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Abstract: In this paper, we are concerned with the following modified Schrödinger equation

−∆u + V(|x|)u−κu∆(u2) + q
h2(|x|)
|x|2

(1 + κu2)u

+q
(∫ +∞

|x|

h(s)
s

(2 + κu2(s))u2(s)ds
)

u = (Iα ∗ F(u)) f (u), x ∈ R2,

where κ, q > 0, Iα is a Riesz potential, α ∈ (0, 2) and V ∈ C(R2,R), F(t) =
∫ t

0
f (s)ds. Under appropriate

assumptions on f and V(x), by using the variational methods, we establish the existence of ground state
solutions of the above equation.
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1. Introduction

In this paper, we establish the existence of ground state solutions to the following modified Chern-
Simons-Schrödinger equation

−∆u + V(|x|)u−κu∆(u2) + q
h2(|x|)
|x|2

(1 + κu2)u

+q
(∫ +∞

|x|

h(s)
s

(2 + κu2(s))u2(s)ds
)

u = (Iα ∗ F(u)) f (u), x ∈ R2,

(1.1)

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2022399


7167

where κ, q > 0, α ∈ (0, 2) and h(l) =
∫ l

0
%u2(%)d% (l ≥ 0), u is a radially symmetric function, Iα is a

Riesz potential defined by

Iα(x) =
Γ(2−α

2 )
Γ(α2 )Π2α|x|2−α

:=
Aα

|x|2−α
,

and Γ is the Gamma function, F(t) =
∫ t

0
f (s)ds, the potential V is supposed to satisfies:

(V1) V ∈ C(R2,R);
(V2) V(|x|) = V(x) and there exists β ≥ γ > 0, such that β ≥ V(|x|) ≥ γ for all x ∈ R2.

Moreover, we assume that the nonlinearity f : R→ R verifies:
( f1) f ∈ C(R2,R), f (t) = o(t);
( f2) There exist constant p ∈ (2 + α,+∞) and C > 0 such that

| f (t)| ≤ C(1 + |t|p−1), ∀t ∈ R;

( f3) There exists a constant ϑ > 8 such that

0 < ϑF(t) ≤ t f (t), ∀t ∈ R.

As we all know, Eq (1.1) originates from seeking the standing waves of the following nonlinear
Chern-Simons-Schrödinger system

iD0φ + (D1D1 + D2D2)φ + f (φ) = 0,
∂0A1 − ∂1A0 = −Im(φD2φ),
∂0A2 − ∂2A0 = −Im(φD1φ),
∂1A2 − ∂2A1 = −1

2 |φ|
2,

(1.2)

where i denotes the imaginary unit, ∂0 = ∂
∂t , ∂1 = ∂

∂x1
, ∂2 = ∂

∂x2
for (t, x1, x2) ∈ R1+2, φ : R1+2 →

C is the complex scalar field, A j : R1+2 → R is the gauge field, D j = ∂ j + iA j is the covariant
derivative for j = 0, 1, 2. The system was first proposed by Jackiw and Pi, consisting of Schrödinger
equation augmented by the gauge field. The two-dimensional Chern-Simons-Schrödinger system is a
non-relativistic quantum model describing the dynamics of a large number of particles in the plane, in
which these particles interact directly through the spontaneous magnetic field. Moreover, the important
applications of the system are also reflected in the study of the high temperature superconductors
and fractional quantum Hall effect and Aharovnov-Bohm scattering. For more physical backgrounds
of (1.2), we refer readers to [16, 17] and the references therein.

As far as we know, Byeon et al.’s [1] was the first article investigate the standing wave solutions of
this system by the variational method. They considered the standing waves of system (1.2) with power
type nonlinearity, that is, f (u) = λ|u|p−1u, and obtained the existence and nonexistence results for (1.2)
of type

φ(t, x) = u(|x|)eiwt, A0(t, x) = k(|x|),

A1(t, x) =
x2

|x|2
h(|x|), A2(t, x) = −

x1

|x|2
h(|x|),

(1.3)

where w > 0 is a given frequency, λ > 0 and p > 1, u, k, h are real valued functions depending
only on |x|. The ansatz (1.3) satisfies the Coulomb gauge condition ∂1A1 + ∂2A2 = 0. After then,
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many researchers began to pay attention to this field. see e.g. [2, 3, 5, 7, 11–13, 15, 20, 21, 29] and the
references therien. However, through the study of large number of literatures, it is found that there
are few papers studying the modified Chern-Simons-Schrödinger equation, except for [8, 23, 24]. To
best of our knowledge, there is no article to pay attention to general Choquard type nonlinearity for
modified Chern-Simons-Schrödinger equation. Motivated by the previously mentioned paper [26], we
shall study the existence of ground state solutions for Eq (1.1) using a change of variable and variational
argument.

The problem (1.1) is the Euler-Lagrange equation of the energy functional

I(u) =
1
2

∫
R2

(
(1 + 2κu2)|∇u|2 + V(|x|)u2

)
+

q
2

∫
R2

u2(x)
|x|2

( ∫ |x|

0
su2(s)ds

)2

+
q
4
κ

∫
R2

u4(x)
|x|2

( ∫ |x|

0
su2(s)ds

)2
−

1
2

∫
R2

(Iα ∗ F(u))F(u).

From the variational point of view, the main difficulty of this problem is the energy functional I can
not be well defined for u ∈ H1

r (R2). To solve this problem, we intend to adopt the Liu and Wang’s [18]
approach, considering the change of variable g : R→ R given by

g′(t) =
1√

1 + 2g2(t)
on [0,+∞),

g(0) = 0 and g(−t) = −g(t) on (−∞, 0]. By the change of u = g(v) of variable, Eq (1.1) is transformed
into a semilinear problem

−∆v + V(|x|)g(v)g′(v) + q
ĥ2[g(v(|x|))]
|x|2

(1 + κg2(v))g(v)g′(v)

+q
(∫ +∞

|x|

ĥ[g(v(s))]
s

(2 + κg2(v(s)))g2(v(s))ds
)

g(v)g′(v)

= (Iα ∗ F(g(v))) f (g(v))g′(v),

(1.4)

where

ĥ2[g(v(|x|))] :=
( ∫ |x|

0
sg2(v(s))ds

)2
.

Furthermore, the functional I(u) can be reduced to

J(v) =
1
2

∫
R2
|∇v|2 +

1
2

∫
R2

V(|x|)g2(v) +
q
2
C(g(v))

+
q
4
κD(g(v)) −

1
2

∫
R2

(Iα ∗ F(g(v)))F(g(v)),
(1.5)

where

C(g(v)) :=
∫
R2

g2(v(|x|))
|x|2

( ∫ |x|

0
sg2(v(s))ds

)2
,

D(g(v)) :=
∫
R2

g4(v(|x|))
|x|2

( ∫ |x|

0
sg2(v(s))ds

)2
.
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Obviously, the energy functional J(u) is well defined in H1
r (R2). It is easy to see that v is a critical

point of J ,

〈J ′(v), ψ〉 =

∫
R2
∇v∇ψ +

∫
R2

V(|x|)g(v)g′(v)ψ + q
∫
R2

{ ĥ2[g(v(|x|))]
|x|2

(1 + κg2(v)) (1.6)

+

∫ +∞

|x|

ĥ[g(v(s))]
s

(2 + κg2(v(s)))g2(v(s))ds
}
g(v)g′(v)ψ

−

∫
R2

(Iα ∗ F(g(v))) f (g(v))g′(v)ψ,

for any ψ ∈ H1
r (R2), then v is a weak solution of (1.4), that is u = g(v) solves (1.1). In particular, for

τ = 2 or τ = 4, using the integrate by parts, one has∫
R2

ĥ2[g(v(|x|))]
|x|2

gτ(v) =

∫
R2

(∫ +∞

|x|

gτ(v(s))ĥ[g(v(s))]
s

ds
)

g2(v). (1.7)

Note that by the Cauchy inequality, there exists a constant C0 > 0 such that

ĥ2[g(v(|x|))] :=
( ∫

B|x|

g2(v(y))
2π

dy
)2
≤ C0|x|2‖g(v)‖44.

Then for v ∈ H1
r (R2), we have

C(g(v)) ≤ C0‖g(v)‖22‖g(v)‖44, (1.8)

D(g(v)) ≤ C0‖g(v)‖84. (1.9)

Now, we give our result in the following.
Theorem 1.1. Under assumptions (V1), (V2) and ( f1)–( f3), problem (1.1) has a ground state
solution.
Notations. To facilitate expression, hereafter, we recall the following basic notes:

• H1(R2): = {u ∈ L2(R2),∇u ∈ L2(R2)} with the norm ‖v‖ =
(∫
R2(v2 + |∇v|2)

)1/2
;

• H1
r (R2): = {v ∈ H1(R2): v(x) = v(|x|)};

• Ls(R2) denotes the Lebesgue space with the norm ‖v‖s =
(∫
R2 |v|s

)1/s
, where 1 ≤ s < +∞;

• The embedding H1
r (R2) ↪→ Ls(R2) is continuous for 2 ≤ s < +∞;

• The embedding H1
r (R2) ↪→ Ls(R2) is compact for 2 < s < +∞;

• H1
r (R2) ↪→ L

4υ
2+α (R2) if and only if 2+α

2 ≤ υ < +∞;
•
∫
R2 ♠ denotes

∫
R2 ♠dx;

• The weak convergence in H1
r (R2) is denoted by ⇀, and the strong convergence by→;

•We use C, C0 denote various positive constants.
The remainder of the paper is organized as follows. In section 2, we present some preliminary

results. Section 3 devote to some required results and complete the proof details of Theorem 1.1.
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2. Preliminaries

In this section, we give some useful lemmas and proposition, which play an important role in the
proof of our result. Next, let us recall some properties of the variable g, which are proved in [6,18,27].

Lemma 2.1. ( [6, 18, 27]) The function g(t) and its derivative satisfy the following properties:
(g1) |g(t)| ≤ |t| for all t ∈ R;
(g2) |g(t)| ≤ 21/4|t|1/2 for all t ∈ R;
(g3) g(t)/2 ≤ tg′(t) ≤ g(t) for all t ≥ 0;
(g4) g2(t)/2 ≤ tg(t)g′(t) ≤ g2(t) for all t ∈ R;
(g5) |g(t)g′(t)| ≤ 1/

√
2 for all t ∈ R;

(g6) There exists a constant C > 0 such that

|g(t)| ≥

C|t|, if |t| ≤ 1,
C|t|1/2, if |t| ≥ 1.

Next, the following inequality holds if and only if the functions in H1
r (R2).

Proposition 2.2. ( [1]) For v ∈ H1
r (R2), there holds∫

R2
|v|4 ≤ 2

( ∫
R2
|∇v|2

) 1
2
( ∫
R2

v2

|x|2
( ∫ |x|

0
sv2(s)ds

)2) 1
2
.

In order to achieve our main result, we would like to recall the well-known Hardy-Littlewood-
Sobolev inequality in [19].

Lemma 2.3. ( [19]) Let µ, ν > 1 and 0 < α < N(N = 1, 2...) be such that

1
µ

+
1
ν

= 1 +
α

N
.

Where ζ ∈ Lµ(RN) and η ∈ Lν(RN), there exists a constant C, independent of ζ, η, such that∫
RN

∫
RN

ζ(x)η(y)
|x − y|N−α

≤ C(µ, ν,N, α)‖ζ‖µ‖η‖ν.

Finally, for functional C(v),D(v), we give the following compactness lemma:

Lemma 2.4. ( [8]) Suppose that a sequence {vn} converges weakly to a function v in H1
r (R2) as n→ +∞.

Then for each ψ ∈ H1
r (R2), C(vn), C′(vn)ψ and C′(vn)vn, D(vn) and D′(vn)ψ, D′(vn)vn converges up to

a subsequence to C(v), C′(v)ψ and C′(v)v,D(v) andD′(v)ψ,D′(v)v, respectively, as n→ +∞.

3. Proof of Theorem 1.1

In this section, we would like to complete the proof of Theorem 1.1.

Theorem 3.1. ( [14]) Set (E, ‖ · ‖) be a Banach space, I ⊂ R+ be a real interval. Consider a family Ψη

of C1-functional on E
Ψλ(v) = A(v) − λB(v), f or all λ ∈ I,
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where B(v) is non-negative and when ‖ v ‖→ +∞, either A(v) → +∞ or B(v) → +∞. Assume that
there exist two points v1, v2 holds

max
{
Ψλ(v1),Ψλ(v2)

}
< inf

γ∈Γ̄λ

max
t∈[0,1]

Ψλ(γ(t)) = cλ, f or all λ ∈ I,

where
Γ̄λ =

{
γ ∈ C([0, 1], E) : γ(0) = v1, γ(1) = v2

}
.

Then for a.e. λ ∈ I, there exist a sequence {vn} ⊂ E such that
(1) {vn} is bounded in E;
(2) lim

n→+∞
Ψλ(vn) = cλ;

(3) lim
n→+∞

Ψ′λ(vn) = 0 in the dual space E−1 of E.
Furthermore, the map λ 7→ cλ is non-increasing and left continuous.

Let I = [ 1
2 , 1], we define the following energy functional

Jλ(v) =
1
2

∫
R2

(
|∇v|2 + V(|x|)g2(v)

)
+

q
2
C(g(v)) +

q
4
κD(g(v)) −

λ

2

∫
R2

(Iα ∗ F(g(v)))F(g(v)),

where λ ∈ I. Moreover, let

A(v) =
1
2

∫
R2

(
|∇v|2 + V(|x|)g2(v)

)
+

q
2
C(g(v)) +

q
4
κD(g(v)),

and
B(v) =

1
2

∫
R2

(Iα ∗ F(g(v)))F(g(v)).

Setting ‖ v ‖→ +∞, thenA(v)→ +∞. Furthermore, B(v) ≥ 0.
Next, we prove that the functional J exhibits the mountain pass geometry.

Lemma 3.2. Under assumptions (V1) and (V2), then there holds:
(i) There exists v ∈ H1

r (R2)\{0} such that Jλ(v) < 0 for all λ ∈ I;
(ii) cλ = inf

γ∈Γ̄λ

max
t∈[0,1]

Jλ(γ(t)) > max
{
Jλ(0),Jλ(v)

}
for all λ ∈ I, where

Γ̄λ =
{
γ ∈ C([0, 1],H1

r (R2)) : γ(0) = 0, γ(1) = v
}
.

Proof. (i) Let v ∈ H1
r (R2)\{0} be fixed. For any λ ∈ I = [ 1

2 , 1], we have

Jλ(v) ≤ J 1
2
(v)

=
1
2

∫
R2

(
|∇v|2 + V(|x|)g2(v)

)
+

q
2
C(g(v)) +

q
4
κD(g(v)) −

1
4

∫
R2

(Iα ∗ F(g(v)))F(g(v)).

Arguing as in [4, 9], we consider ξ ∈ C∞0 (R2) which satisfies 0 ≤ ξ(x) ≤ 1, ξ(x) = 0 for |x| ≥ 2 and
ξ(x) = 1 for |x| ≤ 1. By (g3), we can deduce that g(tξ(x)) ≥ g(t)ξ(x) for t ≥ 0. According to Yang
et al. [25], from ( f3) and (g4) that for t > 1

‖ξ‖
, we have∫

Ω

(Iα ∗ F(g(tξ)))F(g(tξ)) ≥
∫

Ω

(
Iα ∗ F

(
g
(
ξ

‖ξ‖

)))
F

(
g
(
ξ

‖ξ‖

))
tϑ‖ξ‖ϑ.
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Thus from (g1), one has

Jλ(tξ) ≤
t2

2

∫
R2

(
|∇v|2 + V(|x|)v2

)
+

t6

2
qC(g(v)) +

t8

4
qκD(g(v))

−
1
4

∫
R2

(Iα ∗ F(g(tξ)))F(g(tξ))

≤
t2

2

∫
R2

(
|∇v|2 + V(|x|)v2

)
+

t6

2
qC(g(v)) +

t8

4
qκD(g(v))

−
1
4

∫
R2

(
Iα ∗ F

(
g
(
ξ

‖ξ‖

)))
F

(
g
(
ξ

‖ξ‖

))
tϑ‖ξ‖ϑ,

for all t > 0. By ϑ > 8, we deduce that Jλ(tξ)→ −∞ as t → +∞. Thus, there exists a t0 > 0 such that
Jλ(t0ξ) < 0. Then taking a function v = t0ξ, we have Jλ(v) < 0 for all λ ∈ I.

(ii) By Chen et al. [4] and Fang et al. [10], there exists ρ′ > 0 such that

C‖v‖2 ≤
∫
R2

(|∇v|2 + V(|x|)g2(v))

for all ‖v‖ ≤ ρ′. From (g2), Lemma 2.3 and Sobolev imbedding inequality, for ε > 0 sufficiently small,
one has

Jλ(v) ≥
1
2

∫
R2

(
|∇v|2 + V(|x|)g2(v)

)
+

q
2
C(g(v)) +

q
4
κD(g(v))

−
1
2

∫
R2

(Iα ∗ F(g(v)))F(g(v))

≥
1
2

∫
R2

(
|∇v|2 + V(|x|)g2(v)

)
−

C
2

( ∫
R2

(ε| f (v)|2 + Cε| f (v)|p)
4

2+α

) 2+α
2

≥
1
2

∫
R2

(
|∇v|2 + V(|x|)g2(v)

)
−Cε2

( ∫
R2
|v|

4
2+α

) 2+α
2
−CC2

ε

( ∫
R2
|v|

2p
2+α

) 2+α
2

≥C(‖v‖2 − ‖v‖p), for all ‖v‖ ≤ ρ′.

Since p > 2 + α, we get Jλ(v) > 0 if ρ′ is small enough. Hence, Jλ(0) is strict local minimum, cλ > 0.
By Theorem 3.1, it is easy to know that for any almost everywhere λ ∈ I, there exists a bounded

sequence {wn} ⊂ H1
r (R2) such that J ′λ(wn)→ 0 and Jλ(wn)→ cλ, which is called (PS ) sequence.

Lemma 3.3. Assume that {wn} ⊂ H1
r (R2) is a sequence of obtain above. Then, for almost λ ∈ I there

exists wλ ∈ H1
r (R2)\{0}, such that J ′λ(wλ) = 0 and Jλ(wλ) = cλ.

Proof. By Theorem 3.1 and Lemma 3.2, we know that {wn} ⊂ H1
r (R2) is bounded, then up to a

subsequence, there exists wλ ∈ H1
r (R2)\{0} such that wn ⇀ wλ in H1

r (R2), wn → wλ in Ls(R2) (s > 2)
and wn → wλ a.e. in R2. By the Lebesgue-dominated convergence theorem, it is easy to check that
J ′λ(wλ) = 0. Similar to [9, 10, 22, 28], we get

C‖wn − wλ‖
2 ≤

∫
R2

[
|∇(wn − wλ)|2 + V(|x|)(g(wn)g′(wn) − g(wλ)g′(wλ))(wn − wλ)

]
. (3.1)

( f1) and ( f2) imply that for each ε > 0, there exists a constant Cε > 0 such that

| f (x,wn)| ≤ ε|wn| + Cε|wn|
p−1 ≤ ε|wn|

α
2 + Cε|wn|

p−1 for all wn ∈ R. (3.2)

AIMS Mathematics Volume 7, Issue 4, 7166–7176.
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Furthermore, using Lemma 2.3, the Hölder inequality and (g2), (g5), one obtains∣∣∣∣ ∫
R2

(Iα ∗ F(g(wn))) f (g(wn))g′(wn)(wn − wλ)
∣∣∣∣

≤

∫
R2

(Iα ∗ (ε|g(wn)|2 + Cε|g(wn)|p))(ε|g(wn)| + Cε|g(wn)|p−1)|g′(wn)||wn − wλ|

≤C
( ∫
R2

[
ε|wn| + Cε|wn|

p
2
] 4

2+α
) 2+α

4
( ∫
R2

[
ε|wn − wλ| + Cε|wn|

p−2
2 |wn − wλ|

] 4
2+α

) 2+α
4

≤C
(
ε
( ∫
R2
|wn|

4
2+α

) 2+α
4

+ Cε

( ∫
R2
|wn|

2p
2+α

) 2+α
4

)
×

(
ε
( ∫
R2
|wn − wλ|

4
2+α

) 2+α
4
)

+ Cε

( ∫
R2
|wn|

2p−4
2+α |wn − wλ|

4
2+α

) 2+α
4

)
(3.3)

≤CCε

(( ∫
R2
|wn|

2p
2+α

) (p−2)
p

( ∫
R2
|wn − wλ|

2p
2+α

) 2
p

) 2+α
4

≤CCε

( ∫
R2
|wn − wλ|

2p
2+α

) 2+α
2p
→ 0.

In the same way, we can prove that∣∣∣∣ ∫
R2

(Iα ∗ F(g(wλ))) f (g(wλ))g′(wλ)(wn − wλ)
∣∣∣∣→ 0. (3.4)

Thus, it follows from (1.7), (3.1)–(3.4) and Lemma 2.4 that

0←〈J ′λ(wn) − J ′λ(wλ),wn − wλ〉

=

∫
R2

[
|∇(wn − wλ)|2 + V(|x|)(g(wn)g′(wn) − g(wλ)g′(wλ))(wn − wλ)

]
+

q
2
〈C′(g(wn)) − C′(g(wλ)),wn − wλ〉 +

q
4
κ〈D′(g(wn)) −D′(g(wλ)),wn − wλ〉

− λ

∫
R2

[
(Iα ∗ F(g(wn))) f (g(wn))g′(wn)

− (Iα ∗ F(g(wλ))) f (g(wλ))g′(wλ)
]
(wn − wλ)

≥ C‖wn − wλ‖
2 + on(1),

then, we deduce that wn → wλ in H1
r (R2). Thus, wλ is a nontrivial critical point ofJλ withJλ(wλ) = cλ.

This completes the proof.

Proof of Theorem 1.1. At first, by Theorem 3.1, for a.e. λ ∈ I, there exists wλ ∈ H1
r (R2) such that

wn ⇀ wλ , 0 in H1
r (R2), J′λ(wn) → 0 and Jλ(wn) → cλ. By Lemma 3.3, one obtains J ′λ(wλ) = 0,

Jλ(wλ) = cλ. Then, take {λn} ⊂ I such that lim
n→+∞

λn = 1, wλn ∈ H1
r (R2) and J ′λn

(wλn) = 0, Jλn(wλn) =

cλn . Next, we claim that ‖wλn‖ ≤ C. From ( f3), (1.6), (1.7) and Lemma 3.2 and Jλn(wλn) ≤ c 1
2
,

J′λn
(wλn) = 0, it follows that

c 1
2
≥ Jλn(wλn) −

1
2ϑ
〈J ′λn

(wλn), g(wλn)/g
′(wλn)〉

=

(
1
2
−

1
2ϑ
·

1 + 4g2(wλn)
1 + 2g2(wλn)

) ∫
R2
|∇(wλn)|

2 +
(1
2
−

1
2ϑ

) ∫
R2

V(|x|)g2(wλn)
(3.5)
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+
(1
2
−

3
2ϑ

)
qC(g(wλn)) +

(1
4
−

1
ϑ

)
qκD(g(wλn))

+
1
2

( ∫
R2

(Iα ∗ F(g(wn)))
(1
ϑ

f (g(wλn))g(wλn) − F(g(wλn))
))

≥C
( ∫
R2

(|∇wλn |
2 + g2(wλn)

)
.

(3.5) infer that
∫
R2 |∇wλn |

2 ≤ C. From (g1) and (g6), it holds∫
R2
|wλn |

2 =

∫
|wλn |>1

|wλn |
2 +

∫
|wλn |≤1

|wλn |
2 ≤ C

( ∫
R2
|g(wλn)|

4 +

∫
R2
|g(wλn)|

2
)
.

Then by (1.8), Proposition 2.2 and (3.5), we deduce that
∫
R2 |wλn |

2 ≤ C. Hence, there is a constant
C > 0 independent of n such that ‖wn‖ =

∫
R2(|∇wn|

2 + w2
n) ≤ C. Next, we can suppose that the

limit of Jλn(wλn) exists. By Theorem 3.1, we have cλn → c1 is continuous from the left. So, we get
0 ≤ lim

n→+∞
Jλn(wλn) = cλn ≤ c 1

2
. Thus, using the fact that

J(wλn) = Jλn(wλn) +
(λn − 1)

2

∫
R2

(Iα ∗ F(g(wλn)))F(g(wλn)) = cλn + o(1) = c1,

and for any ψ ∈ H1
r (R2)\{0}, there holds

〈J ′(wλn), ψ〉 = 〈J ′λn
(wλn), ψ〉 + (λn − 1)

∫
R2

(Iα ∗ F(g(wλn))) f (g(wλn))g
′(wλn)ψ = o(1).

Then, up to a subsequence, {wλn} is a bounded (PS )c1 sequence of J . Preceding the same method as
Lemma 3.3, we get that the existence of a nontrivial solution v0 ∈ H1

r (R2) for J satisfying J(v0) = c1,
J ′(v0) = 0.

To seek the ground state solutions, we need to define m0 := inf{J(v0) : v0 , 0,J ′(v0) = 0}.
From (3.5), we have m0 ≥ 0. Set {v′n} be a sequence satisfies J ′(v′n) = 0, J(v′n) → m0. Similar to the
discussed above, one obtains {v′n} is a bounded (PS )m0 sequence of J . Arguing as in Lemma 3.3, one
obtains there exists a v̄0 ∈ H1

r (R2) such that J ′(v̄0) = 0, J(v̄0) = m0, which implies that ū0 = g(v̄0) is a
ground state solution of (1.1). This completes the proof.

4. Conclusions

In this paper, we have considered the modified Chern-Simons-Schrödinger equation involving
radially symmetric variable potential V and general Choquard type nonlinearity. By using a change of
variable and variational argument, we obtain the existence of ground state solutions. It is hoped that
the results obtained in this paper may be a new starting point for further research in this field.
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