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Abstract: In this paper, we study the problem of simultaneous variable selection and estimation for
longitudinal ordinal data with high-dimensional covariates. Using the penalized generalized estimation
equation (GEE) method, we obtain some asymptotic properties for these types of data in the case that
the dimension of the covariates pn tends to infinity as the number of cluster n approaches to infinity.
More precisely, under appropriate regular conditions, all the covariates with zero coefficients can be
examined simultaneously with probability tending to 1, and the estimator of the non-zero coefficients
exhibits the asymptotic Oracle properties. Finally, we also perform some Monte Carlo studies to
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1. Introduction

High-dimensional longitudinal data, comprising repeated observations with a diverging number of
parameters, are widely used in bioscience and public health studies. A representative example is the
gene expression experiment, in which the data set includes a large number of covariates (see, [1]).
In fact, the number of collected variables may not be large, but when various interactive effects are
considered, the actual number of predictors in the statistical model will be larger and should be fitted
using high-dimensional covariates (see, for example, [2]). This may lead to a more complicated
model with many insignificant variables, resulting in the model having less predictive power and
being difficult to interpret. Therefore, variable selection plays an important role in high-dimensional
statistical modeling.

There has been considerable studies on variable selection for longitudinal data. The challenge of
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analyzing longitudinal data is that, it is difficult to specify full likelihood functions, especially for
correlated non-Gaussian data. If the distributions are not available, traditional likelihood-based model
selection criteria, such as Akaike’s Information Criterion [3] and Bayes’s Information Criterion [4],
cannot be employed directly for model selection. To solve this problem, Pan [5] proposed a
modification of the Akaike Information criterion (AIC), named QIC, which was obtained by replacing
likelihood with quasi-likelihood under the strong assumption of work independence. Nevertheless,
ignoring the intrinsic correlation may lead to inefficient estimation and poor prediction capability. Fu
[6] investigated the bridge penalty model for the estimating equations in general. Cantoni et al. [7]
introduced a generalized version of Mallows’ CP (GCp), which can be applied to the parametric and
nonparametric model. Wang and Qu [8] discussed a BIC-type model selection criterion with the help
of quadratic inference function, and their procedure could select the most simplest correct model
with probability approaching 1. Yang et al. [9] considered a frequentist model average estimator
for longitudinal data based on generalized estimating equations. Chen et al. [10] combined adaptive
sampling with sequential method for modeling correlated response data. Most work in the literature,
however, focus on the case where the number of covariates is fixed. Therefore, it is necessary to
develop new statistical methods and variable selection theories for high-dimensional longitudinal data.

The aim of this paper is to study the problem of variable selection for longitudinal ordinal data with a
diverging number of covariates. It should be noted that longitudinal ordinal data have been studied well
by many authors. We here only mention Williamson et al. [11], Lipsitz et al. [12], Lin and Chen [13],
who all investigated the asymptotic theory by means of GEE method. The GEE approach has an
advantage of producing a consistent estimator even if the working correlation structure is incorrectly
specified (see, for example, [14]). However, to the best of my knowledge, there is no existing literature
on the variable selection for longitudinal ordinal data with high-dimensional covariates. Motivated
by the idea of Wang et al. [1], we use the penalized GEE with a nonconvex penalty function to do
selection for such data. Similar to GEE, the penalized GEE procedure only requires the first two
marginal moments and a working correlation matrix to be specified. It does not require the full joint
likelihood for high-dimensional correlated data; this is particularly advantageous for modeling related
discrete response data.

Under the assumption of a sparse marginal model, we show that the penalized GEE technique can
correctly select the zero coefficients with probability converging to 1 and the estimator of the non-
zero coefficients can perform as well as if the true model is known in advance. That is, the resulting
estimator enjoys the Oracle properties proposed by Fan and Li [15].

The remainder of this paper is organized as follows. In Section 2, we give a brief overview of the
GEE approach and introduce penalized GEE for longitudinal ordinal data. The asymptotic properties
of high-dimensional penalized GEE are established in Section 3. Detailed proofs of the main results
are provided in Section 4. To verify the main results, the Monte Carlo simulations are conducted in
Section 5.

Notation: Throughout this paper, superscript “T” always denotes the transpose of a vector or a matrix.
Tr(A) is the trace of a matrix A. Moreover, we use ‖ · ‖ to denote the Frobenius norm. For a matrix D,
‖D‖ = ‖D‖F = [Tr(DDT )]1/2. Particularly, for a vector x, ‖x‖ = ‖x‖F = ‖x‖2 = (x2

1 + · · · + x2
n)1/2. For

any vector v, diag(v) represents a diagonal matrix whose diagonal elements are the elements of v.
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2. Preliminaries

2.1. Generalized estimating equations for longitudinal ordinal data

Let Yi j be longitudinal ordinal responses with q + 1 categories, and xi j denote p̄n-dimensional
covariate vectors for subject i at occasion j for i = 1, ..., n and j = 1, ...,mi. We assume that
the observations on different subjects are independent and the observations on the same subject are
correlated. For simplicity, we assume equal occasions, mi = m. Define yi j as a vector of q-dimensional
variables, where yi j = (yi j1, · · · , yi jq)T with yi jr = 1 if response Yi j = r and 0 else. Moreover, let πi j and
ηi jr be the vector of marginal probabilities and marginal cumulative probabilities, respectively, where

πi j = (πi j1, · · · , πi jq)T with πi jr = P(Yi j = r|xi j), and ηi jr = P(Yi j ≤ r|xi j) =
r∑

l=1
πi jl.

We consider the following cumulative logit model (see, for example, [13]):

logit(ηi jr) = log
ηi jr

1 − ηi jr
= φr + xT

i jδ = γi jr, r = 1, ..., q, (2.1)

where the intercepts φ1, · · · , φq satisfy φ1 ≤ · · · ≤ φq, δ is the vector of regression coefficients, and γi jr

is the rth element of a q-dimensional linear predictor γi j = (γi j1, · · · , γi jq)T . Clearly, πi j1 = ηi j1 and

πi jr =
exp(γi jr)

1 + exp(γi jr)
−

exp(γi j,r−1)
1 + exp(γi j,r−1)

, r = 2, · · · , q. (2.2)

Then, the linear predictor γi j can be rewritten as γi j = XT
i jβn, where βn = (φ1, · · · , φq, δ

T )T is the pn × 1
vector of parameters, and

XT
i j =


1 xT

i j
. . .

...

1 xT
i j


q×(q+ p̄n)

.

is the q × pn design matrix. It is clear that there exists a q-dimensional link function g such that
g(πi j) = XT

i jβn (see, for example, [16], p.73–84).
Let the responses, the marginal probabilities and the design matrix for cluster i be denoted by Yi =

(yT
i1, · · · , y

T
im)T

qm×1, πi = (πT
i1, · · · ,π

T
im)T

qm×1 and Xi = (Xi1, · · · , Xim)T
qm×pn

, respectively. The generalized
estimating equations (see, [14]) is defined as follows:

n∑
i=1

(
∂πT

i

∂βn
)V−1

i (βn, τ)(Yi − πi(βn)) = 0, (2.3)

where Vi(βn, τ) ≈ Cov(Yi) is a working covariance matrix of Yi.
However, since the true Vi(βn, τ) is generally difficult to obtain in practice, the working

covariance matrix is usually specified by virtue of a working correlation matrix R(τ) : Vi(βn, τ) =

A1/2
i (βn)R(τ)A1/2

i (βn), where

Ai = diag[{πi11(1 − πi11)}, · · · , {πimq(1 − πimq)}],

also
A1/2

i = diag[{πi11(1 − πi11)}1/2, · · · , {πimq(1 − πimq)}1/2],
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and R(τ) is an optional working correlation matrix, which may include a nuisance parameter (or
parameter vector) τ. Indeed, the estimator of R(τ) could be obtained using a local odds ratios GEE
method [17]. It should be mentioned that, if R(τ) is equal to the true correlation matrix R0, then
Vi(βn, τ) = Cov(Yi) at the true parameter βn0.

Let R̂ represent the estimated working correlation matrix. It follows from (2.3) that the generalized
estimating equations of longitudinal ordinal data have the following form:

Sn(βn) =

n∑
i=1

XT
i Hi(βn)A−1/2

i (βn)R̂−1 A−1/2
i (βn)(Yi − πi(βn)) = 0, (2.4)

where Hi(βn) = ∂πT
i /∂γi = diag[Hi1(βn), · · · ,Him(βn)] with γi = (γT

i1, · · · ,γ
T
im)T and the diagonal

block matrix Hi j(βn) = ∂πT
i j/∂γi j. For more details, the reader could refers to Williamson et al. [11].

Remark 1. In this paper, we suppose q and m are fixed, but the dimension pn of the covariates is
infinity. It is easy to see that p̄n is also infinity from the definition of βn.

Remark 2. Note that, the cumulative logit link function is adopted for analyzing longitudinal ordinal
data. In fact, the adjacent-categories logit link function also can be employed to conduct corresponding
analysis (see, [17]).

Remark 3. When we study the asymptotic properties of longitudinal ordinal data, as described
in Section 2.1, we need to adopt multidimensional dummy variables to represent the categories of
response variables yi j. Since the response variables yi j are multidimensional, it is more difficult to
prove the asymptotic properties than Wang et al. (2012).

2.2. Penalized generalized estimating equations

In this subsection we turn our attention to the penalized GEE for simultaneous estimation and
variable selection. Consider the following penalized GEE model:

Un(βn) = Sn(βn) − qζn
(|βn|)sign(βn), (2.5)

where

Sn(βn) = n−1
n∑

i=1

XT
i Hi(βn)A−1/2

i (βn)R̂−1 A−1/2
i (βn)(Yi − πi(βn)) = 0 (2.6)

are the GEE, qζn
(|βn|) = (qζn(|βn1|), · · · , qζn(|βnpn |))

T is a pn-dimensional vector of penalty functions, and
sign(βn) = (sign(βn1), · · · , sign(βnpn))

T with sign(t) = I(t > 0) − I(t < 0). Moreover, qζn
(|βn|)sign(βn)

denotes the component-wise product. The thresholding parameter ζn controls the size of shrinkage.
Because Un(βn) contains discontinuous points, the exact solution of Un(βn) = 0 may not exist.

Similar to the ideas proposed by Wang et al. [1], we define the penalized GEE estimator β̂n as an
approximate solution: Un(β̂n) = o(an) for a sequence an → 0. The rate of an will be made clarified in
Theorem 1 below.

Different penalty functions can be chose in nature; however, in this article, we consider the
nonconvex smoothly clipped absolute deviation (SCAD) penalty, which is given by

qζn(θ) = ζn{I(θ ≤ ζn) +
(aζn − θ)+

(a − 1)ζn
I(θ > ζn)}
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for θ ≥ 0 and some a > 2. According to Fan and Li [15], the SCAD penalty simultaneously possesses
three attractive properties of variable selection: unbiasedness, sparsity, and continuity. Compared to
other penalty functions, the LASSO penalty (L1 penalty) does not satisfy the unbiasedness condition,
the Lq penalty with q > 1 does not satisfy the sparsity condition, and the Lq penalty with 0 ≤ q < 1
does not satisfy the continuity condition. What’s more, following the recommendation of [15], we
choose a = 3.7.

It is not hard to see that the penalty function qζn(|βn j|) is zero for a large value of |βn j| and is
comparatively large for a small value of |βn j|. Consequently, the generalized estimating function
S n j(βn), the jth component of Sn(βn), is not penalized if βn j is large in magnitude; however, if βn j

is close to 0, the penalty of qζn(|βn j|) increases and forces its estimate to decrease to zero. Once the
estimated coefficient is reduced to zero, it is eliminated from the final selected model; thus, this method
significantly reduces the computational burden.

3. Asymptotic theory for high-dimensional penalized GEE

In this section, we establish the asymptotic theory of the penalized GEE estimator with a diverging
number of parameters. We denote the true value βn0 by βn0 = (βT

n10,β
T
n20)T . Without loss of generality,

it is assumed that βn20 = 0 and that the elements of βn10 are all nonzero. Besides, the covariates matrix
is divided into Xi = (Xi1, Xi2) accordingly. We also denote the dimension of βn10 by sn, where sn may
be fixed or grow with n.

Before we present the main result of the theorem, we first state some regularity conditions as
follows:

(C1) ‖Xi j‖, 1 ≤ i ≤ n, 1 ≤ j ≤ m, are uniformly bounded;
(C2) The unknown parameter βn belongs to a compact subset B ⊆ Rpn , the true parameter value

βn0 lies in the interior of B; further, recall that, πi j be the vector of marginal probabilities, where
πi j = (πi j1, · · · , πi jq)T with πi jr = P(Yi j = r|xi j), and there exist two positive constants b1, b2, such that
0 < b1 ≤ πi jr ≤ b2 < 1, for i = 1, · · · , n, j = 1, · · · ,m, r = 1, · · · , q;

(C3) Let Bn = {βn : ‖βn − βn0‖ ≤ ∆
√

pn/n}, then ‖π[1]
i j (XT

i jβn)‖ is uniformly bounded away from
zero and +∞ on Bn; ‖π[2]

i j (XT
i jβn)‖ and ‖π[3]

i j (XT
i jβn)‖ are both uniformly bounded by a finite positive

constant M1 on Bn, where π[h]
i j (XT

i jβn) is the h-order partial derivative of πi j with respect to XT
i jβn, for

i = 1, · · · , n, j = 1, · · · ,m, h = 1, 2, 3;
(C4) The true correlation matrix R0 has eigenvalues bounded away from zero and +∞; R̂ satisfies

‖R̂−1
− R̄−1

‖ = Op(
√

pn/n), where R̄ is a constant positive definite matrix with eigenvalues bounded
away from zero and +∞; R̄ is not required to be the true correlation matrix R0;

(C5) There exist two positive constants, c1 and c2, such that

c1 ≤ λmin(n−1
n∑

i=1

XT
i Xi) ≤ λmax(n−1

n∑
i=1

XT
i Xi) ≤ c2;

where λmin(resp. λmax) denotes the minimum (resp. maximum) eigenvalue of the matrix;
(C6) Assuming min1≤ j≤sn |βn0 j|/ζn → 0 as n → ∞ and s3

nn−1 = o(1), ζn → 0, sn(log n)2 = o(nζ2
n ),

log pn(log n)2 = o(nζ2
n ), s2

n(log n)4 = o(nζ2
n ) and pns4

n(log n)6 = o(n2ζ2
n ).
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Remark 4. Conditions (C2) and (C4)–(C5) are the same as the assumptions of Wang [2, p.394–395].
In addition, conditions (C1) and (C3) are also the same as the hypothesis of Wang et al. [1], however,
conditions (C6) is similar to that of (A7) in Wang et al. [1] with a slightly difference.

Remark 5. [18, p.50] If we suppose S = (si j)m×n and T = (tkl)p×q are both matrices, then

∂S
∂T

=


∂s11
∂t11

∂s11
∂t12

· · ·
∂s11
∂tpq

∂s12
∂t11

∂s12
∂t12

· · ·
∂s12
∂tpq

...
...

...
∂smn
∂t11

∂smn
∂t12

· · ·
∂smn
∂tpq


mn×pq

.

Note that, π[h]
i j (XT

i jβn) of condition (C3) are some matrices with different dimensions for h = 1, 2, 3.

Now, let us present the main result in this study:

Theorem 1. If assumptions (C1)–(C6) hold, then there exists an approximate penalized GEE solution
β̂n = (β̂

T
n1, β̂

T
n2)T such that

(1)

P(|Un j(β̂n)| = 0, j = 1 · · · , sn)→ 1 (3.1)

P(|Un j(β̂n)| ≤
ζn

log n
, j = sn + 1 · · · , pn)→ 1 (3.2)

(2) P(β̂n2 = 0)→ 1,
(3) ∀αn ∈ Rsn such that ‖αn‖ = 1, we have

αT
n M̄−1/2

n1 (βn0)H̄n1(βn0)(βn − βn0)
d
−→ N(0, 1),

where

M̄n1(βn0) =
n∑

i=1
XT

i1Hi(βn0)A−1/2
i (βn0)R̄−1R0R̄−1 A−1/2

i (βn0)Hi(βn0)Xi1.

H̄n1(βn0) =
n∑

i=1
XT

i1Hi(βn0)A−1/2
i (βn0)R̄−1 A−1/2

i (βn0)HT
i (βn0)Xi1.

Remark 6. Properties (2) and (3) in Theorem 1 are usually called the oracle property of variable
selection. Namely, when the true parameters have some zero coefficients, they are estimated as 0
with probability approaching to one, and the nonzero coefficients are estimated efficiently as if the
correct submodel is known. Further, property (1) shows more clear and accurate description for the
approximate solution of the penalized GEE. In (3.2), we let an =

ζn
log n , in nature, another sequence

an → 0 could be considered.
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4. Proof of main results

Throughout the proof, let C be any positive constant independent of n whose value may change
from one expression to another. In addition, ek and ok denote unit vector of length pn and qm whose
kth entry is 1 and all other entries are 0, respectively.

In order to prove the asymptotic properties of penalized GEE estimator, the essential idea is to
approximate Sn(βn) by S̄n(βn), whose moments are easier to evaluate, where

S̄n(βn) = n−1
n∑

i=1

XT
i Hi(βn)A−1/2

i (βn)R̄−1 A−1/2
i (βn)(Yi − πi(βn)).

We write S̄n(βn) = (S̄n1(βn), · · · , S̄npn(βn))T , where S̄nk(βn) = eT
k S̄n(βn).

The approach we adopt here is based on some ideas in Wang et al. [1]. As a preparation, we first
present the following lemmas.

Lemma 1.
∂S̄nk(βn)
∂βT

n

= Ḡnk(βn) + B̄nk(βn) + L̄nk(βn) + T̄nk(βn), (4.1)

where

Ḡnk(βn) = −n−1
n∑

i=1
eT

k XT
i Hi(βn)A−1/2

i (βn)R̄−1 A−1/2
i (βn)HT

i (βn)Xi,

B̄nk(βn) = n−1
n∑

i=1

qm∑
j1=1

qm∑
j2=1

eT
k XT

i Hi(βn)A−1/2
i (βn)R̄−1oj1 oT

j2(Yi − πi(βn))κT
i, j1 j2(βn)Xi,

L̄nk(βn) = n−1
n∑

i=1

qm∑
j1=1

qm∑
j2=1

eT
k XT

i Hi(βn)oj1 oT
j2 R̄−1 A−1/2

i (βn)(Yi − πi(βn))κT
i, j1 j2(βn)Xi,

T̄nk(βn) = n−1
n∑

i=1

qm∑
j1=1

qm∑
j2=1

eT
k XT

i oj1 oT
j2 A−1/2

i (βn)R̄−1 A−1/2
i (βn)(Yi − πi(βn))νT

i, j1 j2(βn)Xi,

with

κi, j1 j2(βn) =
∂[oT

j1 A−1/2
i (βn)oj2]

∂Xiβn
, νi, j1 j2(βn) =

∂[oT
j1 Hi(βn)oj2]

∂Xiβn
.

Proof. The decomposition is analogous to that of Lemma 4.2 in Chen and Yin [20] with some
modifications, and is thus omitted.

Remark 7. It is not hard to see that κi, j1 j2(βn) and νi, j1 j2(βn) are the row vectors, respectively. Moreover,
it follows from condition (C3) that ‖κi, j1 j2(βn)‖ = O(1) and ‖νi, j1 j2(βn)‖ = O(1).

Lemma 2. (Bernstein’s inequality) Let Y1, · · · ,Yn be independent random variables with mean zero
such that

E|Yi|
l ≤ l!Ml−2Bi/2,

for every l ≥ 2, all i, and some positive constants M and Bi. Then

P (|Y1 + · · · + Yn| > v) ≤ 2 exp
(
−

1
2

v2

B + Mv

)
,
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for B ≥ B1 + · · · + Bn.

Proof. For a detailed proof, the reader could refer to the Lemma 2.2.11 of [21].

Proof of Theorem 1. Let β̂n = (β̂
T
n1, 0

T )T be the oracle estimator. We shall prove that β̂n satisfies
properties (1)–(3) of Theorem 1. It is easy to see that properties (2) and (3) follow by virtue of the
definition of β̂n and the results in [20]. Next, we show that β̂n satisfies (3.1) and (3.2).

Proof of (3.1). From the definition of β̂n, we can obtain that S n j(β̂n) = 0, j = 1, · · · , sn. It is sufficient
to prove that P(|βn j| ≥ aζn, j = 1, · · · , sn) → 1, as this implies the penalty function to be zero with
probability approaching one. It is clear that

min
1≤ j≤sn

|β̂n j| ≥ min
1≤ j≤sn

|βn0 j| − max
1≤ j≤sn

|βn0 j − β̂n j| ≥ min
1≤ j≤sn

|βn0 j| − ‖βn10 − β̂n10‖.

Owing to [20], we have that
‖βn10 − β̂n10‖ = Op(

√
sn/n). (4.2)

Combining min1≤ j≤sn |βn0 j|/ζn → ∞ with ‖βn10 − β̂n10‖ = o(ζn), we obtain

P
(

min
1≤ j≤sn

|βn0 j| − ‖βn10 − β̂n10‖ ≥ aζn

)
= P

(
‖βn10 − β̂n10‖ ≤ min

1≤ j≤sn
|βn0 j| − aζn

)
→ 1.

The proof of (3.1) is therefore complete.

Proof of (3.2). Using the definition of β̂n, we can derive that qζn(β̂nk) · sign(β̂nk) = 0, for k = sn +

1, · · · , pn. To prove (3.2), it suffices to show that

P
(

max
sn+1≤k≤pn

|S nk(β̂n)| ≤
ζn

log n

)
→ 1, (4.3)

which is implied by

P
(

max
sn+1≤k≤pn

|S nk(β̂n) − S̄ nk(β̂n)| ≥
ζn

2 log n

)
→ 0, (4.4)

P
(

max
sn+1≤k≤pn

|S̄ nk(β̂n)| ≥
ζn

2 log n

)
→ 0. (4.5)

For (4.4), it follows from conditions (C1)–(C4) and (C6) that

P
(

max
sn+1≤k≤pn

n−1
n∑

i=1
eT

k XT
i Hi(β̂n)A−1/2

i (β̂n)[R−1 − R̄−1] · A−1/2
i (β̂n)(Yi − πi(β̂n)) > ζn

2 log n

)
≤ P

(
max

sn+1≤k≤pn
n−1

n∑
i=1
‖eT

k XT
i Hi(β̂n)A−1/2

i (β̂n)‖ · ‖R−1 − R̄−1
‖ · ‖A−1/2

i (β̂n)(Yi − πi(β̂n))‖ > ζn
2 log n

)
≤ P

(
‖R−1 − R̄−1

‖ · n−1
n∑

i=1

(
max

sn+1≤k≤pn
‖eT

k XT
i Hi(β̂n)A−1/2

i (β̂n)‖
)
· ‖A−1/2

i (β̂n)(Yi − πi(β̂n))‖ > ζn
2 log n

)
≤ P

(
n−1

n∑
i=1
‖ε i(β̂n)‖ > Cζn

√
n

2
√

sn log n

)
≤ C

n−1
n∑

i=1
E(‖εi(β̂n)‖)√sn log n

ζn
√

n

= O(
√

sn log n
ζn
√

n ) = o(1),
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where ε i(β̂n) = Yi − πi(β̂n).
In what follows, in order to prove (4.5), we utilize the Taylor expansion as follows:

S̄ nk(β̂n) = S̄ nk(βn0) +
∂S̄ nk(βn0)
∂βT

n

(β̂n − βn0) + (β̂n − βn0)T ∂
2S̄ nk(β∗n)

∂βn∂β
T
n

(β̂n − βn0), (4.6)

where β∗n is between βn0 and β̂n. We denote ∂S̄ nk(βn0)
∂βT

n
and ∂2S̄ nk(β∗n)

∂βn∂β
T
n

by Γ̄k(βn) and Λ̄k(βn) , respectively.

Furthermore, let Γ̄k1(βn) represent the subvector, which is consisted by the first sn elements of Γ̄k(βn),
and let Λ̄k1(βn) be the sn × sn submatrix in the upper-left corner of Λ̄k(βn).

Because β̂n − βn0 = ((β̂n1 − βn10)T , 0T )T , (4.6) can be written as

S̄ nk(β̂n) = S̄ nk(β̂n0) + Γ̄k1(β)(β̂n1 − βn10) + (β̂n1 − βn10)T Λ̄k1(β∗n)(β̂n1 − βn10). (4.7)

It is obvious that

P
(

max
sn+1≤k≤pn

|S̄ nk(β̂n0)| > ζn
2 log n

)
≤ P

(
max

sn+1≤k≤pn
|S̄ nk(β̂n0)| > ζn

6 log n

)
+ P

(
max

sn+1≤k≤pn
|Γ̄k1(βn0)(β̂n1 − βn10)| > ζn

6 log n

)
+P

(
max

sn+1≤k≤pn
|(β̂n1 − βn10)T Λ̄k1(β∗n)(β̂n1 − βn10)| > ζn

6 log n

)
= Kn1 + Kn2 + Kn3.

Thus (4.5) is implied by Kni = o(1), i = 1, 2, 3.
We first consider Kn1. Note that

In1 ≤

pn∑
k=sn+1

P
(
|S̄ nk(β̂n0)| >

ζn

6 log n

)
.

We write S̄ nk(βn0) = n−1
n∑

i=1
Zi, where Zi = eT

k X
′

i Hi(βn0)A−1/2
i (βn0)R̄−1

ε i(βn0) are independent mean zero

random variables. On one hand, by conditions (C1)–(C4), we have

|Zi(βn0)| < C.

On the other hand, ∀ l ≥ 2, we get
E|Zi|

l ≤ l!Ml−2δ/2,

for some constants M > 0 and δ > 0. Therefore, the Zi satisfy the conditions of Bernstein’s inequality.
Applying Lemma 2, we immediately obtain

P
(
|S̄ nk(β̂n0)| > ζn

6 log n

)
≤ 2 exp

[
−1

2
n2ζ2

n/(36(log n)2)
nδ+M∗nζn/(6 log n)

]
≤ 2 exp

[
−C nζ2

n
(log n)2

]
.

It is obvious that

In1 ≤ 2 exp
[
log pn −C

nζ2
n

(log n)2

]
= o(1),

with the help of log pn = o
(
nζ2

n/(log n)2
)

by condition (C6). This implies that Kn1 = o(1).
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Next we’ll prove that Kn2 = o(1). It follows from (4.2) and Lemma 1 that

Kn2 = P
(

max
sn+1≤k≤pn

|Γ̄k1(βn0)(β̂n1 − βn10)| > ζn
6 log n

)
≤ P

(
max

sn+1≤k≤pn
|Γ̄k1(βn0)(β̂n1 − βn10)| > ζn

6 log n , ‖β̂n1 − βn10‖ ≤
√

sn/n log n
)

+ P
(
‖β̂n1 − βn10‖ >

√
sn/n log n

)
≤ P

(
max

sn+1≤k≤pn
‖Γ̄k1(βn0)‖ > ζn

√
n

6
√

sn(log n)2

)
+ o(1)

≤ P
(

max
sn+1≤k≤pn

‖Ḡnk1(βn0)‖ > ζn
√

n
24
√

sn(log n)2

)
+ P

(
max

sn+1≤k≤pn
‖B̄nk1(βn0)‖ > ζn

√
n

24
√

sn(log n)2

)
+P

(
max

sn+1≤k≤pn
‖L̄nk1(βn0)‖ > ζn

√
n

24
√

sn(log n)2

)
+ P

(
max

sn+1≤k≤pn
‖T̄nk1(βn0)‖ > ζn

√
n

24
√

sn(log n)2

)
+ o(1)

= Kn21 + Kn22 + Kn23 + +Kn24 + o(1),

where Ḡnk1 = (Ḡnk1, · · · , Ḡnksn)
T denotes the subvector of Ḡnk which consists its first sn elements,

B̄nk1, L̄nk1 and T̄nk1 are defined similarly. It is clear that |Ḡnk j(βn0)| is uniformly bounded, thus

max
sn+1≤k≤pn

E‖Ḡnk1(βn0)‖2 = max
sn+1≤k≤pn

E
(

sn∑
j=1

Ḡnk j(βn0)
)
≤ Csn. To evaluate Kn21, a combination of

conditions (C1)–(C4), s2
n(log n)4 = o(nζ2

n ) and Markov’s inequality yields that

Kn21 = P
(

max
sn+1≤k≤pn

‖Ḡnk1(βn0)‖ > ζn
√

n
24
√

sn(log n)2

)
≤

pn∑
k=sn+1

P
(
‖Ḡnk1(βn0)‖ > ζn

√
n

24
√

sn(log n)2

)
≤

E‖Ḡnk1(βn0)‖
2
·576sn(log n)4

nζ2
n

≤ C s2
n(log n)4

nζ2
n

= o(1).

By the same arguments, we can prove that Kn22 = o(1), Kn23 = o(1) and Kn24 = o(1), respectively. We
thus have Kn2 = o(1).

Finally, we verify that Kn3 = o(1). Applying Markov’s inequality, we then get

Kn3 = P
(

max
sn+1≤k≤pn

|(β̂n1 − βn10)T Λ̄k1(β∗n)(β̂n1 − βn10)| > ζn
6 log n

)
≤ P

(
max

sn+1≤k≤pn
|(β̂n1 − βn10)T Λ̄k1(β∗n)(β̂n1 − βn10)| > ζn

6 log n , ‖β̂n1 − βn10‖ ≤
√

sn/n log n
)

+P
(
‖β̂n1 − βn10‖ >

√
sn/n log n

)
≤

pn∑
k=sn+1

P
(
‖Λ̄k1(β∗n)‖ > nζn

6sn(log n)3

)
+ o(1)

≤
pn∑

k=sn+1

36 E[‖Λ̄k1(β∗n)‖2]·s2
n(log n)6

n2ζ2
n

+ o(1).

By means of conditions (C1)–(C4), we obtain

E
[
‖Λk1(β∗n)‖2

]
= E

[
Tr

(
Λk1(β∗n)Λk1(β∗n)T

)]
= E

 sn∑
t=1

sn∑
j=1

(
∂2S̄ nk(β∗n)
∂βn j∂βnt

)2
 ≤ Cs2

n,

which, together with pns4
n(log n)6/(n2ζ2

n ) = o(1), gives the required result.
Summarizing the above, this proof is completed. �
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5. Monte Carlo simulations

Numerical studies are conducted in this section to demonstrate the main results. For the sake of
simplicity, we consider the following cumulative logit model for longitudinal ordinal responses with
two categories:

log
πi j

1 − πi j
= φ1 + xT

i jδ = XT
i jβn0, i = 1, . . . , 400; j = 1, ..., 4;

where the true parameters βn0 = (φ1, δ
T )T = (0, 0.5, 0.5, 0, 0, ..., 0)T is a 50-dimensional vector of

parameters, XT
i j = (1, xT

i j) = (1, xi j,1, ..., xi j,49) is the 1 × 50 design vector. Further, xT
i j = (xi j,1, ..., xi j,49)

has a multivariate normal distribution with mean zero, marginal variance 1 and an AR-1 correlation
matrix with autocorrelation coefficient 0.3. Moreover, given on xi j and Yi j are determined by

Yi j = r ⇔ φr−1 < εi j − xT
i jδ ≤ φr,

for r = 1, 2, −∞ = φ0 ≤ φ1 ≤ φ2 = ∞ and i.i.d. latent vector ε i = (εi1, εi2, εi3, εi4)T from a tetra-
variate normal distribution with mean vector 0, the marginal variance matrix I and an exchangeable
correlation structure with correlation coefficient ρ = 0.5. Such correlated ordinal data can be generated
from Touloumis [19].

We compare penalized GEE approach with the unpenalized GEE and the oracle GEE (i.e., the
GEE with the true marginal regression model is known). To illustrate the influence of intra-
cluster correlation on estimation efficiency, we consider three different working correlation structures:
independence, exchangeable and first-order autoregressive (AR-1). The modified Newton-Raphson
algorithm in page 355 of Wang et al. [1] was adopted to estimate βn. It is worth pointing out that, a
fourfold cross-validation was used to estimate the tuning parameter ζn in the SCAD penalty function.
At the end of the iteration, if an estimated coefficient has magnitude below the cut-off value 10−3, it
was considered as zero.

Additionally, we used the estimated mean squared error (MSE) to evaluate the estimation accuracy,
which is defined by ‖β̂n − βn0‖

2. Moreover, to evaluate model selection performance, we adopt the
notation (C, IC) to show variable selection results. C is the average number of non-zero coefficients
correctly estimated to be non-zero, and IC denotes the average number of zero coefficients incorrectly
estimated to be non-zero. All results were based on 100 replicate simulations.

Table 1 summarize the estimation accuracy and model selection properties of the penalized GEE, the
unpenalized GEE and the oracle GEE for three different working correlation matrices. We observed
that the performance of the penalized GEE procedure was comparable to that of the oracle GEE,
and significantly reduced the MSE of the unpenalized GEE estimator. Using the true correlation
structure (exchangeable) in penalized GEE gives the smallest MSE. Furthermore, we observed that
the unpenalized GEE generally did not lead to a sparse model. The penalized GEE successfully selects
all covariates with non-zero coefficients and contains a fairly small number of IC. Similar results were
also observed with exchangeable correlation coefficient ρ = 0.3 and ρ = 0.8, respectively, which are
not reported here.
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7210

Table 1. Simulation results (n = 400, pn = 50) for GEE, oracle GEE and penalized GEE
with three different working correlation matrices (independence, exchangeable, and AR-1).

MSE C IC
GEE.independence 0.2026 2.00 47.36
GEE.exchangeable 0.1653 2.00 47.26
GEE.AR-1 0.1788 2.00 47.25
oracle.independence 0.0166 2.00 0.00
oracle.exchangeable 0.0129 2.00 0.00
oracle.AR-1 0.0137 2.00 0.00
PGEE.independence 0.0718 2.00 0.94
PGEE.exchangeable 0.0441 2.00 1.50
PGEE.AR-1 0.0484 2.00 1.51
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