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Abstract: An appropriate mathematical model for describing the Zika virus transmission with non-
linear general incidence rate was proposed. The basic reproduction number R0 was calculated using
the next generation matrix method. Analysis of the local and the global stability of the equilibrium
points was detailed using Jacobian linearisation method and Lyapunov theory, respectively. We proved
that the disease-free equilibrium is locally and globally asymptotically stable when R0 is small than
1, and the infected equilibrium point is locally and globally asymptotically stable when R0 is greater
than 1. The overall sensitivity analysis is based on statistical tools. This method consists of varying the
parameters of the model to study one by one and then observe the effect of this variation on the model
output. Sensitivity indices quantifying the influence of parameters on the output, always depend on
the sample list of parameters. Later, we used optimal control to examine the effect of treatment where
the purpose is to minimize the number of infected individuals with optimal treatment cost by applying
Pontryagin’s maximum principle. Therefore, we formulated an optimal control problem using the most
parameter that influences the model output as a control parameter. The existence of the solution was
proved and characterized using adjointt variables. Finally, a numerical scheme was applied to solve
the coupled systems. Obtained results are validated numerically.
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analysis; nonlinear incidence Rate; optimal control.
Mathematics Subject Classification: 34K20, 34D23, 37B25, 49K40, 92D25.

1. Introduction

Zika fever is caused by an arbovirus (virus transmitted by insects), belonging to the Flaviviridae
family, of the flavivirus genus, such as dengue viruses or yellow fever [1–4]. The species currently
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capable of transmitting Zika virus is Aedes aegypti, which originates from Africa [5, 6]. The Aedes
albopictus (tiger mosquito, native to Asia) could also be found to be a vector of the Zika virus, as it
is already for dengue and Chikungunya [7, 8]. The mosquito becomes infected with the virus during
a blood meal, when it bites an infected person. The virus multiplies within the mosquito without
affecting the insect. Then, the next time it is bitten, the mosquito releases the virus into the blood of a
new person. Symptoms appear 3 to 12 days after the bite, but during this time a person can infect other
mosquitoes if they get bitten again. Therefore, patients with Zika should avoid being bitten in order to
interrupt the cycle of viral transmission. The majority of people infected with the virus (an estimated
70 to 80% of cases) do not develop any symptoms. In the rest of the population, the symptoms caused
by the Zika virus are flu-like: fatigue, fever (not necessarily high), headaches, muscle and joint pain
in the limbs. In addition to these symptoms, there are different types of rashes. Conjunctivitis, pain
behind the eyes, digestive problems or even edema of the hands or feet may appear. In most cases, the
symptoms are moderate and do not require hospitalization. These symptoms are not very specific, and
the Zika virus being found in the same regions as those of dengue and Chikungunya, make an exact
diagnosis difficult.There is no specific antiviral treatment, nor an active vaccine against the Zika virus.
Only symptomatic treatment can be prescribed (analgesics against pain and fever of the paracetamol
type).

Zika virus was first detected in a monkey in Uganda in 1947. A year later, it was isolated in the same
region from an Aedes mosquito. The first human cases appeared in the 1970s in other African countries
(Uganda, Tanzania, Egypt, Central African Republic, Sierra Leone, Gabon and Senegal), then, in cer-
tain Asian countries (India, Malaysia, Philippines, Thailand, Vietnam and Indonesia) [1, 2, 5, 6, 9–11].
In 2007, a real epidemic broke out in Micronesia (Yap Island in the Pacific), causing 5,000 infec-
tions [12–14]. In 2013 and 2014, in French Polynesia, 55,000 cases of Zika were reported. The
epidemic then spread to other islands in the Pacific, including New Caledonia, the Cook Islands and
Easter Island [3, 4]. The Zika virus was first detected in north-western Brazil in May 2015 and its
presence is spreading very quickly to other regions of the country. Brazil reports the highest number of
Zika cases ever described: between 440,000 to 1,500,000 reported suspected cases [15, 16]. The virus
has been present since October 2015 in Colombia, Salvador, Guatemala, Mexico, Panama, Paraguay,
Surinam, Venezuela and Honduras [17]. In 2015, some cases were detected in French Guyana and in
Martinique [17]. In 2016, Martinique had 16,650 suggestive cases (in the process of biological confir-
mation). Guyana has 3,620 cases and Guadeloupe 1,090 cases. In France, 176 cases have been biolog-
ically confirmed in people returning from the Zika virus circulation area, including 7 pregnant women
and 1 case of neurological complications. A person has been infected with the Zika virus through
sexual intercourse. The spread of Zika fever could take place in areas where the Aedes mosquito is
already implanted and where a person already infected with Zika is staying. In mainland France, the
Aedes albopictus mosquito (tiger mosquito) is present in 30 departments. The vectorial expansion pe-
riod usually occurs in May and its period of activity (and therefore the risk of transmission of the virus)
is between May and November.

The worst epidemics and pandemics that have ravaged humanity brought out the role of mathemat-
ical models in political and health decision-making. In fact, mathematical models are essential tools
investigating the dynamics of the spread of an epidemic that help us to determine a threshold called
reproduction number which usually provides information on how infection will be sustained. The
potential factors for such a virus spread can be well estimated via mathematical models. Infectious dis-
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ease control is key to the World Health Organization and optimal time control is able to provide useful
theoretical information about both the prevention and treatment of diseases. The information obtained
from optimal control modeling can help decision makers to plan well and provide the best services
for the management and treatment of diseases. The optimal time control has been used to study sev-
eral mosquito-related diseases [18–25]. To our knowledge, there is no optimal control model for ZIKA
virus. Several models have been proposed to describe the transmission dynamics vector-borne diseases
see [26–34] for example. The case of Dengue, has is the subject of several studies [12,13,35,36] for ex-
ample. In [12–14,35,36], the authors propose the study of SI-SIR models to describe the transmission
dynamics of Dengue fever in which the total human population is assumed to be constant. In [13], the
author does not use a standard infection rate in transmitting the infection towards the human popula-
tion, which this time depends on the size of the vector. In all these models, the growth dynamics of the
vector, and especially immature stages, is not taken into account. In [37], describing the transmission
of Dengue, the dynamics of the immature stage is taken into account, and the egg stage is regulated by
the effect of a reception capacity of the medium. This model also considers an infection rate dependent
on the vector population. This article only deals with the global stability of the endemic equilibrium.
In [29], the authors proposed a model describing this time, the transmission of Chikungunya with a
classic infection rate, or the growth dynamics of an immature stage, grouping together the eggs, larvae
and nymphs but in which only local stability is studied.

The bilinear incidence rate βS I and the standard incidence rate β(S/N)I for the classical epidemio-
logical models are often considered [29,30,36]. However, for collected data from the real phenomenon,
the disease dynamics is not always follows these type of rates and many of the epidemiological mech-
anisms are more appropriate with nonlinear transmission rates, in particular the saturated rates of the
form incidence rate g(I)S [23, 24] or of more general form g(S , I) [38]. When a large number of
infective involves in the population then exposure to the disease agent is virtually certain and the trans-
mission rate may slow down. This happened because of the number of effective contact between the
susceptible population and infected population may saturate at high infection level due to overcrowd-
ing of infective or due to protective measures by susceptible. Since a large number of infective involves
in vector borne disease, saturated incidence rate has been considered as more suitable for the vector
borne diseases like dengue than linear incidence rates. Hence, the goal of this paper is to generalize
the results of [26–28] to nonlinear incidence rates. In [23, 24], the authors have used similar saturated
incidence rate in order to describe vector borne diseases.

Treatment is significant in every infectious disease for the infected population to become recov-
ered. Usually, the treatment rate is considered to be proportional to the number of infective individuals
(linear dependence on the number of infected individuals). In this paper we propose a more general
mathematical model for ZIKA virus transmission. We analysed the model and we studied the sensitiv-
ity analysis with respect to the input parameters. Then we used optimal control to examine the effect of
treatment. The purpose of this control is to minimize the number of infected individuals with optimal
treatment cost by applying Pontryagin’s maximum principle.

This paper is organised as follows. The mathematical model, its general properties, the calculation
of the basic reproduction number using next generation method, the existence and the number of equi-
librium points are presented in section 2. In section 3, we discussed the local stability of the steady
states using the Jacobian linearisation method. Later in section 4, we discussed the global stability of
the equilibrium points using the basic Lyapunov theory. In section 5, the sensitivity analysis of the
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basic reproduction number with respect to each of the model parameters was carried out. In section 6,
we presented the optimal strategy to minimize the number of infected individuals and we formulated
the optimal control problem then we expressed the control in terms of the adjoint variables. Numerical
simulations have been given in section 7. Finally, some conclusion remarks have been presented in
section 8.

2. Nonlinear Zika virus dynamics model

The virus is spread as follows. Mosquitoes contract the virus by biting animals or men infected with
it. They then spread the virus by biting uninfected people. It has been observed that mosquitoes, once
infected, remain so until they die. Conversely, men become immune after contracting the disease. We
will therefore use an SI model for describe the transmission of the virus in the vector population and a
SIR-type model to describe it within the human population [39]. We then obtain the generalization of
the models given in [26–28]). 

Ṡ h = Λh − fh(Iv)S h − µhS h,

İh = fh(Iv)S h − (rh + u + µh)Ih,

Ṙh = (rh + u)Ih − µhRh,

Ṡ v = Λv − fv(Ih)S v − µvS v,

İv = fv(Ih)S v − µvIv.

(2.1)

S h, Ih and Rh describe the susceptible, infected and recovered in the human population, respectively.
S v and Iv describe, respectively, the susceptible and infected in the mosquito population.
In the table hereafter, we give a description of the model parameters.

Parameter Description
Λh Recruitment rate of human population
Λv Recruitment rate of mosquito population
fh incidence rate between Ih and S h

fv Incidence rate between Ih and S v

µh Natural death rate of human population
µv Natural death rate of mosquito population
rh Natural recovery rate of symptomatic infective human population
u Recovery rate due to treatment

In the human population, the uninfected become infected at a rate fh(Ih)S h, where fh is the infected to
uninfected incidence rates.

Assumption 1. fh is non-negative C1(R+), increasing concave function such that fh(0) = 0.

Lemma 1. I f ′h(I) ≤ fh(I) ≤ I f ′h(0), ∀I ∈ R+.

Proof. For I, I1 ∈ R+, let g1(I) = fh(I)−I f ′h(I). Since fh is an increasing concave function then f ′h(I) ≥ 0
and f ′′h (I) ≤ 0. Therefore g′1(I) = −I f ′′h (I) > 0 and g1(I) ≥ g1(0) = 0 or also fh(I) ≥ I f ′h(I). Samelly,
let g2(I) = fh(I) − I f ′h(0) then g′2(I) = f ′h(I) − f ′h(0) < 0 since fh is concave. Then g2(I) ≤ g2(0) = 0
then fh(I) ≤ I f ′h(0). �
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2.1. Basic properties

Lemma 2.
Γ =

{
(S h, Ih,Rh, S v, Iv) ∈ R5

+ : Nh =
Λh

µh
, Nv =

Λv

µv

}
is a positively invariant attractor of all solutions of system (2.1) where Nh = S h+Ih+Rh and Nv = S v+Iv

are the total population sizes of human and mosquitoes, respectively.

Proof. We have

Ṡ h |S h=0 = Λh > 0,
İh |Ih=0 = fh(Iv)S h ≥ 0,

Ṙh |Rh=0 = (rh + u)Ih ≥ 0,
Ṡ v |S v=0 = Λv > 0,

İv |Iv=0 = fv(Ih)S v ≥ 0.

Thus one can deduce that the closed non-negative cone R5
+ is positively invariant by system (2.1). From

Eqs (2.1) we get Ṅh = Λh − µhNh. Hence Nh =
Λh

µh
if Nh(0) =

Λh

µh
. Similarly, Ṅv = Λv − µvNv. Hence

Nv =
Λv

µv
if Nv(0) =

Λv

µv
. �

2.2. Steady states: Existence and uniqueness

For any disease, a major health issue is whether it is spreading in the population and at what speed
(doubling time). This amounts to calculating the average number of people an infectious person infects
while they are contagious. This rate is called the basic reproduction number, and is denoted R0 (ratio).
This rate is intuitively easy to understand, but if it is linked to the pathogen, its calculation is complex.
R0 should be used with caution, as it can lead to misinterpretations, both on the real role that R0 has
on the spread of an infectious disease and on the ability to control an epidemic. The calculation of
the R0 presupposes a population where all the individuals are healthy, except the infectious individual
introduced (patient zero). If R0 < 1, then the infected individual infects less than one other individual
on average, which means that the disease is disappearing from the population. If R0 > 1, then the
disease spreads in the population and becomes epidemic. Determining R0 according to the parameters
of the model thus makes it possible to calculate the conditions under which the disease spreads. As van
den Driessche and Watmough note [40], “in the case of a single infected compartment, R0 is simply the
product of the infection rate and its mean duration”. When the model is simple, it is often possible to
find an exact expression for R0. If there are several compartments representing infectious individuals,
other methods are necessary, such as the next-generation matrix method introduced by Diekmann [41].
In the approach of van den Driessche and Watmough for this method [40], the population is divided into
n compartments whose m first represent the infected individuals. In other words, instead of focusing
on a single compartment of infected individuals as previously, the method considers that the infected
individuals are distributed over m compartments. The goal is therefore to see the rate of change in the
population established in each of these compartments.

The matrix approach to calculate the basic reproduction number in complex models shows the
relationship between compartmental models and population matrix models. In our case, F =
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7122
0 f ′h(0)

Λh

µh

f ′v (0)
Λv

µv
0

 and V =

(
rh + u + µh 0

0 µv

)
.

The determinent of V is given by det(V) = µv(rh + u +µh) > 0 and therefore V−1 =


1

rh + u + µh
0

0
1
µv


and the next generation matrix is given by

FV−1 =


0

f ′h(0)Λh

µvµh
f ′v (0)Λv

µv(rh + u + µh)
0

 .
Then the basic reproduction number for model (2.1) is given by the spectral radius of the matrix FV−1:

R0 = r(FV−1) =

√
f ′h(0) f ′v (0)ΛhΛv

µ2
vµh(rh + u + µh)

.

Lemma 3. • If R0 ≤ 1, then model (2.1) has a trivial steady state E0.
• If R0 > 1, then model (2.1) has two steady states E0 and E∗.

Proof. Let E(S h, Ih,Rh, S v, Iv) be any steady state satisfying

0 = Λh − fh(Iv)S h − µhS h,

0 = fh(Iv)S h − (rh + u + µh)Ih,

0 = (rh + u)Ih − µhRh,

0 = Λv − fv(Ih)S v − µvS v,

0 = fv(Ih)S v − µvIv.

(2.2)

which is equivalent to

S h =
Λh − (rh + u + µh)Ih

µh
=

Λh

µh
−

(rh + u + µh)
µh

Ih,

Rh =
(rh + u)Ih

µh
,

Iv =
fv(Ih)S v

µv
=

Λv

µv

fv(Ih)
fv(Ih) + µv

,

S v =
Λv

µv + fv(Ih)
.

(2.3)

From the second equation of system (2.2), we have

0 = fh(Iv)S h − (rh + u + µh)Ih

= fh

(Λv

µv

fv(Ih)
fv(Ih) + µv

)(Λh

µh
−

(rh + u + µh)
µh

Ih

)
− (rh + u + µh)Ih

(2.4)
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If Ih = 0, then we get a steady state given by the ZIKV-free steady state

E0 =

(
Λh

µh
, 0, 0,

Λv

µv
, 0

)
. If Ih , 0, define the function

g(Ih) =

fh

(Λv

µv

fv(Ih)
fv(Ih) + µv

)
Ih

(Λh

µh
−

(rh + u + µh)
µh

Ih

)
− (rh + u + µh).

Then we obtain

lim
Ih→0+

g(Ih) = lim
Ih→0+

fh

(Λv

µv

fv(Ih)
fv(Ih) + µv

)
Ih

Λh

µh
− (rh + u + µh)

=
Λv

µv

µv f ′v (0)
µ2

v
f ′h(0)

Λh

µh
− (rh + u + µh)

= (rh + u + µh)(R2
0 − 1) > 0 if R0 > 1.

Now, we have

g(
Λh

µh
) =

µh

Λh
fh

Λv

µv

fv(
Λh

µh
)

fv(
Λh

µh
) + µv

(
Λh

µh
−

(rh + u + µh)
µh

Λh

µh

)
− (rh + u + µh)

= −
µh

Λh
fh(

Λv

µv
)

fv(
Λh

µh
)

fv(
Λh

µh
) + µv

(rh + u)
µh

Λh

µh
− (rh + u + µh) < 0.

The derivative of the function g on (0,
Λh

µh
) is given by

g′(Ih) =

Ih
Λv

µv

µv f ′v (Ih)
( fv(Ih) + µv)2 f ′h

(Λv

µv

fv(Ih)
fv(Ih) + µv

)
− fh

(Λv

µv

fv(Ih)
fv(Ih) + µv

)
I2
h

×

(Λh

µh
−

(rh + u + µh)
µh

Ih

)
−

fh

(Λv

µv

fv(Ih)
fv(Ih) + µv

)
Ih

(rh + u + µh)
µh

=

Ih
Λv

µv

µv f ′v (Ih)
( fv(Ih) + µv)2 f ′h

(Λv

µv

fv(Ih)
fv(Ih) + µv

)
− fh

(Λv

µv

fv(Ih)
fv(Ih) + µv

)
I2
h

Λh

µh

AIMS Mathematics Volume 7, Issue 4, 7117–7142.
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−

Ih
Λv

µv

µv f ′v (Ih)
( fv(Ih) + µv)2 f ′h

(Λv

µv

fv(Ih)
fv(Ih) + µv

)
I2
h

(rh + u + µh)
µh

Ih

+

fh

(Λv

µv

fv(Ih)
fv(Ih) + µv

)
Ih

(rh + u + µh)
µh

−

fh

(Λv

µv

fv(Ih)
fv(Ih) + µv

)
Ih

(rh + u + µh)
µh

=

Ih
Λv

µv

µv f ′v (Ih)
( fv(Ih) + µv)2 f ′h

(Λv

µv

fv(Ih)
fv(Ih) + µv

)
− fh

(Λv

µv

fv(Ih)
fv(Ih) + µv

)
I2
h

Λh

µh

−

Ih
Λv

µv

µv f ′v (Ih)
( fv(Ih) + µv)2 f ′h

(Λv

µv

fv(Ih)
fv(Ih) + µv

)
I2
h

(rh + u + µh)
µh

Ih

≤ 0 by using Assumption 1 on fv.

Thus g is an decreasing function. Then the equation g(Ih) = 0 admits a unique solution I∗h ∈ (0,
Λh

µh
).

Therefore, 

S ∗h =
Λh

µh
−

(rh + u + µh)
µh

I∗h,

R∗h =
(rh + u)I∗h

µh
,

I∗v =
Λv

µv

fv(I∗h)
fv(I∗h) + µv

,

S ∗v =
Λv

µv + fv(I∗h)
,

(2.5)

and the infected steady state E∗ = (S ∗h, I
∗
h,R

∗
h, S

∗
v, I
∗
v ) exists only if R0 > 1. �

3. Local stability of steady states

The R0 rate is important to determine the risk of a new pathogen causing an epidemic (impossible
if R0 < 1, possible if R0 > 1) and to estimate the final size of the epidemic, with or without control
measures.

Theorem 1. If R0 < 1 , then the trivial equilibrium point E0 is locally asymptotically stable.

Proof. The Jacobian matrix of system (2.1) at a point (S h, Ih,Rh, S v, Iv) is given by:

J =


−( fh(Iv) + µh) 0 0 0 − f ′h(Iv)S h

fh(Iv) −(rh + u + µh) 0 0 f ′h(Iv)S h

0 (rh + u) −µh 0 0
0 − f ′v (Ih)S v 0 −( fv(Ih) + µv) 0
0 f ′v (Ih)S v 0 fv(Ih) −µv


AIMS Mathematics Volume 7, Issue 4, 7117–7142.
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The Jacobian matrix evaluated at E0 is then given by:

J0 =



−µh 0 0 0 − f ′h(0)
Λh

µh

0 −(rh + u + µh) 0 0 f ′h(0)
Λh

µh
0 (rh + u) −µh 0 0

0 − f ′v (0)
Λv

µv
0 −µv 0

0 f ′v (0)
Λv

µv
0 0 −µv


J0 admits five eigenvalues. The first three eigenvalues are given by λ1 = λ2 = −µh < 0 and λ3 = −µv <

0. The other two eigenvalues are those of the following sub-matrix

S j0 :=


−(rh + u + µh) f ′h(0)

Λh

µh

f ′v (0)
Λv

µv
−µv


where the trace is given by

Trace (S j0) = −(rh + u + µh + µv) < 0

and the determinant is given by

Det (S j0) = µv(rh + u + µh) − f ′h(0)
Λh

µh
f ′v (0)

Λv

µv
= µv(rh + u + µh)(1 − R2

0).

Then all eigenvalues must have negative real parts once R0 < 1 and the trivial equilibrium point E0 is
then locally asymptotically stable once R0 < 1. �

Theorem 2. If R0 > 1, then the endemic equilibrium point E∗ = (S ∗h, I
∗
h,R

∗
h, S

∗
v, I
∗
v ) is locally asymptot-

ically stable.

Proof. The Jacobian matrix at the endemic equilibrium E∗ = (S ∗h, I
∗
h,R

∗
h, S

∗
v, I
∗
v ) is given by:

J1 =


−( fh(I∗v ) + µh) 0 0 0 − f ′h(I∗v )S ∗h

fh(I∗v ) −(rh + u + µh) 0 0 f ′h(I∗v )S ∗h
0 (rh + u) −µh 0 0
0 − f ′v (I∗h)S ∗v 0 −( fv(I∗h) + µv) 0
0 f ′v (I∗h)S ∗v 0 fv(I∗h) −µv


.

The characteristic polynomial is then given by:

P(X) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−(X + fh(I∗v ) + µh) 0 0 0 − f ′h(I∗v )S ∗h
fh(I∗v ) −(X + rh + u + µh) 0 0 f ′h(I∗v )S ∗h

0 (rh + u) −(X + µh) 0 0
0 − f ′v (I∗h)S ∗v 0 −(X + fv(I∗h) + µv) 0
0 f ′v (I∗h)S ∗v 0 fv(I∗h) −(X + µv)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−(X + fh(I∗v ) + µh) 0 0 0 − f ′h(I∗v )S ∗h
fh(I∗v ) −(X + rh + u + µh) 0 0 f ′h(I∗v )S ∗h

0 (rh + u) −(X + µh) 0 0
0 − f ′v (I∗h)S ∗v 0 −(X + fv(I∗h) + µv) 0
0 0 0 −(X + µv) −(X + µv)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= −(X + µv)

∣∣∣∣∣∣∣∣∣∣∣
−(X + fh(I∗v ) + µh) 0 0 0

fh(I∗v ) −(X + rh + u + µh) 0 0
0 (rh + u) −(X + µh) 0
0 − f ′v (I∗h)S ∗v 0 −(X + fv(I∗h) + µv)

∣∣∣∣∣∣∣∣∣∣∣
+(X + µv)

∣∣∣∣∣∣∣∣∣∣∣
−(X + fh(I∗v ) + µh) 0 0 − f ′h(I∗v )S ∗h

fh(I∗v ) −(X + rh + u + µh) 0 f ′h(I∗v )S ∗h
0 (rh + u) −(X + µh) 0
0 − f ′v (I∗h)S ∗v 0 0

∣∣∣∣∣∣∣∣∣∣∣
= −(X + µv)(X + µh)(X + fv(I∗h) + µv)(X + fh(I∗v ) + µh)(X + rh + u + µh)

− f ′v (I∗h)S ∗v(X + µv)(X + µh)

∣∣∣∣∣∣ −(X + fh(I∗v ) + µh) − f ′h(I∗v )S ∗h
fh(I∗v ) f ′h(I∗v )S ∗h

∣∣∣∣∣∣
= −(X + µv)(X + µh)

[
(X + fv(I∗h) + µv)(X + fh(I∗v ) + µh)(X + rh + µh) − f ′v (I∗h) f ′h(I∗v )S ∗hS ∗v(X + µh)

]
.

Then λ1 = −µv < 0 and λ2 = −µh < 0 are two eigenvalues. The other three eigenvalues are the roots of

Q(X) = (X + fv(I∗h) + µv)(X + fh(I∗v ) + µh)(X + rh + u + µh) − f ′v (I∗h) f ′h(I∗v )S ∗hS ∗v(X + µh)
= X3 +

(
fv(I∗h) + µv + fh(I∗v ) + µh + rh + u + µh

)
X2

+
(
( fv(I∗h) + µv + rh + u + µh)( fh(I∗v ) + µh) + ( fv(I∗h) + µv)(rh + u + µh) − f ′v (I∗h) f ′h(I∗v )S ∗hS ∗v

)
X(

fv(I∗h) + µv

) (
fh(I∗v ) + µh

)
(rh + u + µh) − µh f ′v (I∗h) f ′h(I∗v )S ∗hS ∗v

= X3 + a2X2 + a1X + a0

where

a2 = fv(I∗h) + µv + fh(I∗v ) + µh + rh + u + µh > 0,
a1 = ( fv(I∗h) + µv + rh + u + µh)( fh(I∗v ) + µh) + ( fv(I∗h) + µv)(rh + u + µh) − f ′v (I∗h) f ′h(I∗v )S ∗hS ∗v,
a0 = ( fv(I∗h) + µv)( fh(I∗v ) + µh)(rh + u + µh) − µh f ′v (I∗h) f ′h(I∗v )S ∗hS ∗v.

Using the fact that f ′h(I∗v ) ≤
fh(I∗v )

I∗v
, f ′v (I∗h) ≤

fv(I∗h)
I∗h

, (rh + u + µh) =
fh(I∗v )S ∗h

I∗h
, and µv =

fv(I∗h)S ∗v
I∗v

, we

obtains

a1 ≥ ( fv(I∗h) + µv)( fh(I∗v ) + µh) + (rh + u + µh)( fh(I∗v ) + µh) + fv(I∗h) fh(I∗v )
S ∗hS ∗v
I∗hI∗v

− fv(I∗h) fh(I∗v )
S ∗hS ∗v
I∗hI∗v

= ( fv(I∗h) + µv)( fh(I∗v ) + µh) + (rh + u + µh)( fh(I∗v ) + µh) > 0,

a0 = fh(I∗v ) fv(I∗h) fh(I∗v )
S ∗hS ∗v
I∗hI∗v

> 0,

a2a1 − a0 =
(

fv(I∗h) + µv + fh(I∗v ) + µh

)
( fv(I∗h) + µv)( fh(I∗v ) + µh)

+
(

fv(I∗h) + µv + fh(I∗v ) + µh + rh + u + µh

)
(rh + u + µh)( fh(I∗v ) + µh)
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+
(

fv(I∗h) + µv + fh(I∗v ) + µh + rh + u + µh

)
( fv(I∗h) + µv)(rh + u + µh)

−
(

fv(I∗h) + µv + fh(I∗v ) + µh + rh + u
)

f ′v (I∗h) f ′h(I∗v )S ∗hS ∗v
≥

(
fv(I∗h) + µv + fh(I∗v ) + µh

)
( fv(I∗h) + µv)( fh(I∗v ) + µh)

+
(

fv(I∗h) + µv + fh(I∗v ) + µh + rh + u + µh

)
(rh + u + µh)( fh(I∗v ) + µh)

+
(

fv(I∗h) + µv + fh(I∗v ) + µh + rh + u + µh

)
fv(I∗h) fh(I∗v )

S ∗hS ∗v
I∗hI∗v

−
(

fv(I∗h) + µv + fh(I∗v ) + µh + rh + u
)

fv(I∗h) fh(I∗v )
S ∗hS ∗v
I∗hI∗v

=
(

fv(I∗h) + µv + fh(I∗v ) + µh

)
( fv(I∗h) + µv)( fh(I∗v ) + µh)

+
(

fv(I∗h) + µv + fh(I∗v ) + µh + rh + u + µh

)
(rh + u + µh)( fh(I∗v ) + µh) + µh fv(I∗h) fh(I∗v )

S ∗hS ∗v
I∗hI∗v

> 0.

Then the eigenvalues have negative real parts. Therefore, the equilibrium E∗ (exists if R0 > 1) is locally
asymptotically stable. The proof is completed. �

4. Global properties of steady states

Theorem 3. By considering the dynamics (2.1), if R0 ≤ 1, then E0 is globally asymptotically stable.

Proof. Assume that R0 ≤ 1 and define the following Lyapunov function U0(S h, Ih,Rh, S v, Iv):

U0(S h, Ih,Rh, S v, Iv) =
µv

f ′h(0)
Ih +

Λh

µh
Iv.

Clearly, U0(S h, Ih,Rh, S v, Iv) > 0 for all S h, Ih,Rh, S v, Iv > 0 and U0

(
Λh

µh
, 0, 0,

Λv

µv

)
= 0. The derivative

of U0 with respect to time along system (2.1)is given by:

dU0

dt
=

µv

f ′h(0)

(
fh(Iv)S h − (rh + u + µh)Ih

)
+

Λh

µh

(
fv(Ih)S v − µvIv

)
≤

µv

f ′h(0)

(
fh(Iv)

Λh

µh
− (rh + u + µh)Ih

)
+

Λh

µh

(
fv(Ih)

Λv

µv
− µvIv

)
≤

µv

f ′h(0)

(
f ′h(0)Iv

Λh

µh
− (rh + u + µh)Ih

)
+

Λh

µh

(
f ′v (0)Ih

Λv

µv
− µvIv

)
≤

(
Λh

µh

Λv

µv
f ′v (0) −

µv

f ′h(0)
(rh + u + µh)

)
Ih

≤
µv(rh + u + µh)

f ′h(0)

(
ΛhΛv f ′h(0) f ′v (0)
µhµ2

v(rh + u + µh)
− 1

)
Ih

=
µv(rh + u + µh)

f ′h(0)
(R2

0 − 1)Ih.

(4.1)

If R0 ≤ 1, then
dU0

dt
≤ 0 for all S h, Ih,Rh, S v, Iv > 0. Let W0 =

{
(S h, Ih,Rh, S v, Iv) :

dU0

dt
= 0

}
. It

can be easily shown that W0 = {E0} . Applying LaSalle’s invariance principle [42] (see [43–45] for
other applications), we deduce that E0 is GAS when R0 ≤ 1. �
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Define the set

Ω =
{
(S h, Ih,Rh, S v, Iv) ∈ R5

+ : 0 < S h ≤ S ∗h, 0 < Ih ≤ I∗h, 0 < Rh ≤ R∗h, 0 < S v ≤ S ∗v, 0 < Iv ≤ I∗v
}
.

Theorem 4. By considering the dynamics (2.1), if R0 > 1, then the endemic equilibrium E∗ =

(S ∗h, I
∗
h,R

∗
h, S

∗
v, I
∗
v ) is globally asymptotically stable in Ω.

Proof. Define a function G(x) = x − 1 − ln x. Let a function U∗(S h, Ih,Rh, S v, Iv) be defined as:

U∗(S h, Ih,Rh, S v, Iv) =
1

fh(I∗v )
G

(
S h

S ∗h

)
+

I∗h
fh(I∗v )S ∗h

G
(

Ih

I∗h

)
+

1
2

(Rh − R∗h)2 +
1

fv(I∗h)
G

(
S v

S ∗v

)
+

I∗h
fv(I∗h)S ∗v

G
(

Iv

I∗v

)
.

Clearly, U∗(S h, Ih,Rh, S v, Iv) > 0 for all S h, Ih,Rh, S v, Iv > 0 and U∗(S ∗h, I
∗
h,R

∗
h, S

∗
v, I
∗
v ) = 0. Calculating

dU∗

dt
along the trajectories of (2.1), we obtain

dU∗

dt
=

1
fh(I∗v )S ∗h

(
1 −

S ∗h
S h

)
(Λh − fh(Iv)S h − µhS h) +

1
fh(I∗v )S ∗h

(
1 −

I∗h
Ih

)
( fh(Iv)S h − (rh + u + µh)Ih)

+(Rh − R∗h) ((rh + u)Ih − µhRh) +
1

fv(I∗h)S ∗v

(
1 −

S ∗v
S v

)
(Λv − fv(Ih)S v − µvS v)

+
I∗h

fv(I∗h)S ∗vI∗v

(
1 −

I∗v
Iv

)
( fv(Ih)S v − µvIv)

Applying the steady state conditions for E∗

Λh = fh(I∗v )S ∗h + µhS ∗h, (rh + u + µh)I∗h = fh(I∗v )S ∗h,Λv = fv(I∗h)S ∗v + µvS ∗v, µvI∗v = fv(I∗h)S ∗v,

we get

dU∗

dt
=

1
fh(I∗v )S ∗h

(
1 −

S ∗h
S h

) (
fh(I∗v )S ∗h + µhS ∗h − fh(Iv)S h − µhS h

)
+

1
fh(I∗v )S ∗h

(
1 −

I∗h
Ih

)
( fh(Iv)S h − (rh + u + µh)Ih) + (Rh − R∗h) ((rh + u)Ih − µhRh)

+
1

fv(I∗h)S ∗v

(
1 −

S ∗v
S v

) (
fv(I∗h)S ∗v + µvS ∗v − fv(Ih)S v − µvS v

)
+

I∗h
fv(I∗h)S ∗vI∗v

(
1 −

I∗v
Iv

)
( fv(Ih)S v − µvIv)

= −
µh

fh(I∗v )S ∗h

(S h − S ∗h)2

S h
+

1
fh(I∗v )S ∗h

(
1 −

S ∗h
S h

) (
fh(I∗v )S ∗h − fh(Iv)S h

)
+

1
fh(I∗v )S ∗h

(
1 −

I∗h
Ih

)
( fh(Iv)S h − (rh + u + µh)Ih) + (Rh − R∗h) ((rh + u)Ih − µhRh)

−
µv

fv(I∗h)S ∗v

(S v − S ∗v)2

S v
+

1
fv(I∗h)S ∗v

(
1 −

S ∗v
S v

) (
fv(I∗h)S ∗v − fv(Ih)S v

)
+

I∗h
fv(I∗h)S ∗vI∗v

(
1 −

I∗v
Iv

)
( fv(Ih)S v − µvIv)

= −
µh

fh(I∗v )S ∗h

(S h − S ∗h)2

S h
−

µv

fv(I∗h)S ∗v

(S v − S ∗v)2

S v
+

1
fh(I∗v )S ∗h

(1 −
S ∗h
S h

)
(

fh(I∗v )S ∗h − fh(Iv)S h

)
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7129

+
1

fh(I∗v )S ∗h

(
1 −

I∗h
Ih

) (
fh(Iv)S h − fh(I∗v )S ∗h

Ih

I∗h

)
+ (Rh − R∗h) ((rh + u)Ih − µhRh)

+
1

fv(I∗h)S ∗v

(
1 −

S ∗v
S v

) (
fv(I∗h)S ∗v − fv(Ih)S v

)
+

I∗h
fv(I∗h)S ∗vI∗v

(
1 −

I∗v
Iv

) (
fv(Ih)S v − fv(I∗h)S ∗v

Iv

I∗v

)

= −
µh

fh(I∗v )S ∗h

(S h − S ∗h)2

S h
−

µv

fv(I∗h)S ∗v

(S v − S ∗v)2

S v
+

(
1 −

S ∗h
S h

) (
1 −

fh(Iv)S h

fh(I∗v )S ∗h

)
+

(
1 −

I∗h
Ih

) (
fh(Iv)S h

fh(I∗v )S ∗h
−

Ih

I∗h

)
+ (Rh − R∗h)

(
(rh + u)(

Λh

µh
− S h − Rh) − µhRh

)
+

(
1 −

S ∗v
S v

) (
1 −

fv(Ih)S v

fv(I∗h)S ∗v

)
+

I∗h
I∗v

(
1 −

I∗v
Iv

) (
fv(Ih)S v

fv(I∗h)S ∗v
−

Iv

I∗v

)

= −
µh

fh(I∗v )S ∗h

(S h − S ∗h)2

S h
−

µv

fv(I∗h)S ∗v

(S v − S ∗v)2

S v
+

(
1 −

S ∗h
S h

) (
1 −

fh(Iv)S h

fh(I∗v )S ∗h

)
+

(
1 −

I∗h
Ih

) (
fh(Iv)S h

fh(I∗v )S ∗h
−

Ih

I∗h

)
+ (Rh − R∗h)

(
(rh + u)(S ∗h +

(rh + u + µh)
(rh + u)

R∗h − S h − Rh) − µhRh

)
+

(
1 −

S ∗v
S v

) (
1 −

fv(Ih)S v

fv(I∗h)S ∗v

)
+

I∗h
I∗v

(
1 −

I∗v
Iv

) (
fv(Ih)S v

fv(I∗h)S ∗v
−

Iv

I∗v

)

= −
µh

fh(I∗v )S ∗h

(S h − S ∗h)2

S h
−

µv

fv(I∗h)S ∗v

(S v − S ∗v)2

S v
+

(
1 −

S ∗h
S h

) (
1 −

fh(Iv)S h

fh(I∗v )S ∗h

)
+

(
1 −

I∗h
Ih

) (
fh(Iv)S h

fh(I∗v )S ∗h
−

Ih

I∗h

)
+ (Rh − R∗h)

(
(rh + u)(S ∗h − S h) + (rh + u + µh)(R∗h − Rh)

)
+

(
1 −

S ∗v
S v

) (
1 −

fv(Ih)S v

fv(I∗h)S ∗v

)
+

I∗h
I∗v

(
1 −

I∗v
Iv

) (
fv(Ih)S v

fv(I∗h)S ∗v
−

Iv

I∗v

)
.

Therefore,
dU∗

dt
≤ 0 for all S h, Ih,Rh, S v, Iv ∈ Ω and

dU∗

dt
= 0 if and only if

(S h, Ih,Rh, S v, Iv) = (S ∗h, I
∗
h,R

∗
h, S

∗
v, I
∗
v ) = 0. By applying the LaSalle’s invariance principle [42], one

can easily deduce that E∗ is globally stable (see [23–25] for other applications). �

5. Sensitivity analysis

Sensitivity analysis consists of identifying and quantifying the contribution of the input parameters
of the model to illness transmission [21, 46]. This type of analysis is particularly considered in the
context of a reliability study, the overall methodology for dealing with uncertainties or even in a robust
model. For the engineer responsible for reducing the variability of a quantity of interest, the sensitivity
analysis makes it possible to distinguish the modeling parameters that need to be better controlled. For
the numericalist, it allows a reduction in the numerical cost by a reduction in the number of parameters,
and therefore of the size of the model, by eliminating those that do not contribute to the variability of
the response. It is used regularly to determine the robustness of model predictions for parameter values
since the data collection can contain noises [21]. The variable sensitivity with respect to parameters
is generally measured by a sensitivity index which allow us to determine the relative change in a
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variable when once the parameter value changes. Thus, the importance of each parameter to the disease
transmission is fixed by the sensitivity analysis. In particular, we can discover parameters that have
a highest impact on the basic reproduction number R0. Since R0 is a differentiable function to some
parameters, the sensitivity index is calculated using partial derivatives. If the index is negative, then
the relationship is inversely proportional. However, if the sensitivity index is positive then an increase
in the value of a parameter imply an increase in the value of R0 [46].

Definition 1. (see [21, 47]). The sensitivity index of R0 with respect to a parameter ρ is defined by

YR0
ρ =

∂R0

∂ρ
×

ρ

|R0|
.

Proposition 1. The explicit expression of R0 is given by

R0 =

√
f ′h(0) f ′v (0)ΛhΛv

µ2
vµh(rh + u + µh)

The sensitivity indices of R0 with respect to the model parameters are given by Table 1:

Table 1. Sensitivity of R0 for the Parameter values.

Parameter Sensitivity index of R0 Sign

Λh YR0
Λh

=
∂R0

∂Λh
×

Λh

R0
=

1
2

+ve

Λv YR0
Λv

=
∂R0

∂Λv
×

Λv

R0
=

1
2

+ve

µv YR0
µv =

∂R0

∂µv
×
µv

R0
= −1 -ve

µh YR0
µh =

∂R0

∂µh
×
µh

R0
=
−(rh + u + 2µh)
2(rh + u + µh)

-ve

rh YR0
rh =

∂R0

∂rh
×

rh

R0
=

−rh

2(rh + u + µh)
-ve

u YR0
u =

∂R0

∂u
×

u
R0

=
−u

2(rh + u + µh)
-ve

Only the sensitivity indices of R0 with respect to Λh and Λv are positive. The other sensitivity
indices are negative. Note that the indices YR0

µh ,Y
R0
rh ,Y

R0
u and YR0 are not constant but depend on other

parameters. Note also that R0 is most sensitive to the recruitment rate of human population Λh and the
recruitment rate of mosquito population Λv. This means that an increase in one of the recruitment rates
increases the disease transmission in the human population.

From the Table 1, it is to be noted that the sensitivity indices of R0 with respect to the parameters Λh

and Λv are positive and hence an increase of the values of parameters Λh and Λv leads to an increase
of the value of R0. The sensitivity indices of R0 with respect of the remaining parameters µv, µh, rh and
u are negative and hence an increase of the values of parameters µv, µh, rh and u leads to a decrease of
the value of R0.

The sensitivity analysis can be confirmed by the Figure 1 where we presented the behaviour of
the basic reproduction number, R0, with respect to the model parameters. R0 increases only with the
parameters Λh and Λv, however it decreases with the remaining parameters µv, µh, rh and u.

AIMS Mathematics Volume 7, Issue 4, 7117–7142.



7131

0 500
0

0.5

1

1.5

0 500
0

0.5

1

1.5

0 5 10
0

20

40

60

0 10 20 30
0

5

10

15

0 500

0.2

0.3

0.4

0.5

0.6

0 200 400

0.2

0.3

0.4

0.5

0.6

Figure 1. Behaviour of R0 with respect to the model parameters.

6. Optimal strategy via treatment rate

Intuitively, one wonders how to act on transmission to control the epidemic. The theory of optimal
control (or optimal control) goes further by allowing this intensity of control to vary over time. We
therefore seek the best control value to use. In our case, we consider a time-varying treatment function
(u(t)).

Assume moreover that fh and fv are globally Lipschitz with an upper bound f̄h = sup
I>0

fh(I) and

f̄v = sup
I>0

fv(I), respectively and with Lipschitz constants Lh and Lv, respectively. The control set Pad is

Pad = {u(t) : 0 ≤ umin ≤ u(t) ≤ umax, 0 ≤ t ≤ T, u(t) is Lebesgue measurable}.

The aim is to find the best control u(t) and associated state variables S h(t), Ih(t), Rh(t), S v(t) and
Iv(t) to apply on the epidemic to minimize an objective functional:

J(u) =

∫ T

0

(
α1Ih(t) − α2Rh(t) +

α3

2
u2(t)

)
dt.

where α1, α2 and α3 are positive balancing constants. The goal is to optimise the number of infected
population, and maximize the number of recovered population while minimizing the cost of the treat-
ment control. If the strategy is to minimize the infected population and not be concerned with the cost,
one can take α3 = 0.

Existence and uniqueness

Since the system (2.1) is linear in the control u(t) with bounded states, we can use standard results
[48] to show the existence of the optimal control.
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For ϕ = (S h, Ih,Rh, S v, Iv)t, the model (2.1) can be modified in the simple form

ϕ̇ = Aϕ + F(ϕ) = K(ϕ) (6.1)

where A =


−µh 0 0 0 0

0 −(rh + u + µh+) 0 0 0
0 (rh + u) −µh 0 0
0 0 0 −µv 0
0 0 0 0 −µv


and F(ϕ) =


Λh − fh(Iv)S h

fh(Iv)S h

0
Λv − fv(Ih)S v

fv(Ih)S v


.

Proposition 2. The function K is continuous and uniformly Lipschitz.

Proof. We can easily prove that the function F is continuous and uniformly Lipschitz as follows∥∥∥F(ϕ1) − F(ϕ2)
∥∥∥

1
=

∣∣∣∣ − fh(Iv1)S h1 + fh(Iv2)S h2

∣∣∣∣ +
∣∣∣∣ fh(Iv1)S h1 − fh(Iv2)S h2

∣∣∣∣
+
∣∣∣∣ − fv(Ih1)S v1 + fv(Ih2)S v2

∣∣∣∣ +
∣∣∣∣ fv(Ih1)S v1 − fv(Ih2)S v2

∣∣∣∣
= 2

∣∣∣∣ fh(Iv1)S h1 − fh(Iv2)S h2

∣∣∣∣ + 2
∣∣∣∣ fv(Ih1)S v1 − fv(Ih2)S v2

∣∣∣∣
= 2

∣∣∣∣ fh(Iv1)
(
S h1 − S h2

)
+

(
fh(Iv1) − fh(Iv2)

)
S h2

∣∣∣∣
+2

∣∣∣∣ fv(Ih1)
(
S v1 − S v2

)
+

(
fv(Ih1) − fv(Ih2)

)
S v2

∣∣∣∣
≤ 2 fh(Iv1)

∣∣∣∣S h1 − S h2

∣∣∣∣ + 2
∣∣∣∣ fh(Iv1) − fh(Iv2)

∣∣∣∣S h2

+2 fv(Ih1)
∣∣∣∣S v1 − S v2

∣∣∣∣ + 2
∣∣∣∣ fv(Ih1) − fv(Ih2)

∣∣∣∣S v2

≤ 2 f̄h

∣∣∣∣S h1 − S h2

∣∣∣∣ + 2
LhΛh

µh

∣∣∣∣Iv1 − Iv2

∣∣∣∣
+2 f̄v

∣∣∣∣S v1 − S v2

∣∣∣∣ + 2
LvΛv

µv

∣∣∣∣Ih1 − Ih2

∣∣∣∣
≤ M

∥∥∥ϕ1 − ϕ2

∥∥∥
1

where M = 2 max( f̄h,
LhΛh

µh
, f̄v,

LvΛv

µv
). Since,∥∥∥Aϕ1 − Aϕ2

∥∥∥
1
≤

∥∥∥A
∥∥∥

1

∥∥∥ϕ1 − ϕ2

∥∥∥
1 (6.2)

where
∥∥∥A

∥∥∥
1

:= supX,0

∥∥∥AX
∥∥∥

1∥∥∥X
∥∥∥

1

is the norm of the matrix A subordinate to the vector norm
∥∥∥ ·∥∥∥

1
. Therefore

∥∥∥G(ϕ1) −G(ϕ2)
∥∥∥

1
≤ K

∥∥∥ϕ1 − ϕ2

∥∥∥
1
. (6.3)

Here K = max(M,
∥∥∥A

∥∥∥). Then the continuous functions F and G are uniformly Lipschitz. Therefore
the model (6.1) admits a unique solution. �

Now, we will derive some necessary conditions that permits to calculate optimal control and corre-
sponding states using Pontryagin’s Maximum Principle [48–50]. The Hamiltonian is

H = α1Ih − α2Rh +
α3

2
u2 + λ1Ṡ h + λ2 İh + λ3Ṙh + λ4Ṡ v + λ5 İv

= α1Ih − α2Rh +
α3

2
u2 + λ1(Λh − fh(Iv)S h − µhS h) + λ2( fh(Iv)S h − (rh + u + µh+)Ih)

+λ3((rh + u)Ih − µhRh) + λ4(Λv − fv(Ih)S v − µvS v) + λ5( fv(Ih)S v − µvIv).

(6.4)
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For a given optimal control u∗, there exist adjoint functions λ1, λ2, λ3, λ4 and λ5 corresponding to the
states S h, Ih,Rh, S v and Iv such that:



λ̇1 = −
∂H
∂S h

= λ1( fh(Iv) + µh) − λ2 fh(Iv),

λ̇2 = −
∂H
∂Ih

= −α1 + λ2(rh + u + µh+) − λ3(rh + u) + λ4 f ′v (Ih)S v − λ5 f ′v (Ih)S v,

λ̇3 = −
∂H
∂Rh

= α2 + λ3µh,

λ̇4 = −
∂H
∂S v

= λ4( fv(Ih) + µv) − λ5 fv(Ih),

λ̇5 = −
∂H
∂Iv

= λ1 f ′h(Iv)S h − λ2 f ′h(Iv)S h + λ5µv

(6.5)

where the final conditions are given by λ1(T ) = 0, λ2(T ) = 0, λ3(T ) = 0 , λ4(T ) = 0 and λ5(T ) = 0.
Note that the partial derivative of the Hamiltonian with respect to the control variable at u is given

by
∂H
∂u

= α3u + λ2Ih − λ3Ih. (6.6)

∂H
∂u

is linear with respect to the control u and
∂H
∂u

= 0 for

usingular(t) =
λ3 − λ2

α3
Ih

if
α3 , 0 and umin ≤

λ3 − λ2

α3
Ih ≤ umax.

Thus, the strategy is to choose the control u as following

if
∂H
∂u

< 0 at t, then u∗(t) = umax,

if
∂H
∂u

> 0 at t, then u∗(t) = umin,

if
∂H
∂u

= 0, then usingular(t) =
λ3 − λ2

α3
Ih.

7. Numerical simulations

In this section, we adopted the numerical simulations validating analytical findings. We consider

incidence rates of Michaelis-Menten type: fh(I) =
ahI

bh + I
and fv(I) =

avI
bv + I

where ah, bh, av and bv

are constants. fh and fv are continuous functions globally Lipschitz on R+ with Lipschitz constants
ah

bh
and

av

bv
, respectively. Their upper bounds are given by ah and av, respectively. For all numerical

simulations, we consider the same set of parametric values given by µh = 20, rh = 4, u = 5, µv = 10,
ah = 300, bh = 220, av = 60, bv = 40.
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7.1. Direct problem

For Λh = 300 and Λv = 150 then the reproduction number R0 = 2.94 > 1, and the solution
of the model (2.1) converges to the equilibrium E∗ (Figure 2). This validate the global stability of
E∗ = (S ∗h, I

∗
h,R

∗
h, S

∗
v, I
∗
v ) when R0 > 1.
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Figure 2. Behaviours for Λh = 300 and Λv = 150 then R0 ≈ 1.26 > 1.

For Λh = 120 and Λv = 40 then the reproduction number R0 = 0.41 < 1, and the solution of

the model (2.1) converges to the equilibrium E0 = (
Λh

µh
, 0, 0,

Λh

µh
, 0) = (6, 0, 0, 4, 0) (Figure 3). This

confirms the global stability of E0 = (
Λh

µh
, 0, 0,

Λh

µh
, 0) when R0 ≤ 1.
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Figure 3. Behaviours for Λh = 120 and Λv = 40 then R0 = 0.41 < 1.
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7.2. Control problem

Concerning the resolution of the control problem, we used a numerical scheme that improves the
Gauss-Seidel-like implicit finite-difference method where we applied a first-order backward-difference
for the adjoint variables (see Appendix 8 for more details and [18, 23–25] for other applications). We
used the same parameters as in the direct problem (2.1): µh = 20, rh = 4, µv = 10, ah = 300, bh = 220,
av = 60, bv = 40. Here u is a variable such that the initial condition u(0) = 1.5 and with bounds
umin = 0 and umax = 3.

In Figures 4, 5 and 6, the behaviours of S h(t), Ih(t),Rh(t), S v(t) and Iv(t) (right) and the adjoint states
are plotted with respect to time for different values of α1, α2 and α3.
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Figure 4. α1 = 0.01, α2 = 1, α3 = 1.
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Figure 5. α1 = 1, α2 = 1, α3 = 1.
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Figure 6. α1 = 1, α2 = 0.1, α3 = 1.

As we can see in Figures 4, 5 and 6, for the same parameters and initial conditions used for the
resolution of the direct problem, the number of uninfected individuals increases and the number of
infected individuals decreases which is the goal of the optimal strategy. This confirm that this strategy
is very efficient and effective in the control of the number of infected individuals.

8. Conclusions

We considered a 5D dynamical system modelling Zika virus dynamics in a human population with
two general nonlinear saturated incidence rates. We take into account a treatment for the human popu-
lation. We analysed the mathematical model in terms of local and global stability. We deduced that the
endemic equilibrium point is globally asymptotically stable once R0 > 1 and the disease-free equilib-
rium point is globally asymptotically stable once R0 ≤ 1. We studied the sensitivity of the model to all
the parameters. An optimal strategy relative to this epidemic model based on the given treatment was
considered. Finally, some numerical simulations were proposed to validate the obtained results.

The simplicity of the compartmental models makes it easy to compute, but also likely oversimpli-
fies complex disease processes. This explain the limitations of compartmental models. In fact, these
models assume that the population is homogeneously mixed, however, it is more realistic to consider
heterogeneous number of contacts for each individual, i.e., network epidemic models [51]. Other open
questions related to the limitations of compartmental models are also of great interest, those who deal
with the role of time-delay and the role of intrinsic fluctuations.

Appendix

Adapted numerical scheme for solving the control problem

Let subdivide the interval of time [0,T ] such that [0,T ] = ∪N−1
n=0 [tn, tn+1], tn = n dt, dt = T/N.

Let S n
h, I

n
h ,R

n
h, S

n
v , I

n
v , λ

n
1, λ

n
2, λ

n
3, λ

n
4, λ

n
5 and un be an approximation of S h(t), Ih(t),Rh(t), S v(t), Iv(t), λ1(t),
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λ2(t), λ3(t), λ4(t), λ5(t) and the control u(t) at the time tn. S 0
h, I

0
h ,R

0
h, S

0
v , I

0
v , λ0

1, λ
0
2, λ

0
3, λ

0
4, λ

0
5 and u0

as the initial values of the state variables, the adjoint variables and the control. S N
h , I

N
h ,R

N
h , S

N
v , I

N
v ,

λN
1 , λ

N
2 , λ

N
3 , λ

N
4 , λ

N
5 and uN as the final values of the state variables, the adjoint variables and the control.

Concerning the resolution of the control problem, we used a numerical scheme that improves the
Gauss-Seidel-like implicit finite-difference method where we applied a first-order backward-difference
for the adjoint variables



S n+1
h − S n

h

dt
= Λh − fh(In

v )S n+1
h − µhS n+1

h ,

In+1
h − In

h

dt
= fh(In

v )S n+1
h − (rh + un + µh)In+1

h ,

Rn+1
h − Rn

h

dt
= (rh + un)In+1

h − µhRn+1
h ,

S n+1
v − S n

v

dt
= Λv − fv(In+1

h )S n+1
v − µvS n+1

v ,

In+1
v − In

v

dt
= fv(In+1

h )S n+1
v − µvIn+1

v ,

λN−n
1 − λN−n−1

1

dt
= λN−n−1

1 ( fh(In+1
v ) + µh) − λN−n

2 fh(In+1
v ),

λN−n
2 − λN−n−1

2

dt
= −α1 + λN−n−1

2 (rh + un + µh) − λN−n
3 (rh + un) + λN−n

4 f ′v (In+1
h )S n+1

v − λN−n
5 f ′v (In+1

h )S n+1
v ,

λN−n
3 − λN−n−1

3

dt
= α2 + λN−n−1

3 µh,

λN−n
4 − λN−n−1

4

dt
= λN−n−1

4 ( fv(In+1
h ) + µv) − λN−n

5 fv(In+1
h ),

λN−n
5 − λN−n−1

5

dt
= λN−n−1

1 f ′h(In+1
v )S n+1

h − λN−n−1
2 f ′h(In+1

v )S n+1
h + λN−n−1

5 µv.

Then the explicit expressions will take the following form
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Algorithm 1: Optimal control resolution.

S 0
h ← S h(0), I0

h ← Ih(0),R0
h ← Rh(0), S 0

v ← S v(0), I0
v ← Iv(0), λN

1 ← 0, λN
2 ← 0, λN

3 ← 0,
λN

4 ← 0, λN
5 ← 0, u0 ← u(0),

for n = 0 to N − 1 do

S n+1
h ←

S n
h + dtΛh

1 + dt( fh(In
v ) + µh)

,

In+1
h ←

In
h + dt fh(In

v )S n+1
h

1 + dt(rh + un + µh)
,

Rn+1
h ←

Rn
h + dt(rh + un)In+1

h

1 + dtµh
,

S n+1
v ←

S n
v + dtΛv

1 + dt( fv(In+1
h ) + µv)

,

In+1
v ←

In
v + dt fv(In+1

h )S n+1
v

1 + dtµv
,

λN−n−1
1 ←

λN−n
1 + dtλN−n

2 fh(In+1
v )

1 + dt( fh(In+1
v ) + µh)

,

λN−n−1
2 =

λN−n
2 + dt(α1 + λN−n

3 (rh + un) − λN−n
4 f ′v (In+1

h )S n+1
v + λN−n

5 f ′v (In+1
h )S n+1

v )
1 + dt(rh + un + µh)

,

λN−n−1
3 =

λN−n
3 − dtα2

1 + dtµh
,

λN−n−1
4 =

λN−n
4 + dtλN−n

5 fv(In+1
h )

1 + dt( fv(In+1
h ) + µv)

,

λN−n−1
5 =

λN−n
5 + dt(λN−n−1

2 − λN−n−1
1 ) f ′h(In+1

v )S n+1
h

1 + dtµv
,

un+1 ← max
(
min

(
λN−n−1

3 − λN−n−1
2

α3
In+1
h , umax

)
, umin

)
.

Conflict of interest

The authors declare no conflict of interests.

Acknowledgements

This Project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz Univer-
sity, Jeddah, Saudi Arabia under grant no. (G: 119-130-1442). The authors, therefore, acknowledge
with thanks DSR for technical and financial support.

The authors are also grateful to the unknown referees for many constructive suggestions, which
helped to improve the presentation of the paper.

AIMS Mathematics Volume 7, Issue 4, 7117–7142.



7139

References

1. E. B. Hayes, Zika virus outside Africa, Emerg. Infect. Dis., 15 (2009), 1347–1350.
https://doi.org/10.3201/eid1509.090442

2. M. R. Duffy, T. H. Chen, W. T. Hancock, A. M. Powers, J. L. Kool, R. S. Lanciotti, et al., Zika virus
outbreak on Yap Island, Federated States of Micronesia, N. Engl. J. Med., 360 (2009), 2536–2543.
https://doi.org/10.1056/NEJMoa0805715

3. V. M. Cao-Lormeau, C. Roche, A. Teissier, E. Robin, A. L. Berry, H. P. Mallet, et al., Zika
virus, French polynesia, South pacific, 2013, Emerg. Infect. Dis., 20 (2014), 1085–1086.
https://doi.org/10.3201/eid2006.140138

4. A. Roth, A. Mercier, C. Lepers, D. Hoy, S. Duituturaga, E. Benyon, et al. Concurrent outbreaks
of dengue, chikungunya and Zika virus infections-an unprecedented epidemic wave of mosquito-
borne viruses in the Pacific 2012–2014, Euro. Surveill., 2014. https://doi.org/10.2807/1560-
7917.ES2014.19.41.20929

5. G. S. Campos, A. C. Bandeira, S. I. Sardi, Zika virus outbreak, Bahia, Brazil, Emerg. Infect. Dis.,
21 (2015), 1885–1886. https://doi.org/10.3201/eid2110.150847

6. D. Musso, Zika virus transmission from French Polynesia to Brazil, Emerg. Infect. Dis., 21 (2015),
1887. https://doi.org/10.3201/eid2110.151125

7. N. Gupta, S. Srivastava, A. Jain, U. Chaturvedi, Dengue in india, Indian J. medical research, 136
(2012), 3:373–390.

8. L. Laura, A. K. Supriatna, M. S. Khumaeroh, N. Anggriani, Biological and mechan-
ical transmission models of dengue fever, Commun. Biomath. Sci., 2 (2019), 12–22.
https://doi.org/10.5614/cbms.2019.2.1.2

9. E. Camacho, M. Paternina-Gomez, P. J. Blanco, J. E. Osorio, M. T. Aliota, Detection of au-
tochthonous Zika virus transmission in Sincelejo, Colombia, Emerg. Infect. Dis., 22 (2016), 927–
929. https://doi.org/10.3201/eid2205.160023

10. H. Nishiura, R. Kinoshita, K. Mizumoto, Y. Yasuda, K. Nah, Transmission potential
of Zika virus infection in the South Pacific, Int. J. Infect. Dis., 45 (2016), 95–97.
https://doi.org/10.1016/j.ijid.2016.02.017

11. J. C. Koella, R. Antia, Epidemiological models for the spread of anti-malarial resistance, Malar. J.,
2 (2003). https://doi.org/10.1186/1475-2875-2-3

12. L. Esteva, C. Vargas, Analysis of a dengue disease transmission model, Math. Biosci., 150 (1998)
2:131–151, 1998. https://doi.org/10.1016/s0025-5564(98)10003-2

13. L. Esteva, C. Vargas, A model for dengue disease with variable human population, J. Math. Biol.,
38 (1999), 220–240. https://doi.org/10.1007/s002850050147

14. L. Esteva, C. Vargas, Coexistence of different serotypes of dengue virus, J. Math. Biol., 46 (2003),
31–47. https://doi.org/10.1007/s00285-002-0168-4

15. I. I. Bogoch, O. J. Brady, M. U. Kraemer, M. German, M. I. Creatore, M. A. Kulkarni, et al.,
Anticipating the international spread of Zika virus from Brazil, Lancet, 387 (2016), 335–336.
https://doi.org/10.1016/S0140-6736(16)00080-5

AIMS Mathematics Volume 7, Issue 4, 7117–7142.

http://dx.doi.org/https://doi.org/10.3201/eid1509.090442
http://dx.doi.org/https://doi.org/10.1056/NEJMoa0805715
http://dx.doi.org/ https://doi.org/10.3201/eid2006.140138
http://dx.doi.org/ https://doi.org/10.3201/eid2006.140138
http://dx.doi.org/https://doi.org/10.2807/1560-7917.ES2014.19.41.20929
http://dx.doi.org/https://doi.org/10.2807/1560-7917.ES2014.19.41.20929
http://dx.doi.org/ https://doi.org/10.3201/eid2110.150847
http://dx.doi.org/https://doi.org/10.3201/eid2110.151125
http://dx.doi.org/https://doi.org/10.5614/cbms.2019.2.1.2
http://dx.doi.org/https://doi.org/10.3201/eid2205.160023
http://dx.doi.org/https://doi.org/10.1016/j.ijid.2016.02.017
http://dx.doi.org/https://doi.org/10.1186/1475-2875-2-3
http://dx.doi.org/https://doi.org/10.1016/s0025-5564(98)10003-2
http://dx.doi.org/https://doi.org/10.1007/s002850050147
http://dx.doi.org/https://doi.org/10.1007/s00285-002-0168-4
http://dx.doi.org/https://doi.org/10.1016/S0140-6736(16)00080-5


7140

16. L. Schuler-Faccini, E. M. Ribeiro, I. M. L. Feitosa, D. D. G. Horovitz, D. P. Cavalcanti, A. Pessoa,
et al., Possible association between Zika virus infection and microcephaly-Brazil, 2015, MMWR
Morb. Mortal Wkly Rep., 65 (2016), 59–62. https://doi.org/10.15585/mmwr.mm6503e2

17. E. Oehler, L. Watrin, P. Larre, I. Leparc-Goffart, S. Lastere, F. Valour, et al., Zika virus infection
complicated by Guillain-Barre syndrome-–case report, French Polynesia, December 2013, Euro
Surveill., 2014. https://doi.org/10.2807/1560-7917.ES2014.19.9.20720

18. S. Alsahafi, S. Woodcock, Mathematical Study for Chikungunya Virus with Nonlinear General
Incidence Rate, Mathematics, 9 (2021), 2186. https://doi.org/10.3390/math9182186

19. S. Alsahafi, S. Woodcock, Mutual inhibition in presence of a virus in continuous culture, Math.
Biosci. Eng., 18 (2021), 3258–3273. https://doi.org/10.3934/mbe.2021162

20. S. Alsahafi, S. Woodcock, Local Analysis for a Mutual Inhibition in Presence of Two Viruses in a
Chemostat, Nonlinear Dyn. Syst. Theory, 21 (2021), 337–359.

21. N. Chitnis, J. M. Hyman, J. M. Cushing, Determining important parameters in the spread of malaria
through the sensitivity analysis of a mathematical model, Bull. Math. Biol., 70 (2008), 1272–1296.
https://doi.org/10.1007/s11538-008-9299-0

22. M. El Hajji, A. H. Albargi, A mathematical investigation of an ”SVEIR” epidemic
model for the Measles transmission, Math. Biosc. Eng., 19 (2022), 2853–2875.
https://doi.org/10.3934/mbe.2022131

23. M. El Hajji, Modelling and optimal control for Chikungunya disease, Theory Biosci., 140 (2021),
27–44. https://doi.org/10.1007/s12064-020-00324-4

24. M. El Hajji, A. Zaghdani, S. Sayari, Mathematical analysis and optimal control for Chikungunya
virus with two routes of infection with nonlinear incidence rate, Int. J. Biomath., (2021), 2150088.
https://doi.org/10.1142/S1793524521500881

25. M. El Hajji, S. Sayari, A. Zaghdani, Mathematical analysis of an ”SIR” epidemic model in a
continuous reactor-deterministic and probabilistic approaches, J. Korean Math. Soc., 58 (2021),
45–67. https://doi.org/10.4134/JKMS.j190788

26. A. K. Chakraborty, M. A. Haque, M. A. Islam, Mathematical modelling and analysis of dengue
transmission in Bangladesh with saturated incidence rate and constant treatment, Commun.
Biomath. Sci., 3 (2020), 101–113. https://doi.org/10.5614/cbms.2020.3.2.2

27. N. K. Goswami, B. Shanmukha, Stability and optimal control analysis of Zika virus with saturated
incidence rate, Malaya J. Matematik, 8 (2020), 331–342. https://doi.org/10.26637/MJM0802/0004

28. E. Bonyah, K. O. Okosun, Mathematical modeling of Zika viru, Asian Pac. J. Trop. Dis., 6 (2016),
673–679. https://doi.org/10.1016/S2222-1808(16)61108-8

29. Y. Dumont, F. Chiroleu, Vector control for the Chikungunya disease, Math. Biosci. Eng., 7 (2010),
313–345. https://doi.org/10.3934/mbe.2010.7.313

30. Y. Dumont, F. Chiroleu, C. Domerg, On a temporal model for the Chikungunya disease: Modeling,
theory and numerics, Math. Biosc., 213 (2008), 80–91. https://doi.org/10.1016/j.mbs.2008.02.008

31. M. El Hajji, Boundedness and asymptotic stability of nonlinear Volterra integro-differential
equations using Lyapunov functional, J. King Saud Univ. Sci., 31 (2019), 1516–1521.
https://doi.org/10.1016/j.jksus.2018.11.012

AIMS Mathematics Volume 7, Issue 4, 7117–7142.

http://dx.doi.org/https://doi.org/10.15585/mmwr.mm6503e2
http://dx.doi.org/https://doi.org/10.2807/1560-7917.ES2014.19.9.20720
http://dx.doi.org/https://doi.org/10.3390/math9182186
http://dx.doi.org/https://doi.org/10.3934/mbe.2021162
http://dx.doi.org/https://doi.org/10.1007/s11538-008-9299-0
http://dx.doi.org/https://doi.org/10.3934/mbe.2022131
http://dx.doi.org/https://doi.org/10.1007/s12064-020-00324-4
http://dx.doi.org/https://doi.org/10.1142/S1793524521500881
http://dx.doi.org/https://doi.org/10.4134/JKMS.j190788
http://dx.doi.org/https://doi.org/10.5614/cbms.2020.3.2.2
http://dx.doi.org/https://doi.org/10.26637/MJM0802/0004
http://dx.doi.org/https://doi.org/10.1016/S2222-1808(16)61108-8
http://dx.doi.org/https://doi.org/10.3934/mbe.2010.7.313
http://dx.doi.org/https://doi.org/10.1016/j.mbs.2008.02.008
http://dx.doi.org/https://doi.org/10.1016/j.jksus.2018.11.012


7141

32. Z. Feng, V. Hernandez, Competitive exclusion in a vector-host model for the dengue fever, J. Math.
Bio., 35 (1997), 523–544. https://doi.org/10.1007/s002850050064

33. A. Tran, M. Raffy, On the dynamics of dengue epidemics from large-scale information, Theor.
Popul. Biol., 69 (2006), 3–12. https://doi.org/10.1016/j.tpb.2005.06.008

34. P. Agarwal, J. J. Nieto, M. Ruzhansky, D. F. M. Torres, Analysis of Infectious Disease Prob-
lems (Covid-19) and Their Global Impact, Infosys Science Foundation Series. Springer, Singapore,
2021.

35. M. Derouich, A. Boutayeb, E. H. Twizell, A model of dengue fever, Bio-Medical Eng., 2 (2003),
4. https://doi.org/10.1186/1475-925x-2-4

36. M. Derouich, A. Boutayeb, Dengue fever: Mathematical modelling and computer simulation, App.
Math. Comput., 177 (2006), 528–544. https://doi.org/10.1016/j.amc.2005.11.031

37. H. M. Yang, C. P. Ferreira, Assessing the effects of vector control on dengue transmission, App.
Math. Comput., 198 (2008), 401–413. https://doi.org/10.1016/j.amc.2007.08.046

38. Y. Wang, J. Cao, Global stability of general cholera models with nonlinear incidence and removal
rates, J. Franklin Institute, 352 (2015), 2464–2485. https://doi.org/10.1016/j.jfranklin.2015.03.030

39. J. D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications, 2Eds,
Biomath. Texts, 19 (1980), Springer, Berlin. https://link.springer.com/book/10.1007/
b98869

40. P. Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilib-
ria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48.
https://doi.org/10.1016/S0025-5564(02)00108-6

41. O. Diekmann, J. Heesterbeek, On the Definition and the computation of the basic reproduction
ratio R0 in models for infectious diseases in heterogeneous populations, J. Math. Bio., 28 (1990),
365–382. https://doi.org/10.1007/BF00178324

42. J. P. LaSalle, The Stability of Dynamical Systems, SIAM, 1976.
https://doi.org/10.1137/1.9781611970432

43. M. El Hajji, How can inter-specific interferences explain coexistence or confirm the
competitive exclusion principle in a chemostat, Int. J. Biomath., 11 (2018), 1850111.
https://doi.org/10.1142/S1793524518501115

44. M. El Hajji, N. Chorfi, M. Jleli, Mathematical modelling and analysis for a three-tiered microbial
food web in a chemostat, Electron. J. Diff. Eqns., 2017 (2017), 1–13. http://ejde.math.txstate.edu

45. M. El Hajji, N. Chorfi, M. Jleli, Mathematical model for a membrane bioreactor process, Electron.
J. Diff. Eqns., 2015 (2015), 1–7. http://ejde.math.txstate.edu

46. H. S. Rodrigues, M. Teresa, T. Monteiro, D. F. M. Torres, Sensitivity Analysis in a Dengue Epi-
demiological Model, Hindawi Publishing Corporation Conference Papers in Mathematics, 2013,
721406. https://doi.org/10.1155/2013/721406

47. C. J. Silva, D. F. M. Torres, Optimal control for a tuberculosis model with re-
infection and post-exposure interventions, Math. Biosc., 244 (2013), 154–164.
https://doi.org/10.1016/j.mbs.2013.05.005

AIMS Mathematics Volume 7, Issue 4, 7117–7142.

http://dx.doi.org/https://doi.org/10.1007/s002850050064
http://dx.doi.org/https://doi.org/10.1016/j.tpb.2005.06.008
http://dx.doi.org/https://doi.org/10.1186/1475-925x-2-4
http://dx.doi.org/https://doi.org/10.1016/j.amc.2005.11.031
http://dx.doi.org/https://doi.org/10.1016/j.amc.2007.08.046
http://dx.doi.org/https://doi.org/10.1016/j.jfranklin.2015.03.030
https://link.springer.com/book/10.1007/b98869
https://link.springer.com/book/10.1007/b98869
http://dx.doi.org/https://doi.org/10.1016/S0025-5564(02)00108-6
http://dx.doi.org/https://doi.org/10.1007/BF00178324
http://dx.doi.org/https://doi.org/10.1137/1.9781611970432
http://dx.doi.org/https://doi.org/10.1142/S1793524518501115
http://dx.doi.org/http://ejde.math.txstate.edu
http://dx.doi.org/http://ejde.math.txstate.edu
http://dx.doi.org/https://doi.org/10.1155/2013/721406
http://dx.doi.org/https://doi.org/10.1016/j.mbs.2013.05.005


7142

48. W. H. Fleming, R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer Verlag, New
York, 1975. https://link.springer.com/book/10.1007/978-1-4612-6380-7

49. S. Lenhart, J. T. Workman, Optimal Control Applied to Biological Models, Chapman and Hall,
2007.

50. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko, The mathematical theory
of optimal processes, Wiley, New York, 1962.

51. Y. Wang, J. D. Cao, Final size of network epidemic models: properties and connections, Sci. China
In. Sci., 64 (2021), 179201. https://doi.org/10.1007/s11432-019-2656-2

© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 7, Issue 4, 7117–7142.

http://dx.doi.org/https://link.springer.com/book/10.1007/978-1-4612-6380-7
http://dx.doi.org/https://doi.org/10.1007/s11432-019-2656-2
http://creativecommons.org/licenses/by/4.0

	Introduction
	Nonlinear Zika virus dynamics model
	Basic properties
	Steady states: Existence and uniqueness

	Local stability of steady states
	Global properties of steady states
	Sensitivity analysis
	Optimal strategy via treatment rate
	Numerical simulations
	Direct problem
	Control problem

	Conclusions

