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1. Introduction

In this note, we consider the following multi-linear system

Axm−1 = b, (1.1)

where A = (ai1i2···im) is an order m dimension n tensor, x and b are n dimensional vectors, and the
tensor-vector productAxm−1 is defined as [1]

(Axm−1)i =

n∑
i2,··· ,im=1

aii2···im xi2 · · · xim , i = 1, 2, · · · , n, (1.2)

where xi denotes the i-th component of x. The multi-linear system (1.1) arises from a number of
scientific computing and engineering applications [1, 2, 6], such as data analysis [10], the sparsest
solutions to tensor complementarity problems [11], and so on.
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One of the applications of the multi-linear system (1.1) is the numerical solution of the partial
differential equation with Dirichlet’s boundary conditionu(x)m−2 · 4u(x) = − f (x) in Ω,

u(x) = g(x) on ∂Ω,
(m = 3, 4, · · · ) (1.3)

where 4 =
∑d

k=1
∂2

∂x2
k

and Ω = [0, 1]d. When f (·) is a constant function, this PDE is a nonlinear Klein-

Gordon equation (see [9,13,14]). Just as authors studied in [13,14], u 7→ uθ ·4u can also be discretized
into an mth-order nonsingularM-tensor

L
(d)
h =

d−1∑
k=0

I ⊗ · · · ⊗ I︸       ︷︷       ︸
k

⊗Lh ⊗ I ⊗ · · · ⊗ I︸       ︷︷       ︸
d−k−1

,

which satisfies
(Lhum−1)i = um−2

i · (Lhu)i

for i = 1, 2, · · · , n, where Lh is an mth-order tensorM-tensor with
(Lh)1,1,··· ,1 = (Lh)n,n,··· ,n = 1

h2 ,

(Lh)i,i,··· ,i = 2
h2 ,

(Lh)i,i−1,i,··· ,i = (Lh)i,i,i−1,··· ,i = · · · = (Lh)i,i,i,··· ,i−1 = − 1
h2(m−1) , i = 2, 3, · · · , n − 1,

(Lh)i,i+1,i,··· ,i = (Lh)i,i,i+1,··· ,i = · · · = (Lh)i,i,i,··· ,i+1 = − 1
h2(m−1) , i = 2, 3, · · · , n − 1,

The PDE in (1.3) is discretized into anM-equation L(d)
h um−1 = f. This class of multi-linear equations

can be regarded as a higher-order generalization of the one discussed in [9, 15, 16].
To solve the multi-linear system (1.1), Ng, Qi and Zhou [12] proposed an algorithm for b = 0.

When A is a strong M-tensor, Ding and Wei [9] generalized the Jacobi method, the Gauss-Seidel
method and the Newton algorithm. Liu et al. [3] discussed the tensor splitting A = E − F , and then
proposed a general tensor splitting iterative method for solving the multi-linear system (1.1) as follows:

xk = [M(E)−1F xm−1
k−1 + M(E)−1b][ 1

m−1 ], k = 1, 2, · · · , (1.4)

where x0 is a given initial vector and the tensor T = M(E)−1F is called the iterative tensor of the
splitting method (see [3, 4]). They discussed the convergence rate for the tensor splitting iterative
method and showed that the spectral radius ρ(M(E)−1F ) can be seen as an approximate convergence
rate of the iteration (1.4).

For matrix splitting iterative methods, it is well known that the preconditioning technique is very
important, which can be used to improve the rate of convergence of the iterative method when a suitable
preconditioner is chosen [4, 5, 7]. In [3], Liu et al. explored preconditioning techniques for tensor
splitting methods and discussed the preconditioned Gauss-Seidel type and SOR type iterative methods,
and proved that the Guass-Seidel type method demonstrates faster convergence than the Jacobi method,
that is to say, the spectral radius of the iterative matrix of the Guass-Seidel method is not larger than the
one of the Jacobi method. Recently, Cui et al. [5] proposed a new preconditioner for solvingM-tensor
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systems and gave some comparison theorems of the preconditioned Gauss-Seidel type method. The
preconditioned iterative method is to transform the original system into the preconditioned form

PAxm−1 = Pb, (1.5)

where the matrix P is a nonsingular preconditioner. Let PA = EP − FP be a splitting of PA. Then the
corresponding preconditioned tensor splitting iterative method is given as follows:

xk = [M(EP)−1FPxm−1
k−1 + M(EP)−1Pb][ 1

m−1 ], k = 1, 2, · · · . (1.6)

The rest of this paper is organized as follows. In Section 2 we introduce some definitions and some
related lemmas which will be used in the sequel. In Section 3, we first present a counter-example
for existing research results and then propose a new special preconditioner. Meanwhile, we give the
comparison theorems for the preconditioned Gauss-Seidel type iterative methods. The final section is
the concluding remark.

2. Preliminaries

Let 0, O and O denote a zero vector, a zero matrix and a zero tensor, respectively. Let A and B be
two tensors with the same sizes. The order A ≥ B(> B) means that each entry of A is no less than
(larger than) corresponding one of B.

For a positive integer n, let 〈n〉 = {1, 2, · · · , n}. A tensor A consists of n1 × · · · × nm entries in the
real field R:

A = (ai1i2···im), ai1i2···im ∈ R, i j ∈ 〈n j〉, j = 1, · · · ,m.

If n1 = · · · = nm = n, A is called an order m dimension n tensor. We denote the set of all order m
dimension n tensors by R[m,n]. When m = 1, R[1,n] is simplified as Rn, which is the set of all n-dimension
real vectors. When m = 2, R[2,n] denotes the set of all n × n real matrices. Similarly, the above notions
can be generalized to the complex number field C. Let R+ be the nonnegative real field. If each
entry of A is nonnegative, we call A a nonnegative tensor, and the set of all the order m dimension n
nonnegative tensors is denoted by R[m,n]

+ .
Let A ∈ R[2,n] and B ∈ R[k,n]. The matrix-tensor product C = AB ∈ R[k,n] is defined by

c ji2···ik =

n∑
j2=1

a j j2b j2i2···ik . (2.1)

The formular (2.1) can be written as follows (see [3]):

C(1) = (AB)(1) = AB(1), (2.2)

where C(1) and B(1) are the matrices obtained from C and B flattened along the first index (see [3]), For
example, if B = (bi jk) ∈ C[3,n], then

B(1) =


b111 · · · b1n1 b112 · · · b1n2 · · · b11n · · · b1nn

b211 · · · b2n1 b212 · · · b2n2 · · · b21n · · · b2nn
...

. . .
...

...
. . .

...
...

...
. . .

...

bn11 · · · bnn1 bn12 · · · bnn2 · · · bn1n · · · bnnn

 .
Next we recall some definitions and lemmas for the completeness our presentation.
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Definition 2.1. ([1]) LetA ∈ R[m,n]. A pair (λ, x) ∈ C× (C \ 0) is called an eigenvalue-eigenvector (or
simply eigenpair) ofA if they satisfy the equation

Axm−1 = λx[m−1], (2.3)

where x[m−1] = (xm−1
1 , · · · , xm−1

n )T . We call (λ, x) an H-eigenpair if both λ and x are real.

Let ρ(A) = max{|λ| : λ ∈ σ(A)} be the spectral radius ofA, where σ(A) is the set of all eigenvalue
ofA. We use Ik = (δi1···ik) to denote a unit tensor with its entries given by:

δi1···ik =

1, i1 = · · · = ik,

0, else.

Definition 2.2. ( [6]) LetA ∈ R[m,n]. A is called aZ-tensor if its off-diagonal entries are non-positive.
A is called an M-tensor if there exist a nonnegative tensor B and a positive real number η ≥ ρ(B)
such that

A = ηIm − B.

If η > ρ(B), thenA is called a strongM-tensor.

Definition 2.3. ( [2]) LetA ∈ C[m,n]. Then the majorization matrix M(A) ofA is the n× n matrix with
the entries

M(A)i j = ai j··· j, i, j = 1, · · · , n.

Lemma 2.1. ( [4, 8]) ForA ∈ R[m,n]
+ , the following inequalities hold:

µx[m−1] ≤ (<)Axm−1, x ≥ 0, x , 0, implies µ ≤ (<)ρ(A),
and

Axm−1 ≤ νx[m−1], x > 0, implies ρ(A) ≤ ν.

Lemma 2.2. ( [6]) LetA be aZ-tensor, thenA is a strongM-tensor if and only ifA is a semi-positive;
that is, there exists x > 0 withAxm−1 > 0.

3. Comparison theorems

The preconditioner Pα was introduced in [4] as follows:

Pα = I + S α,

where

S α =



0 −α1a12···2 0 · · · 0
0 0 −α2a23···3 · · · 0
...

...
...

. . .
...

0 0 0 · · · −αn−1an−1,n,··· ,n

0 0 0 · · · 0


(3.1)

and I is an identity matrix, α = (αi) and αi is a parameter, i = 1, · · · , n − 1.
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In [5], Cui et al. considered the preconditioner with Pmax = I + S max, where S max was given by

S max = (sm
i,ki

) =

−aiki···ki , i = 1, · · · , n − 1, ki > i,

0, otherwise,
(3.2)

where
ki = min

{
j
∣∣∣ max

j
|ai j··· j|, i < n, j > i

}
.

Some results in [4, 5] were given below.

Lemma 3.1. ( [4]) Let A be a strong M-tensor. If α = (αi) and αi ∈ [0, 1], i = 1, 2, · · · , n − 1,
Aα = PαA = Eα − Fα and (ρα, xα) is Perron eigenpair of Tα = M(Eα)−1Fα, thenAxm−1

α ≥ 0.

Lemma 3.2. ( [4]) Let A ∈ R[m,n] and A = Im − L − F ,F ≥ O, where L = LIm, −L is the strictly
lower part of M(A). IfA is a strongM-tensor, then for all αi ∈ [0, 1], i = 1, · · · , n − 1, (I + S α)A is a
strongM-tensor.

Lemma 3.3. ( [5]) LetA ∈ R[m,n]
+ . IfA is a strongM-tensor andA = Im − L − F , where L = LIm,

−L is the strictly lower triangle part of M(A), thenAmax = (I + S max)A is a strongM-tensor.

Lemma 3.4. ( [5], Lemma 3) Let A ∈ R[m,n] be a strongM-tensor. For Amax = Emax − Fmax, we have
the following inequality holds if

0 < αiai,i+1,··· ,i+1ai+1, j,··· , j ≤ aiki···kiaki j··· j < 1, ki > i, j ≤ i.

M(Emax)−1 ≥ M(Êα)−1. (3.3)

Theorem 3.1. ( [5], Theorem 4) LetA ∈ R[m,n] be a strongM-tensor. For

Âα = (I + S α)A = Êα − F̂α

and
Amax = (I + S max)A = Emax − Fmax,

under the conditions made in Lemma 3.4, there exists a positive vector x such that 0 ≤ Âxm−1 ≤

Amaxxm−1, then we have the following inequality holds

ρ(Tmax) ≤ ρ(T̂α), (3.4)

where Tmax = M(Emax)−1Fmax and T̂α = M(Êα)−1F̂α.

We first consider a counter-example for Theorem 3.1.

Example 3.1. We consider a tensorA ∈ R[3,4], where

A(:, :, 1) =


1 -0.04 -0.04 -0.04

-0.04 -0.04 -0.04 -0.04

-0.04 -0.04 -0.04 -0.04

-0.04 -0.04 -0.04 -0.04

 ,A(:, :, 2) =


-0.04 -0.04 -0.04 -0.04

-0.04 1 -0.04 -0.04

-0.04 -0.04 -0.04 -0.04

-0.04 -0.04 -0.04 -0.04

 ,

A(:, :, 3) =


-0.04 -0.04 -0.1 -0.04

-0.04 -0.04 -0.04 -0.04

-0.04 -0.04 1 -0.04

-0.04 -0.04 -0.04 -0.04

 ,A(:, :, 4) =


-0.04 -0.04 -0.04 -0.04

-0.04 1 -0.04 -0.1

-0.04 -0.04 -0.04 -0.1

-0.04 -0.04 -0.04 1

 .

AIMS Mathematics Volume 7, Issue 4, 7177–7186.



7182

It is easy to show thatA is a strongM-tensor and

M(Ê1)−1 =


1.0016 0 0 0
0.0417 1.0016 0 0
0.0461 0.0442 1.004 0
0.0436 0.0418 0.0402 1

 ,

M(Emax)−1 =


1.004 0 0 0

0.0444 1.004 0 0
0.0463 0.0444 1.004 0
0.0438 0.0419 0.0402 1

 .
From the above computation we can see that M(Emax)−1 ≥ M(Ê1)−1 ≥ 0. That is, the tensorA satisfies
the condition of the Lemma 3.4. But by computation, we have ρ(Tmax) = 0.5896 > 0.5877 = ρ(T̂α).
This contradicts the conclusion of the Theorem 3.1 in [5].

We next propose a new preconditioner P̃ = I + S̃ , where

S̃ =



0 −a12···2 0 · · · −a1k1···k1 · · · · · · 0
0 0 −a23···3 · · · · · · −a2k2···k2 · · · 0
...

...
...

...
...

...
...

...

0 0 0 · · · · · · · · · · · · −an−1,n,··· ,n

0 0 0 · · · · · · · · · · · · 0


,

where
ki = min

{
j
∣∣∣ max

j
|ai j··· j|, i < n, j ≥ i + 1

}
.

Without loss of generality, we assume that each diagonal entry of the tensorA is 1. Let

Ã = P̃A = Ẽ − F̃ = D̃ − L̃ − Ũ,

where D̃ = D̃Im, L̃ = L̃Im, and D̃,−L̃ are the diagonal part, the strictly lower triangular part of M(Ã).
If ai,i+1,··· ,i+1ai+1,i,··· ,i + aiki···kiakii···i , 1, then M(D̃ − L̃)−1 exists, we get the Gauss-Seidel type iteration
tensor T̃ can be defined by M(D̃ − L̃)−1Ũ.

Lemma 3.5. LetA ∈ R[m,n] be a strongM-tensor, then Ã = P̃A = (I + S̃ )A is a strongM-tensor.

Proof. We first show that Ã is aZ-tensor. Since

ãii2···im =


aii2···im − ai,i+1,··· ,i+1ai+1,i2,··· ,im − aiki···kiakii2···im , i = 1, · · · , n − 2,
an−1,i2,··· ,im − an−1,i+1,··· ,i+1ai+1,i2,··· ,im , i = n − 1,
ani2···im , j = n,

(3.5)

for (i, i2, · · · , im) , (i, i, · · · , i), we have ãii2···im ≤ 0, that is, Ã is aZ-tensor.
As A is a strongM-tensor, from Lemma 2.2, there exists a positive vector x such that Axm−1 > 0.

Thus, Ãxm−1 = (I + S̃ )Axm−1 > 0. That is to say, there exists a positive vector x such that Ãxm−1 > 0,
Then from Lemma 2.2 again, we know that Ã is a strongM-tensor. �
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Lemma 3.6. LetA ∈ R[m,n] be a strongM-tensor, let

Â1 = (I + S 1)A = E1 − F1,

Amax = (I + S max)A = Emax − Fmax,

and
Ã = (I + S̃ )A = Ẽ − F̃ ,

then
M(Ẽ)−1 ≥ M(Emax)−1 ≥ M(E1)−1.

Proof. LetAmax = (am
ii2···im

) and Ã = (ãii2···im), we have

am
ii2···im =

aii2···im − aiki···kiakii2···im , i = 1, · · · , n − 1,
ani2···im , j = n,

and ãii2···im is defined by (3.5). SinceA is a strongM-tensor, from Lemma 3.3 and Lemma 3.5, we know
thatAmax and Ã are strongM-tensors. Thus we have M(Emax) and M(Ẽ) are nonsingularM-matrices.
Since

aii2···im − ai,i+1,··· ,i+1ai+1,i2,··· ,im − aiki···kiakii2···im ≤ aii2···im − aiki···kiakii2···im ,

for i = 1, · · · , n − 2 and âii2···im = ãii2···im , for i = n − 1, n, then we get M(Ẽ)−1 ≥ M(Emax)−1. The later
inequality can be obtained from Lemma 3.4. �

Theorem 3.2. Let A be a strongM-tensor. For Â1 = E1 − F1 and Ã = Ẽ − F̃ , let T̂1 = M(E1)−1F1

and T̃ = M(Ẽ)−1F̃ , then we have
ρ(T̃ ) ≤ ρ(T̂1). (3.6)

Proof. From Lemma 3.1, we know there exists a positive Perron vector x of T̂1 such that Axm−1 ≥ 0.
Thus we have Â1xm−1 = (I + Ŝ 1)Axm−1 ≥ 0. Notice that

Ãxm−1 − Â1xm−1 = (Ã − Â1)xm−1 = (S̃ − S 1)Axm−1 ≥ 0.

This means that Ãxm−1 ≥ Â1xm−1 ≥ 0. From Lemma 3.6, we have M(Ẽ)−1 ≥ M(E1)−1 ≥ O. Hence,
we have

M(Ẽ)−1Ãxm−1 − M(E1)−1Â1xm−1

= M(Ẽ)−1(Ã − Â1)xm−1 + (M(Ẽ)−1 − M(E1)−1)Â1xm−1 ≥ 0.

Since
M(Ẽ)−1Ã = Im − M(Ẽ)−1F̃ ,M(E1)−1Â1 = Im − M(E1)−1F1.

Then, we obtain

M(Ẽ)−1F̃ xm−1 ≤ M(E1)−1F1xm−1 = T̂1xm−1 = ρ(M(E1)−1F1)x[m−1].

By Lemma 2.1, we have ρ(M(Ẽ)−1F̃ ) ≤ ρ(M(E1)−1F1), i.e. ρ(T̃ ) ≤ ρ(T̂1). �
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Remark 3.1. We consider the Example 3.1, it is easy to show that

M(Ẽ)−1 =


1.0056 0 0 0
0.0461 1.0056 0 0
0.0465 0.0444 1.004 0
0.0439 0.0420 0.0402 1

 .
That is, M(Ẽ)−1 ≥ M(E1)−1, by computation, we have ρ(T̂1) = 0.5877, and its corresponding Perron
vector

x = (x1, x2, x3, x4)T = (1, 0.9124, 0.9496, 0.9557)T .

Hence, according to Theorem 3.2, we have ρ(T̃ ) = 0.5816 < 0.5877 = ρ(T̂1).

Theorem 3.3. LetA be a strongM-tensor. ForAmax = Emax − Fmax and Ã = Ẽ − F̃ , let

Tmax = M(Emax)−1Fmax

and
T̃ = M(Ẽ)−1F̃ .

If there exists a positive Perron vector x of Tmax such asAxm−1 ≥ 0. then we have

ρ(T̃ ) ≤ ρ(Tmax). (3.7)

Proof. The proof is similar to those in Theorem 3.2, here we omit it. �

Example 3.2. We consider the tensorA ∈ R[3,3] in [5], where

A(:, :, 1) =


1 -0.12 -0.13

-0.12 -0.03 -0.06
-0.13 -0.02 -0.1

 ,

A(:, :, 2) =


-0.04 -0.02 -0.03
-0.01 1 -0.02
-0.03 -0.04 -0.02

 ,
A(:, :, 3) =


-0.03 -0.02 -0.04
-0.02 -0.06 -0.03
-0.02 -0.1 1

 .
We can show thatA is a strongM-tensor. Let α = (α1, α2) = (1, 1), we get:

M(Ê1)−1 =


1.0024 0 0
0.0125 1.0012 0
0.0136 0.04 1

 ,

M(Emax)−1 =


1.0052 0 0

0.01247 1.0012 0
0.01357 0.04 1

 ,
AIMS Mathematics Volume 7, Issue 4, 7177–7186.
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M(Ẽ)−1 =


1.0077 0 0
0.0125 1.0012 0
0.0136 0.04 1

 .
From the above we can see that

M(Ẽ)−1 ≥ M(Emax)−1 ≥ O,M(Ẽ)−1 ≥ M(Ê1)−1 ≥ O.

By computation, we have

ρ(T̃ ) = 0.3346 < 0.3386 = ρ(Tmax) < 0.3451 = ρ(T̂1).

4. Conclusions

In this paper, we present a new preconditioner I + S̃ for solving multi-linear sysyems and give new
comparison results between two different preconditioned tensor splitting iterative methods.
Comparison theorems show that the spectral radius of the proposed preconditioner is less than those
of the preconditioners in [5]. We present two numerical experiments to validate the effectiveness of
the proposed preconditioner.
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