(G) ≤ chd(G) for every graph G. Esperet [6] showed that there is a planar
bipartite graph G with ch(G) = χd(G) = 3 and chd(G) = 4 and moreover, there exists for every k ≥ 5
a bipartite graph Gk with ch(Gk) = χd(Gk) = 3 and chd(Gk) ≥ k. Hence the gap between χd(G) and
chd(G) can be any large. For further information on the dynamic list coloring of graphs, we refer the
reader to [2] and [9].

A 1-planar graph is a graph that can be drawn in the plane so that each edge has at most one
crossing. Recently, Zhang and Li [16] considered the dynamic list coloring of 1-planar graphs and
proved 7 ≤ χd(G) ≤ chd(G) ≤ 11 for every 1-planar graph G. Hence a natural problem is proposed.
Problem 1. (Zhang and Li [16]) Determine the minimum integers l1 and l2 so that every 1-planar graph
is dynamically l1-colorable and dynamically l2-choosable, respectively.

The purpose of this paper is to close the gap between the lower and upper bound by proving the
following theorem.
Theorem 1. Every 1-planar graph is dynamically 10-choosable.

2. Notations and terminology

A plane graph is a particular drawing in the Euclidean plane of a certain planar graph. Let G be a
plane graph. We use F(G) to denote the set of faces in G. For a face f ∈ F(G), we use ∂( f ) to denote
the boundary walk of f and write f = [u1u2 · · · un] if u1,u2, . . . , un are the vertices of ∂( f ) in clockwise
order. The degree of a face is the number of edge-steps in its boundary walk. For x ∈ V(G) ∪ F(G),
let dG(x) denote the degree of x in G. A vertex of degree k (at most k, at least k, respectively) is called
a k-vertex (k−-vertex, k+-vertex, respectively). Similarly, we can define k-face, k−-face, and k+-face. If
X is the set of vertices and edges deleted, the resulting subgraph is denoted by G − X.

Let G be a plane drawing of a 1-planar graph such that each edge has at most one crossing and
the number of such crossings are as few as possible. Let C(G) denote the set of crossings in G. The
associated plane graph, denoted G×, of G is a plane graph with

V(G×) = V(G) ∪C(G), E(G×) = E0(G) ∪ E1(G),
where E0(G) is the set of non-crossed edges in G and
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E1(G) = {xz, zy | xy ∈ E(G) \ E0(G) and z is a crossing point on xy}.
Vertices in V(G) are said to be true vertices of G×, and vertices in C(G) are false vertices of G×. It

is easy to observe that dG×(v) = dG(v) for each v ∈ V(G), and dG×(v) = 4 for each v ∈ C(G). A 3-face is
false if it is incident to a false vertex in G×, and is true otherwise.

A 4-face f = [uxvy] in G× is called a special 4-face if dG×(u) ≥ 10, dG×(v) = 2, x and y are false
vertices, in this case, the vertex v is called a special 2-vertex. And non-special 2-vertex otherwise. A
5-face f = [uxvyw] in G× is called a special 5-face if dG×(v) = 2, dG×(u), dG×(w) ≥ 10, x and y are false
vertices. A 10-vertex is bad if, which is incident with three special 4-faces and seven 3-faces in G×,
and non-bad otherwise.

In the figure of this paper, black (white) bullets represent vertices whose degrees are exactly (at
least) the one shown in the figure.

3. Proof of Theorem 1

We shall argue by contradiction to prove Theorem 1. Throughout the rest of this section, we assume
that G is a counterexample to Theorem 1 such that |V(G)| + |E(G)| is minimized, which is called
a dynamically minimal graph. Specifically, there exists a 10-list assignment L to the vertices of G
such that G is not dynamically L-choosable. By the minimality of G, for any 1-planar graph H with
|V(H)| + |E(H)| < |V(G)| + |E(G)| is dynamically L-choosable.

In the following two subsections, we first exhibit the structure of this minimum counterexample G.
Secondly, relying on these properties, we use the Discharging Method to obtain a contradiction.

3.1. Structure and properties of a counterexample to Theorem 1

Zhang and Li [16] investigated the propositions of the dynamically minimal graphs. They gave the
following lemma.
Lemma 1. (Zhang and Li [16]) Let G be a dynamically minimal graph. Then the following assertions
hold.

(1) δ(G) ≥ 2.
(2) Each edge of G is incident with at least one 10+-vertex.
(3) If u is a vertex incident with a triangle in G, then dG(u) ≥ 10.
(4) If u is a true vertex incident with a false 3-face of G×, then dG(u) ≥ 8.
(5) Let f = [wuvx1 · · · xs] be a 4+-face of G× with dG(u) ≤ 7, then both w and v are false.
(6) Each 6-face in G× is incident with at most two special 2-vertices.

Lemma 2. G does not contain k-vertices, where 3 ≤ k ≤ 7.
Proof. Suppose not, let v be a k-vertex with 3 ≤ k ≤ 7. Let NG(v) = {u,w, x1, . . . , xt, y1, . . . , ys}, where
dG(xi) = 2 for each 1 ≤ i ≤ t and dG(y j) ≥ 3 for each 1 ≤ j ≤ s. Let x

′

i = NG(xi)\{v} for 1 ≤ i ≤ t,
u
′

∈ NG(u)\{v}, w
′

∈ NG(w)\{v} and y
′

j ∈ NG(y j)\{v} for 1 ≤ j ≤ s. Note that t or s may be 0, in which
case NG(v) = {u,w, y1, . . . , yk} or NG(v) = {u,w, x1, . . . , xk}, respectively. Let H = G − {x1, . . . , xt} −

{vy1, . . . , vys}, which is a 1-plane graph. By the minimality of G, H has a dynamic L-coloring φ such
that φ(u) , φ(w). Firstly, we recolor v with a color form L(v)\{φ(u), φ(w), φ(u

′

), φ(w
′

), φ(y1), . . . , φ(ys)}.
Next, for each 1 ≤ i ≤ t, we color xi by a color from L(xi)\ {φ(v), φ(x

′

i), φ(x
′′

i )}, where x
′′

i ∈ NG(x
′

i)\ {xi}.
So we get a dynamic L-coloring of G, a contradiction.
Lemma 3. G dose not contain two 2-vertices u and v such that NG(u) = NG(v).
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Proof. Suppose, to the contrary, that G has 2-vertices u and v with NG(u) = NG(v) = {x, y}. By
Lemma 1(2), x and y are 10+-vertices. Let H = G − {u}, which is still 1-planar. By the minimality
of G, H has a dynamic L-coloring φ. It follows that φ(x) , φ(y), as dG(v) = 2. We obtain a dynamic
L-coloring of G by coloring u with a color from L(u) \ {φ(x), φ(y)}, a contradiction.

3.2. Discharging

We will complete the proof of Theorem 1 in this subsection. Let G× be the associated plane graph
of G corresponding to a plane embedding of G with the following properties:

(P1) Every edge is crossed by at most one other edge.
(P2) The number of crossing points is as small as possible.
For a k-vertex v ∈ V(G×), we denote the neighbors of v in G× by v0, v1, . . . , vk−1 in clockwise order,

and the faces of G× incident to v by f0, f1, . . . , fk−1 with vvi, vvi+1 ∈ ∂( fi) for i = 0, 1, . . . , k − 1, where
the indices are taken as modulo k. For a fixed face f ∈ F(G×) and an edge e ∈ E( f ), we use fe to
denote the other face adjacent to f and incident to e. In particular, f = fe if e is a cut edge.

We first define an initial weight function ω(x) = dG×(x) − 4 for each x ∈ V(G×) ∪ F(G×). Since G×

is a connected plane graph, by Euler’s formula |V(G×)| − |E(G×)| + |F(G×)| = 2 and the relation∑
v∈V(G×)

dG×(v) =
∑

f∈F(G×)

dG×( f ) = 2|E(G×)|,

we obtain the following identity:∑
v∈V(G×)

(dG×(v) − 4) +
∑

f∈F(G×)

(dG×( f ) − 4) = −8.

Next, we design some discharging rules and redistribute weights accordingly. Once the discharging
is finished, a new weight function ω′ is produced. However, the total sum of weights is kept fixed when
the discharging is in process. Nevertheless, we will show that ω′(x) ≥ 0 for all x ∈ V(G×) ∪ F(G×).
This leads to the following contradiction

0 ≤
∑

x∈V(G×)∪F(G×)

ω′(x) =
∑

x∈V(G×)∪F(G×)

ω(x) = −8,

which completes the proof.
For x, y and z ∈ V(G×) ∪ F(G×), let τ(x → y) and τ(x

z
→ y) denote the amount of weight that x

transfers to y directly and across z, respectively. Our discharging rules are defined in G× as follows.
(R1) Every true 3-face in G× receives 1

3 from each of its incident 10+-vertices. Every false 3-face in
G× receives 1

2 from each of its incident 8+-vertices.
(R2) Every 10+-vertices incident with a special 4-face f sends 1 to special 2-vertex through f .
(R3) Every 5+-face in G× sends 1 to each of its incident special 2-vertices if there are some ones.
(R4) Suppose that f = [v0v1 · · · vm] is a 5+-face in G× and vi is a non-special 2-vertex.

(R4.1) If both of vi−2 and vi+2 are 10+-vertices, then τ( f → vi) = 2;
(R4.2) If exactly one of vi−2 and vi+2 is a 10+-vertex, then τ( f → vi) = 1.

(R5) Every 10+-vertex sends 1
2 to its each incident special 5-face.

(R6) Suppose v is a bad 10-vertex and f = [vxuy] is a special 4-face with u is a special 2-vertex, x and
y are false vertices. Let vv1 (resp. vv2) cross v0u (resp. v3u) in G at the crossing x (resp. y). Say the
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other face incident with u is f ∗. Assume that d(v1) ≤ d(v2) by symmetry, we carry out the following
subrules (see Figure 1):

(R6.1) If d(v1) = 2 and d(v2) ≥ 10, then τ( f ∗
u
→ v) = 1

9 provided that dG×( f ∗) = 7 and τ(v2
f ∗ and u
−→

v) = 1
9 provided that dG×( f ∗) = 6;

(R6.2) If 8 ≤ d(v1) ≤ 9, then τ(v1
x
→ v) = 1

9 ;

(R6.3) If d(v1) ≥ 10 and 5 ≤ dG×( f ∗) ≤ 7, then τ( f ∗
u
→ v) = 1

9 ;

(R6.4) If dG×( f ∗) ≥ 8, then τ( f ∗
u
→ v) = 1

9 .

Figure 1. The discharging rule (R6).

Let f = [v0v1 · · · vm] be a 5+-face in G×. For 0 ≤ i ≤ m, we define some notations as follows.
V s

2( f ) = {vi ∈ V(G×)|vi is a special 2-vertex incident with f } and ns
2( f ) = |V s

2( f )|;
V
′

2( f ) = {vi ∈ V(G×)|vi is a non-special 2-vertex incident with f and both of vi−2 and vi+2 are
10+-vertices} and n

′

2( f ) = |V
′

2( f )|;
V
′′

2 ( f ) = {vi ∈ V(G×)|vi is a non-special 2-vertex incident with f and exactly one of vi−2 and vi+2 is a
10+-vertex } and n

′′

2( f ) = |V
′′

2 ( f )|.
Claim 1. 2(ns

2( f ) + n
′′

2( f )) + 4n
′

2( f ) ≤ d( f ).
Proof. By Lemma 1(5), every 2-vertex is adjacent to false vertices in G×. If n

′

2( f ) = 0, then ns
2( f ) +

n
′′

2( f ) ≤ d( f )
2 . It follows that 2(ns

2( f ) + n
′′

2( f )) + 4n
′

2( f ) ≤ d( f ). So assume that n
′

2( f ) ≥ 1. Let
vi0 , vi1 , . . . , vit−1 ∈ V

′

2( f ) incident to f in clockwise order, where t = n
′

2( f ). For 0 ≤ j ≤ t − 1, let
vi j−2, vi j−1, vi j , vi j+1, vi j+2 be five corresponding vertices incident to f , where vi j ∈ V

′

2( f ), and vi j−1, vi j+1

false, and vi j−2, vi j+2 are 10+-vertices. It follows that the following vertices

vi0−1, vi0 , vi0+1, vi1−1, vi1 , vi1+1, . . . , vit−1−1, vit , vit−1+1
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are mutually distinct, and n
′

2( f ) ≤ n10+( f ), where n10+( f ) denote the number of 10+-vertices incident

with f . Thus, ns
2( f ) + n

′′

2( f ) ≤ d( f )−3n
′

2( f )−n10+ ( f )
2 . Consequently, 2(ns

2( f ) + n
′′

2( f )) + 4n
′

2( f ) ≤ d( f ).
Claim 2. If f = [uxvyw] is a special 5-face in G× such that v is a 2-vertex, x, y are false vertices and
dG×(u), dG×(w) ≥ 10, then fxu, fuw and fwy are not special 4-faces.
Proof. Assume vv1 crosses uu1 in G at the point x. Since dG×(v) = 2, dG×(v1) ≥ 10 by Lemma 1(2). It
follows that fxu is not special 4-face according to the definition of special 4-face. Similarly, fuw and fwy

are not special 4-faces.
Lemma 4. Every face in G× has a nonnegative final charge.
Proof. Let f = [v0v1 · · · vk−1] be a k-face in G×, where k ≥ 3.
Case 1. dG×( f ) = 3.

Then ω( f ) = −1. If f is a true 3-face, then every vertex incident with f is a 10+-vertex by
Lemma 1(3), and thus ω′( f ) ≥ −1 + 1

3 × 3 = 0 by (R1). If f is a false 3-face, then f is incident to two
8+-vertices by Lemma 1(4). It follows that ω′( f ) = −1 + 1

2 × 2 = 0 by (R1).
Case 2. dG×( f ) = 4.

No rule is valid for f and thus ω′( f ) = ω( f ) = 0.
Case 3. dG×( f ) = 5.

Then f is incident to at most one 2-vertex. If not, then there exists an edge is crossed two times by
Lemma 1(5). Assume that f is incident to a 2-vertex, say v0, then v1 and v4 are false by Lemma 1(5).
Moreover, at least one of v2 and v3 is a 10+-vertex by Lemma 1(2). If exactly one of v2 and v3 is a
10+-vertex, then ω′( f ) ≥ 5 − 4 − 1 = 0 by (R3) and (R4.2). So assume that v2 and v3 are 10+-vertices,
then f is a special 5-face. If v0 is a non-special 2-vertex, then ω′( f ) ≥ 5 − 4 − 2 + 1

2 + 1
2 = 0 by (R4.1)

and (R5). Otherwise, v0 is a special 2-vertex. By (R3), (R5) and (R6.3), ω′( f ) ≥ 5−4−1+ 1
2 + 1

2−
1
9 = 8

9 .
Case 4. dG×( f ) = 6.

By Lemma 1(6) and Claim 1, ns
2( f ) ≤ 2 and n′2( f ) ≤ 1, respectively. If n′2( f ) = 1, assume v0 ∈ V ′2( f ),

then v0 is a non-special 2-vertex, v1 and v5 are false vertices, v2 and v4 are 10+-vertices. It follows that
ns

2( f ) + n
′′

2( f ) = 0. Hence, ω′( f ) = 6 − 4 − 2 = 0 by (R4.1). Now, assume that n′2( f ) = 0.
Suppose ns

2( f ) = 2. Without loss of generality, assume that v0 is a special 2-vertex. Then v1 and v5

are false vertices. If v3 is also a special 2-vertex, then v2 and v4 are false vertices. There exists an edge
is crossed two times, this is impossible. So assume v2 is another special 2-vertex. Then f sends 1 to v0

and v2 by (R3), respectively, and (R6.3) is not applied. Thus, ω′( f ) = 6 − 4 − 2 = 0.
Suppose ns

2( f ) = 1. Similarly, we may assume that v0 is a special 2-vertex. Then v1 and v5 are
false vertices. If v2 and v4 are 10+-vertices, then v3 is a 8+-vertex by Lemma 1(5). This implies that f
sends 1 to v0 by (R3), and 1

9 through v0 by (R6.3), respectively. Therefore, ω′( f ) = 6 − 4 − 1 − 1
9 = 8

9 .
Otherwise, (R6.3) is not applied, and ω′( f ) ≥ 6 − 4 − 1 − 1 = 0 by (R3) and (R4.2).

Suppose ns
2( f ) = 0. Then n

′′

2( f ) ≤ 3 by Claim 1. If n
′′

2( f ) ≤ 2, then ω′( f ) ≥ 6 − 4 − 1 − 1 = 0 by
(R4.2). Otherwise, n

′′

2( f ) = 3, this is impossible.
Case 5. dG×( f ) = 7.

Then ns
2( f ) + n

′′

2( f ) ≤ 3 and n
′

2( f ) ≤ 1 by Claim 1. If n
′

2( f ) = 1, then ns
2( f ) + n

′′

2( f ) ≤ 1 by Claim
1. Assume v0 ∈ V ′2( f ), then v0 is a non-special 2-vertex, v1 and v6 are false vertices, v2 and v5 are
10+-vertices. This implies that ns

2( f ) = 0. Hence, ω′( f ) = 7 − 4 − 2 − 1 = 0 by (R3) and (R4). Next,
assume that n

′

2( f ) = 0. If ns
2( f )+n

′′

2( f ) ≤ 2, then ω′( f ) ≥ 7−4−2×1−2× 1
9 = 7

9 by (R3), (R4.2), (R6.4)
and (R6.3). Now, we have ns

2( f ) + n
′′

2( f ) = 3. This implies that f is incident with three 2-vertices, and
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four false vertices by Lemma 1(5). Hence, there exists an edge is crossed two times, which contradicts
the property (P1).
Case 6. dG×( f ) = 8.

Then ns
2( f ) + n

′′

2( f ) ≤ 4 and n
′

2( f ) ≤ 2 by Claim 1. If n
′

2( f ) = 2, then ns
2( f ) + n

′′

2( f ) = 0 by
Claim 1, and hence ω′( f ) = 8 − 4 − 2 × 2 = 0 by (R4.1). If n

′

2( f ) = 1, then ns
2( f ) + n

′′

2( f ) ≤ 1 by
the definition of V

′

2( f ), and hence ω′( f ) = 8 − 4 − 2 − 10
9 = 8

9 by (R3) and (R4). Now assume that
n
′

2( f ) = 0. By the definition of V
′′

2 ( f ) and Lemma 3, we may derive that ns
2( f ) + n

′′

2( f ) ≤ 3. Hence,
ω′( f ) ≥ 8 − 4 − 3 × 10

9 = 2
3 by (R3) and (R4.2).

Case 7. dG×( f ) ≥ 9.
By Claim 1, (R3), (R4) and (R6.4), we have the following inequality.

ω′( f ) ≥ d( f ) − 4 − 2n
′

2( f ) − (1 +
1
9

)(ns
2( f ) + n

′′

2( f ))

≥ d( f ) − 4 − 2(
1
4

d( f ) −
1
2

(ns
2( f ) + n

′′

2( f ))) −
10
9

(ns
2( f ) + n

′′

2( f )))

=
d( f )

2
− 4 −

1
9

(ns
2( f ) + n

′′

2( f ))

≥
d( f )

2
− 4 −

1
9
×

d( f )
2

=
4d( f ) − 36

9
≥ 0.

Lemma 5. Every 2-vertex in G× has a nonnegative final charge.
Proof. By Lemma 1(3) and (4), we derive that v is not incident with a triangle in G×. By Lemma 1(5),
the neighbors of v in G×, say x and y, are both false vertices.

Assume that v is a special 2-vertex. Let f = [vxuy] be a special 4-face, and f ∗ be the other face
incident to v. Then v receives 1 from f by (R2). Since G is a simple graph, dG×( f ∗) ≥ 5, then v
receives 1 from f ∗ by (R3). Hence, ω′(v) ≥ 2 − 4 + 2 × 1 = 0. We may assume that v is a non-special
2-vertex.

If v is incident with a 4-face, say f = [uxvy], then d(u) ≤ 9. Let u1 (resp. u2) be the vertices in G
such that uu1 (resp. uu2) passes through the crossing x (resp. y). Since G is a simple graph, u1 , u2,
and u1 and u2 are 10+-vertices by Lemma 1(2). Hence, v is incident with a 5+-face, which sends 2 to v
by (R4.1). It follows that ω′(v) = 2 − 4 + 2 = 0.

If v is incident with two 5+-faces f1 and f2, then let u1u2 (resp. w1w2) be edge of G that pass through
the crossing x ( resp. y), such that u1 and w1 (resp. u2 and w2 ) are vertices on f1 (resp. f2). By
Lemma 1(2), there are at least two 10+-vertices among u1, u2, w1 and w2. Therefore, either v ∈ V

′

2( f1)
or v ∈ V

′

2( f2), or both v ∈ V
′′

2 ( f1) and v ∈ V
′′

2 ( f2). In each case v receives at least 2 from f1 and f2

by (R4.1) and (R4.2), and thus ω′(v) ≥ 2 − 4 + 2 = 0.
Remark 1. Let v be a 10+-vertex, which is incident with a 6-face f ∗ = [vv1v2v3v4v5]. If v sends out
weight through f ∗ by (R6.1), then v1, v3 and v5 are false vertices, v2 and v4 are 2-vertices. We call such
face a special 6-face, and denote f s

6 (v) by the number of special 6-faces incident with v.
Claim 3. Let f = [vxuy] be a special 4-face with d(v) ≥ 10. Then the faces fvx and fvy are neither
special 4-faces nor special 6-faces.
Proof. Let vv1 (resp. vv2) cross uu1 (resp. uu2) in G at the crossing x (resp. y). The definition of the
special 4-face implies that u is a 2-vertex. Therefore, u1 and u2 are 10+-vertices by Lemma 1(2), and
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the Claim holds.
Claim 4. Let v be a 10+-vertex, and let f1, f2 and f3 be three consecutive faces that are incident with v
in G×.

(1) If f1, f2 and f3 are not special 4-faces, then v totally sends to f1, f2 and f3 or to bad 10-vertex
through these faces at most 3

2 ;
(2) If at least one of f1, f2 and f3 is a special 4-faces, then v totally sends to f1, f2 and f3 or to bad

10-vertex through these faces at most 2.
Proof. By (R1), (R2) and (R5), v sends 1 to its incident special 4-face and at most 1

2 to its incident
3-face or special 5-face. In addition, v sends 2 × 1

9 to bad 10-vertex through special 6-face by (R6.4).
1) Suppose f1, f2 and f3 are not special 4-faces. It follows that v sends at most 1

2 × 3 = 3
2 to f1, f2

and f3 or to bad 10-vertex through these faces.
2) Suppose that at least one of f1, f2 and f3 is a special 4-faces. Furthermore, there are at most two

special 4-faces among f1, f2 and f3 by Claim 3. This implies that either exactly one of f1, f2 and f3 is a
special 4-faces, or f1 and f3 are special 4-faces. In the latter case, f2 is not 3-face, nor special 5-face by
Claim 2, nor special 6-face by Claim 3. Hence, in each case, v sends to f1, f2 and f3 or to bad 10-vertex
through these faces at most 2.
Remark 2. Let v be a 10+-vertex and f0, f1, . . . , fd−1 be the faces in clockwise order around v, where
d = d(v). For 0 ≤ i ≤ d − 1, let ai be the weight that v sends to fi or to bad 10-vertex through fi,
and µi = ai−1 + ai + ai+1, where the subscripts are taken modular d. By Claim 4, we conclude that
d−1∑
i=0

ai = 1
3

d−1∑
i=0
µi ≤

2
3d.

For a true vertex v, denote by f 3(v) and nc(v) the number of 3-faces incident with v and and the
number of crossing vertices that are adjacent to v in G×, respectively.
Lemma 6. [15] Let G be a 1-plane graph. If dG(v) ≥ 5, then f 3(v) + nc(v) ≤ b3dG(v)

2 c.
Claim 5. Let v ∈ V(G×) with 8 ≤ d(v) ≤ 9. If v is adjacent to bad 10-vertices in G, then f 3(v) ≤ d(v)−1.
Proof. Suppose that v is adjacent to a bad 10-vertex u. By the definition of bad 10-vertex and
Lemma 1(2), uv passes through a crossing, say x. Let zw be the other edge in G passes through x, and
let f1, f2, f3 and f4 be the face that is incident with the path vxw, wxu, zxu and zxv in G×. Then one of
f2 and f3 is a 3-face and the other is a special 4-face. Without loss of generality, assume that f2 is a
triangle and f3 is a special 4-face. It follows that z is a 2-vertex, and so f4 is not a 3-face. Hence,
f 3(v) ≤ d(v) − 1.
Lemma 7. Every vertex in G× with 8 ≤ dG×(v) ≤ 9 or dG×(v) ≥ 11 has a nonnegative final charge.
Proof. Assume that 8 ≤ d(v) ≤ 9. If v is not incident with any bad 10-vertex, then ω′(v) ≥ d(v) − 4 −
1
2d(v) ≥ 0 by (R1). Otherwise, v is incident with bad 10-vertices. By (R1) and (R6.2), we have

ω′(v) ≥ d(v) − 4 −
1
2

f 3(v) −
1
9

nc(v)

≥ d(v) −
1
2

f 3(v) −
1
9

(b
3d(v)

2
c − f 3(v)) − 4

≥
5
6

d(v) −
7

18
f 3(v) − 4

≥
5
6

d(v) −
7

18
(d(v) − 1) − 4

=
8d(v) − 65

18
.
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Hence, if d(v) = 9 or d(v) = 8 and f 3(v) ≤ 6, then ω′(v) ≥ 0. We may assume that d(v) = 8
and f 3(v) = 7 by Claim 5. Since false vertices are not adjacent in G×, nc(v) ≤ 4. Thus, ω′(v) ≥
8 − 4 − 7 × 1

2 − 4 × 1
9 = 1

18 .

Assume that d(v) ≥ 12. According to Remark 2, we have ω′(v) ≥ d(v) − 4 −
d∑

i=1
ai ≥

1
3d − 4 ≥ 0.

Now suppose that d(v) = 11. If v is incident with at most three special 4-faces, then ω′(v) ≥
11 − 4 − 3 × 1 − 8 × 1

2 = 0 by (R1) and (R2). Otherwise, v is incident with at least four special 4-faces.
This implies that there are two faces fi and fi+2 are special 4-faces, where the subscripts are taken
modular 11. Without loss of generality, we may suppose that i = 1. In this case, by Claim 2, f2 is
not 3-face, nor special 5-face, nor special 6-face, and therefore a2 = 0. Furthermore, f4 and f0 are not
special 4-faces by Claim 3. Thus, µ1 = 1

2 + 1 + 0 = 3
2 and µ3 = 0 + 1 + 1

2 = 3
2 . Therefore, by Remark 2,

we have:
10∑
i=0

ai =
1
3

10∑
i=0

µi =
1
3

(µ1 + µ3 +
∑

0≤i≤10
i,1,3

µi) ≤
1
3
× (

3
2

+
3
2

+ 2 × 9) = 7.

It follows that ω′(v) = d(v) − 4 −
10∑
i=0

ai ≥ 11 − 4 − 7 = 0.

Lemma 8. Every 10-vertex in G× has a nonnegative final charge.
Proof. Assume that v is a bad 10-vertex. Let f = [vxuy] be a special 4-face with u is a special 2-
vertex, x and y are false vertices. Let vv1 cross v0u in G at the crossing x. We denote f ∗ by the other
face incident with u. Since G is a simple graph, dG×( f ∗) ≥ 5. Lemma 2 implies that v1 and v2 are
both 2-vertices or 8+-vertices. Assume that d(v1) ≤ d(v2) by symmetry. Note that if 8 ≤ d(v1) ≤ 9,
then τ(v1

x
→ v) = 1

9 by (R6.2). Thus it suffices to suppose that d(v1) = d(v2) = 2, or d(v1) = 2 and
d(v2) ≥ 10, or d(v1) ≥ 10. Assume that d(v1) = d(v2) = 2. It is easy to see that dG×( f ∗) ≥ 8 by

Lemma 1(5). By (R6.4), τ(u
f
→ v) = 1

9 . Assume that d(v1) = 2 and d(v2) ≥ 10, then dG×( f ∗) ≥ 6

by Lemma 1(5). If dG×( f ∗) ≥ 8, then τ(u
f
→ v) = 1

9 as above. By (R6.1), if dG×( f ∗) = 7, then

τ( f ∗
u
→ v) = 1

9 ; if dG×( f ∗) = 6, then τ(v2
f ∗ and u
−→ v) = 1

9 . Assume that d(v1) ≥ 10. If dG×( f ∗) ≥ 8, then

τ(u
f
→ v) = 1

9 as above. If 5 ≤ dG×( f ∗) ≤ 7, then τ( f ∗
u
→ v) = 1

9 by (R6.3). In summary, v receives
at least 1

9 from element according to special 4-face. Since v is incident with three special 4-faces,
ω′(v) ≥ 10 − 4 − 3 × 1 − 6 × 1

2 −
1
3 + 3 × 1

9 = 0 by (R1) and (R2).
Assume that v is a non-bad 10-vertex. We denote the number of special 4-faces incident with v by

f s
4 (v). Thus, f s

4 (v) ≤ 5 by Claim 3. We need to consider two cases:
Case 1. f s

6 (v) = 0
If f s

4 (v) ≤ 2, then ω′(v) ≥ 10 − 4 − 2 × 1 − 8 × 1
2 = 0 by (R1), (R2) and (R5).

If f s
4 (v) = 3, then v is incident with at most six 3-faces in G×. Otherwise, v is a bad 10-vetrex.

Furthermore, if v is incident with six 3-faces, then the remaining face is not a special 5-face. Thus, v
sends at most 6 × 1

2 = 3 to 3-faces and special 5-faces by (R1) and (R5). This implies that ω′(v) ≥
10 − 4 − 3 × 1 − 3 = 0.

If f s
4 (v) = 4, then there are three faces fi−2, fi and fi+2 are special 4-faces, where the subscripts are

taken modular 10. Assume, without loss of generality, i = 1. If so, f0 and f2 are neither 3-faces nor
special 5-faces, which implies that v sends out at most 4 × 1

2 = 2 by (R1) and (R5). Consequently,
ω′(v) ≥ 10 − 4 − 4 × 1 − 2 = 0.
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If f s
4 (v) = 5, without loss of generality, assume that fi are special 4-faces by Claim 3, where

i = 1, 3, 5, 7, 9. Then f j are neither 3-faces nor special 5-faces by Claim 2, where j = 0, 2, 4, 6, 8.
Therefore, ω′(v) ≥ 10 − 4 − 5 × 1 = 1.
Case 2. f s

6 (v) ≥ 1
Without loss of generality, assume that f0 is a special 6-face. Let f0 = [vwxyzu] with w, y and u are

false vertices, x and z are 2-vertices. Let zz1 be another edge of G that passes through the crossings u,
where z1 ∈ ∂( f1). It follows from Lemma 1(2) that z1 is a 10+-vertices. This implies that f1 is neither
special 4-face nor special 5-face. By symmetry, f9 is neither special 4-face nor special 5-face. Thus,
µ0 ≤ 2 × 1

2 + 2 × 1
9 = 11

9 by (R1) and (R6.1). If f2 is a special 4-face, then f1 is not 3-face, nor special
k-face, where k ∈ {4, 5, 6}. Otherwise, a2 ≤

1
2 . In each case, µ1 ≤ 1 + 2 × 1

9 = 11
9 . Similarly, µ9 ≤

11
9 .

Therefore, by Claim 4 and Remark 2, we have:

9∑
i=0

ai =
1
3

9∑
i=0

µi =
1
3

(µ0 + µ1 + µ9 +
∑

0≤i≤9
i,0,1,9

µi) ≤
1
3
× (3 ×

11
9

+ 2 × 7) =
53
9
.

This yields ω′(v) ≥ 10 − 4 − 53
9 = 1

9 .

4. Conclusions and future works

In this paper, we closed the gap between the lower and upper bound of Problem 1 by proving that
1-planar graphs are dynamically 10-choosable. It is interesting to determine the smallest integer c,
where 7 ≤ c ≤ 10, such that every 1-planar graph is dynamically c-choosable.

A graph is IC-planar (independent-crossing-planar) if it has a 1-planar drawing so that each vertex is
incident with at most one crossing edge. A graph is NIC-planar (near-independent-crossing-planar) if
it admits a drawing in the plane with at most one crossing per edge and such that two pairs of crossing
edges share at most one common end vertex. Both of them specialize 1-planarity, but generalize
planarity. Thus, the following is a natural problem:
Problem 2. What is the smallest integers l1 and l2 such that every IC-planar (or NIC-planar graph)
graph is dynamically l1-colorable and dynamically l2-choosable, respectively.

Recently, Hu and Kong proved that IC-planar is dynamically 7-choosable (in preparation). One
can see Figure 2, which is an IC-planar graph with dynamic chromatic number is 6. Hence, we have
6 ≤ l1 ≤ l2 ≤ 7 for IC-planar graph.

Figure 2. An IC-planar graph.
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