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1. Background materials

Many physical processes appear to exhibit fractional order behavior that may vary with time or
space. The continuum of order in the fractional calculus allows the order of the fractional operator to
be considered as a variable, see [1–4]. The fractional calculus has allowed to formulate the operations
of integration and differentiation to for fractional order. The order may take on any real or imaginary
value. This fact enables us to consider the order of the fractional integrals and derivatives to be a
function of time or of some other variable.

Recently, many authors have addressed differential equations with fractional derivatives for a
different category of problems. FDEs arise in various engineering and scientific areas, where they are
found in the mathematical modeling of systems and processes in the specialists of aerodynamics and
electrodynamics of complex medium, physics, biophysics, chemistry, economics, blood flow
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phenomena, quantum theory, signal and image processing, polymer functional science, see, for
example [5–9].

It should be noted that FDEs are better prepared to depict the genetic characteristics of different
materials and processes than proper differential equations. Based on this advantage, fractional
differential models become more realistic, practical and precise in obtaining the objective of classical
models in differential. For better understanding of some real world problems, some researchers
suggested recently discovered fractional operators. Among these operators, we mention the ones
considered in [10–21].

Fixed point theory (FPT) is an important pillar of non-linear analysis due to its many applications
in various mathematical disciplines. The fixed-point style shined after Banach launched his famous
principle, known as the Banach contraction principle. It is mainly involved in fractional differential
equations by which the existence and uniqueness of solutions of many differential and integral
equations with initial and boundary stipulations can be studied. For more details, see [22–27].

One of the most important theorem of nonlinear functional analysis is the Leray-Schauder
alternative, proved in 1934 by the topological degree [28]. A lot of authors proved several kinds of
Leray-Schauder type alternatives by different methods, not based on topological degree and applied
this methodology in many applications to ordinary differential equations, for more details,
see [29, 30].

Similar to earlier, by the standard fixed-point principle and Leray-Schauder alternative, the existence
and unique solutions for a tripled system of FDEs via R-L integral boundary stipulations of different
order are studied. The system takes the form:

cDω
0+a(s) = X(s, a(s), b(s), c(s)), 0 ≤ s ≤ 1,

cDκ0+b(s) = Y(s, a(s), b(s), c(s)), 0 ≤ s ≤ 1,
cD%

0+c(s) = Z(s, a(s), b(s), c(s)), 0 ≤ s ≤ 1,
a(0) = ρIea(η) = ρ

∫ η

0
(η−~)e−1

Γ(e) a(~)d~, η ∈ (0, 1),

b(0) = σI f b(θ) = σ
∫ θ

0
(θ−~) f−1

Γ( f ) b(~)d~, θ ∈ (0, 1),

c(0) = ςIgc(ϑ) = ς
∫ ϑ

0
(ϑ−~)g−1

Γ(g) c(~)d~, ϑ ∈ (0, 1),

(1.1)

where cDω
0+ , cDκ0+ and cD%

0+ represent the Caputo Fractional Differentials (CFDs), 0 < ω, κ, % ≤ 1,
X,Y,Z ∈ C

(
[0, 1] × R3,R

)
, and ρ, σ, ς, e, f , g ∈ R. Ultimately, an example to support the results is

given. Further, classical derivatives are in local nature, i.e., using classical derivatives we can describe
changes in a neighborhood of a point but using fractional derivatives (our system) we can describe
changes in an interval. Namely, the fractional derivative is in non-local nature. This property makes
these derivatives suitable to simulate more physical phenomena such as earthquake vibrations,
polymers, etc. Moreover, it is explain time delay and some fractal properties. Therefore, the search
for solutions to these systems has received great attention from researchers.

2. Fundamental facts

Assume that Ξ =
{
a(s) : a(s) ∈ C1([0, 1])

}
is equipped with ‖a‖ = maxs∈[0,1] {|a(s)|} . Clearly (Ξ, ‖.‖)

is a Banach space (BS).
Again, let Λ =

{
b(s) : b(s) ∈ C1([0, 1])

}
be endowed with ‖b‖ = maxs∈[0,1]{|b(s)|}. It is clear that the

product (Ξ × Λ, ‖(a, b)‖) is also a BS with ‖(a, b)‖ = ‖a‖ + ‖b‖ .
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Also, consider ℘ =
{
c(s) : c(s) ∈ C1([0, 1])

}
under the norm ‖c‖ = maxs∈[0,1]{|c(s)|}. Then (Ξ × Λ ×

℘, ‖(a, b, c)‖) is a BS too with ‖(a, b, c)‖ = ‖a‖ + ‖b‖ + ‖c‖ .
The following definitions and lemmas are follows immediately from [5, 8].

Definition 2.1. The standard CFD of order f for continuously differentiable function L : [0,∞) → R
is described by

cD f L(s) =
1

Γ(n − f )

s∫
0

(s − ~)n− f−1Ln(~)d~, n − 1 < f < n, n = [ f ] + 1,

where [ f ] represents the integer part of the real number f .

Definition 2.2. The R-L fractional integral of order f is described by

I f L(s) =
1

Γ( f )

s∫
0

L(~)
(s − ~)1− f d~, f > 0,

provided the integral exists.

The lemmas below illustrate some properties of CFDs and R-L fractional integrals [5].

Lemma 2.3. Suppose that f , g ≥ 0, X ∈ L1[a, b]. Then I f IgX(s) = I f +gX(s) and cD f I f X(s) = X(s),
∀s ∈ [0, 1].

Lemma 2.4. Assume that κ > ω > 0, X ∈ L1[a, b]. Then cDωIκX(s) = Iκ−ω(s), ∀s ∈ [0, 1].

Lemma 2.5. Let ρ , Γ(1+e)
ηe , then for X ∈ C([0, 1],R) be a given function, the solution of the FDE

cDωl(s) = X(s), ω ∈ (0, 1],

under the boundary stipulation

l(0) = ρIel(η) = ρ

∫ η

0

(η − ~)e−1

Γ(e)
l(~)d~, η ∈ (0, 1),

is constructed by

l(s) =
1

Γ(ω)

∫ s

0
(s − ~)ω−1 X(~)d~ +

ρΓ (1 + e)
Γ (1 + e) − ρηω

∫ η

0

(η − ~)e+ω−1

Γ (ω + e)
X(~)d~, s ∈ [0, 1].

3. Main theorems

We will start our results with the following assumptions:

A1 =
1

Γ (ω + 1)
+

|ρ| ηe+ωΓ (1 + e)
Γ (e + ω + 1) |Γ (1 + e) − ρηe|

, (3.1)

A2 =
1

Γ (κ + 1)
+

|σ| θ f +κΓ (1 + f )

Γ ( f + κ + 1)
∣∣∣Γ (1 + f ) − σθ f

∣∣∣ , (3.2)
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A3 =
1

Γ (% + 1)
+

|ς|ϑg+%Γ (1 + g)
Γ (g + % + 1) |Γ (1 + g) − ςϑg|

, (3.3)

and

A0 = min


1 − (A1α1 + A2β1 + A3γ1) ,
1 − (A1α2 + A2β2 + A3γ2) ,
1 − (A1α3 + A2β3 + A3γ3)

 , (3.4)

where αi, βi, γi ≥ 0, (i = 1, 2, 3).
Assume that Ω : Ξ × Λ × ℘→ Ξ × Λ × ℘ be an operator described by:

Ω (a, b, c) (s)

=


Ω1 (a, b, c) (s)
Ω2 (a, b, c) (s)
Ω3 (a, b, c) (s)


=


1

Γ(ω)

∫ s

0
(s − ~)ω−1 X(~, a(~), b(~), c(~))d~ +

ρΓ(1+e)
Γ(1+e)−ρηω

∫ η

0
(η−~)e+ω−1

Γ(ω+e) X(~, a(~), b(~), c(~))d~
1

Γ(κ)

∫ s

0
(s − ~)κ−1 Y(~, a(~), b(~), c(~))d~ +

σΓ(1+ f )
Γ(1+ f )−σθκ

∫ θ

0
(θ−~) f +κ−1

Γ(κ+ f ) Y(~, a(~), b(~), c(~))d~
1

Γ(%)

∫ s

0
(s − ~)%−1 Z(~, a(~), b(~), c(~))d~ +

ςΓ(1+g)
Γ(1+g)−ςϑ%

∫ ϑ

0
(ϑ−~)g+%−1

Γ(%+g) Z(~, a(~), b(~), c(~))d~

 .
The results of this part are based on two rules: The first rule based on Leray-Schauder alternative.

Lemma 3.1. [31] Assume that∇ is a normed linear spaces and the mapping ϕ : ∇ → ∇ is a completely
continuous mapping if

f(ϕ) = {δ ∈ ∇ : δ = βϕ(δ), for some β ∈ (0, 1)} .

Then either f(ϕ) is at the boundary, or ϕ has at least one fixed point.

Theorem 3.2. Assume that ρ , Γ(1+e)
ηe , σ , Γ(1+ f )

θ f and ς , Γ(1+g)
ϑg . Suppose that there are real constants

αi, βi, γi ≥ 0 (i = 1, 2, 3) and α0 > 0, β0 > 0, γ0 > 0 so that for each δi ∈ R (i = 1, 2, 3), we get

|X(s, δ1, δ2, δ3)| ≤ α0 + α1 |δ1| + α2 |δ2| + α3 |δ3| ,

|Y(s, δ1, δ2, δ3)| ≤ β0 + β1 |δ1| + β2 |δ2| + β3 |δ3| ,

and
|Z(s, δ1, δ2, δ3)| ≤ γ0 + γ1 |δ1| + γ2 |δ2| + γ3 |δ3| .

Furthermore, suppose

A1α1 + A2β1 + A3γ1 < 1, A1α2 + A2β2 + A3γ2 < 1 and A1α3 + A2β3 + A3γ3 < 1,

where A1–A3 are described in (3.1)–(3.3). Then the boundary value problem (BVP) (1.1) has at least
one solution.

Proof. In the beginning, it must be proved the completely continuous for Ω : Ξ ×Λ × ℘→ Ξ ×Λ × ℘.
Because the functions X,Y and Z are continuous, then Ω is continuous too. Suppose that ψ ⊂ Ξ×Λ×℘

is a bounded set, then there exists positive coefficients `1, `2 and `3 so that, for all (a, b, c) ∈ ψ.

|X(s, a(s), b(s), c(s))| ≤ `1, |Y(s, a(s), b(s), c(s))| ≤ `2 and |Z(s, a(s), b(s), c(s))| ≤ `3.
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Then for any (a, b, c) ∈ ψ, we can get

|Ω1 (a, b, c) (s)| ≤
1

Γ(ω)

∫ s

0
(s − ~)ω−1

|X(~, a(~), b(~), c(~))| d~

+
|ρ|Γ (1 + e)
|Γ (1 + e) − ρηω|

∫ η

0

(η − ~)e+ω−1

Γ (ω + e)
|X(~, a(~), b(~), c(~))| d~

≤ `1

[
1

Γ(ω + 1)
+

|ρ|Γ (1 + e)
Γ (ω + e + 1) |Γ (1 + e) − ρηω|

]
= `1A1. (3.5)

Similarly, one can obtain that

|Ω2 (a, b, c) (s)| ≤ `2

 1
Γ (κ + 1)

+
|σ| θ f +κΓ (1 + f )

Γ ( f + κ + 1)
∣∣∣Γ (1 + f ) − σθ f

∣∣∣
 = `2A2, (3.6)

and

|Ω3 (a, b, c) (s)| ≤ `3

[
1

Γ (% + 1)
+

|ς|ϑg+%Γ (1 + g)
Γ (g + % + 1) |Γ (1 + g) − ςϑg|

]
= `3A3. (3.7)

It follows from (3.5)–(3.7) that Ω is uniformly bounded.
Thereafter, we prove that Ω is equi-continuous. Consider 0 ≤ s1 ≤ s2 ≤ 1, so, we get

|Ω1 (a (s2) , b (s2) , c (s2)) −Ω1 (a (s1) , b (s1) , c (s1))|

≤

∣∣∣∣∣∣
∫ s2

0

(s2 − ~)ω−1

Γ(ω)
X(~, a(~), b(~), c(~))d~ −

∫ s1

0

(s1 − ~)ω−1

Γ(ω)
X(~, a(~), b(~), c(~))d~

∣∣∣∣∣∣
≤

`1

Γ(ω)

∣∣∣∣∣∣
∫ s1

0

[
(s2 − ~)ω−1

− (s1 − ~)ω−1
]

d~ +

∫ s2

s1

(s2 − ~)ω−1 d~

∣∣∣∣∣∣
≤

`1

Γ(ω + 1)
(
sω2 − sω1

)
,

analogously, we see that

|Ω2 (a (s2) , b (s2) , c (s2)) −Ω2 (a (s1) , b (s1) , c (s1))|

≤
`2

Γ(κ)

∣∣∣∣∣∣
∫ s1

0

[
(s2 − ~)κ−1

− (s1 − ~)κ−1
]

d~ +

∫ s2

s1

(s2 − ~)κ−1 d~

∣∣∣∣∣∣
≤

`2

Γ(κ + 1)
(
sκ2 − sκ1

)
,

and

|Ω3 (a (s2) , b (s2) , c (s2)) −Ω3 (a (s1) , b (s1) , c (s1))|

≤
`3

Γ(ω)

∣∣∣∣∣∣
∫ s1

0

[
(s2 − ~)%−1

− (s1 − ~)%−1
]

d~ +

∫ s2

s1

(s2 − ~)%−1 d~

∣∣∣∣∣∣
≤

`3

Γ(% + 1)

(
s%2 − s%1

)
.

This proves that Ω (a, b, c) is equicontinuous, and thus the operator Ω (a, b, c) is completely continuous.
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Ultimately, we shall check the set f = {(a, b, c) ∈ Ξ × Λ × ℘ : (a, b, c) = βΩ(a, b, c), β ∈ [0, 1]} is
bounded. Consider (a, b, c) ∈ f, then (a, b, c) = βΩ(a, b, c). For each 0 ≤ s ≤ 1, we get

a(s) = βΩ1(a, b, c)(s), b(s) = βΩ2(a, b, c)(s) and c(s) = βΩ3(a, b, c)(s).

Then

|a(s)| ≤
[

1
Γ (ω + 1)

+
|ρ| ηe+ωΓ (1 + e)

Γ (e + ω + 1) |Γ (1 + e) − ρηe|

]
× (α0 + α1 |a(s)| + α2 |b(s)| + α3 |c(s)|) ,

|b(s)| ≤

 1
Γ (κ + 1)

+
|σ| θ f +κΓ (1 + f )

Γ ( f + κ + 1)
∣∣∣Γ (1 + f ) − σθ f

∣∣∣


× (β0 + β1 |a(s)| + β2 |b(s)| + β3 |c(s)|) ,

and

|c(s)| ≤
[

1
Γ (% + 1)

+
|ς|ϑg+%Γ (1 + g)

Γ (g + % + 1) |Γ (1 + g) − ςϑg|

]
× (γ0 + γ1 |a(s)| + γ2 |b(s)| + γ3 |c(s)|) .

The above three inequalities can be written as

‖a‖ ≤ A1 (α0 + α1 ‖a‖ + α2 ‖b‖ + α3 ‖c‖) ,
‖b‖ ≤ A2 (β0 + β1 ‖a‖ + β2 ‖b‖ + β3 ‖c‖) ,

and
‖c‖ ≤ A3 (γ0 + γ1 ‖a‖ + γ2 ‖b‖ + γ3 ‖c‖) ,

which implies that

‖a‖ + ‖b‖ + ‖c‖ ≤ (A1α0 + A2β0 + A3γ0) + (A1α1 + A2β1 + A3γ1) ‖a‖
+ (A1α2 + A2β2 + A3γ2) ‖b‖ + (A1α3 + A2β3 + A3γ3) ‖c‖ ,

this leads to
‖(a, b, c)‖ ≤

A1α0 + A2β0 + A3γ0

A0
, for each s ∈ [0, 1],

where A0 is given by (3.4), which illustrates that f is bounded. Hence according to Lemma 3.1 there
is at least one FP for the operator Ω, which is a solution to the BVP (1.1). This finishes the proof. �

The second rule based on Banach’s FP theorem [32]. By using it, we prove the existence and
uniqueness of solutions to the BVP (1.1).

Theorem 3.3. Let the functions X,Y,Z : [0, 1] × R3 → R be continuous and there are coefficients
pi, qi, ri, i = 1, 2, 3 so that for each s ∈ [0, 1] and ai, bi ∈ R, i = 1, 2, 3,

|X (s, a1, a2, a3) − X (s, b1, b2, b3)| ≤ p1 |a1 − b1| + p2 |a2 − b2| + p3 |a3 − b3| ,

|Y (s, a1, a2, a3) − Y (s, b1, b2, b3)| ≤ q1 |a1 − b1| + q2 |a2 − b2| + q3 |a3 − b3| ,
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and
|Z (s, a1, a2, a3) − Z (s, b1, b2, b3)| ≤ r1 |a1 − b1| + r2 |a2 − b2| + r3 |a3 − b3| .

In addition, suppose that

A1(p1 + p2 + p3) + A2(q1 + q2 + q3) + A3(r1 + r2 + r3) < 1,

where A1–A3 are described in (3.1)–(3.3). Then there exists a unique solution for the BVP (1.1).

Proof. Consider

sup
s∈[0,1]

X (s, 0, 0, 0) = χ1 < ∞,

sup
s∈[0,1]

Y (s, 0, 0, 0) = χ2 < ∞,

and
sup

s∈[0,1]
Z (s, 0, 0, 0) = χ3 < ∞,

so that
ξ ≥

χ1A1 + χ2A2 + χ3A3

1 − A1(p1 + p2 + p3) − A2(q1 + q2 + q3) − A3(r1 + r2 + r3)
.

Now, we shall show that Ωzξ ⊂ zξ, where zξ = {(a, b, c) ∈ Ξ × Λ × ℘ : ‖(a, b, c)‖ ≤ ξ} .
For (a, b, c) ∈ zξ, we get

|Ω1 (a, b, c) (s)|

≤
1

Γ(ω)

∫ s

0
(s − ~)ω−1

|X(~, a(~), b(~), c(~))| d~

+
|ρ|Γ (1 + e)
|Γ (1 + e) − ρηω|

∫ η

0

(η − ~)e+ω−1

Γ (ω + e)
|X(~, a(~), b(~), c(~))| d~

≤
1

Γ(ω)

∫ s

0
(s − ~)ω−1 (|X(~, a(~), b(~), c(~))| − |X(~, 0, 0, 0)| + |X(~, 0, 0, 0)|) d~

+
|ρ|Γ (1 + e)
|Γ (1 + e) − ρηω|

∫ η

0

(η − ~)e+ω−1

Γ (ω + e)
(|X(~, a(~), b(~), c(~))| − |X(~, 0, 0, 0)| + |X(~, 0, 0, 0)|) d~

≤

(
1

Γ (ω + 1)
+

|ρ| ηe+ωΓ (1 + e)
Γ (e + ω + 1) |Γ (1 + e) − ρηe|

)
(p1 ‖a‖ + p2 ‖b‖ + p3 ‖c‖ + χ1)

≤ A1
[
(p1 + p2 + p3)ξ + χ1

]
.

Hence
‖Ω1 (a, b, c) (s)‖ ≤ A1

[
(p1 + p2 + p3)ξ + χ1

]
.

By the same manner, we can get

‖Ω2 (a, b, c) (s)‖ ≤ A2
[
(q1 + q2 + q3)ξ + χ2

]
,

and
‖Ω3 (a, b, c) (s)‖ ≤ A3

[
(r1 + r2 + r3)ξ + χ3

]
.
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Thus, ‖Ω (a, b, c) (s)‖ ≤ ξ.
Finally, we show that the operator Ω is a contraction. Indeed for (a2, b2, c2) , (a1, b1, c1) ∈ Ξ×Λ×℘

and for any s ∈ [0, 1], we can write

|Ω1 (a2, b2, c2) (s) −Ω1 (a1, b1, c1) (s)|

≤
1

Γ(ω)

∫ s

0
(s − ~)ω−1

|X(~, a2(~), b2(~), c2(~)) − X(~, a1(~), b1(~), c1(~))| d~

+
|ρ|Γ (1 + e)
|Γ (1 + e) − ρηω|

∫ η

0

(η − ~)e+ω−1

Γ (ω + e)
|X(~, a2(~), b2(~), c2(~)) − X(~, a1(~), b1(~), c1(~))| d~

≤

(
1

Γ (ω + 1)
+

|ρ| ηe+ωΓ (1 + e)
Γ (e + ω + 1) |Γ (1 + e) − ρηe|

)
(p1 ‖a2 − a1‖ + p2 ‖b2 − b1‖ + p3 ‖c2 − c1‖)

≤ A1 (p1 ‖a2 − a1‖ + p2 ‖b2 − b1‖ + p3 ‖c2 − c1‖)

≤ A1 (p1 + p2 + p3) (‖a2 − a1‖ + ‖b2 − b1‖ + ‖c2 − c1‖) ,

consequently, we get

‖Ω1 (a2, b2, c2) −Ω1 (a1, b1, c1)‖ ≤ A1 (p1 + p2 + p3) (‖a2 − a1‖ + ‖b2 − b1‖ + ‖c2 − c1‖) . (3.8)

Analogously, we obtain

‖Ω2 (a2, b2, c2) −Ω2 (a1, b1, c1)‖ ≤ A2 (q1 + q2 + q3) (‖a2 − a1‖ + ‖b2 − b1‖ + ‖c2 − c1‖) , (3.9)

and

‖Ω3 (a2, b2, c2) −Ω3 (a1, b1, c1)‖ ≤ A3 (r1 + r2 + r3) (‖a2 − a1‖ + ‖b2 − b1‖ + ‖c2 − c1‖) . (3.10)

Inequalities (3.8)–(3.10) implies that

‖Ω (a2, b2, c2) −Ω (a1, b1, c1)‖ ≤ (A1 (p1 + p2 + p3) + A2 (q1 + q2 + q3) + A3 (r1 + r2 + r3))

× (‖a2 − a1‖ + ‖b2 − b1‖ + ‖c2 − c1‖) .

Because
(A1 (p1 + p2 + p3) + A2 (q1 + q2 + q3) + A3 (r1 + r2 + r3)) < 1,

then Ω is a contraction. So, according to Banach’s contraction principle, there is a unique FP of the
operator Ω, which is a unique solution of Problem (1.1). This complete the required. �

The example below support the theoretical results.

Example 3.4. Assume that the system of fractional BVP below:
cD

1
3 a(s) = 1

20(1+s)2
|a(s)|

1+|a(s)| + 1 + 1
25 cos b(s) + 1

30 sin c(s), s ∈ [0, 1],
cD

1
3 b(s) = 1

30π cos
(
π
2 a(s)

)
+ 1

20 sin b(s) + 1
32(1+s)2

|c(s)|
1+|a(s)| +

1
2 , s ∈ [0, 1],

cD
1
3 c(s) = 1

20 cos a(s) + 1
25(1+s)2

|b(s)|
1+|b(s)| +

1
3 + 1

32π sin (2πc(s)) , s ∈ [0, 1],
a(0) =

√
5I

5
2 a(1

3 ), b(0) =
√

3I
3
2 b( 1

2 ), c(0) =
√

2I
1
2 b( 3

4 ).

(3.11)
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Here, ω = κ = % = 1
3 , ρ =

√
5, σ =

√
3, ς
√

2, η = 1
3 , Z = 1

2 , ϑ = 3
4 , e = 5

2 , f = 3
2 , g = 1

2 ,

X(s, a(s), b(s), c(s)) =
1

20 (1 + s)2

|a(s)|
1 + |a(s)|

+ 1 +
1
25

cos b(s) +
1

30
sin c(s),

Y(s, a(s), b(s), c(s)) =
1

30π
cos

(
π

2
a(s)

)
+

1
20

sin b(s) +
1

32 (1 + s)2

|c(s)|
1 + |a(s)|

+
1
2
,

and
Z(s, a(s), b(s), c(s)) =

1
20

cos a(s) +
1

25 (1 + s)2

|b(s)|
1 + |b(s)|

+
1
3

+
1

32π
sin (2πc(s)) .

It should be noted that

ρ =
√

5 ,
Γ( 7

2 )
√

3
27

=
Γ( 5

2 + 1)(
1
3

) 5
2

=
Γ(e + 1)
ηe ,

σ =
√

3 ,
Γ( 5

2 )
1

2
√

2

=
Γ(5

2 )(
1
2

) 3
2

=
Γ( f + 1)

Z f ,

and

ς =
√

2 ,
Γ( 3

2 )
√

3
2

=
Γ(1 + 1

2 )

(3
4 )

1
2

=
Γ(g + 1)
ϑg .

Furthermore,

|X(s, a1(s), a2(s), a3(s)) − X(s, b2(s), b2(s), b2(s))|

≤
1
25
|a1 − b1| +

1
25
|a2 − b2| +

1
25
|a3 − b3| ,

|Y(s, a1(s), a2(s), a3(s)) − Y(s, b2(s), b2(s), b2(s))|

≤
1

25
|a1 − b1| +

1
25
|a2 − b2| +

1
25
|a3 − b3| ,

and

|Z(s, a1(s), a2(s), a3(s)) − Z(s, b2(s), b2(s), b2(s))|

≤
1
25
|a1 − b1| +

1
25
|a2 − b2| +

1
25
|a3 − b3| .

Moreover,

A1 (p1 + p2 + p3) + A2 (q1 + q2 + q3) + A3 (r1 + r2 + r3)

≈
3

25

 3

Γ
(

1
3

) +
0.3305

15.5379

 +
3

25

 3

Γ
(

1
3

) +
0.3305
1.2364

 +
3

25

 3

Γ
(

1
3

) +
0.9861
0.3185


≈ 0.8093004 < 1.

Thus, all requirements of Theorem 3.3 are fulfilled, hence Problem (3.11) has a unique solution.
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4. Conclusions

Fractional derivatives do not take into account only local characteristics of the dynamics but
considers the global evolution of the system; for that reason, when dealing with certain phenomena,
they provide more accurate models of real-world behavior than standard derivatives. Nonlinear
systems describing different phenomena can be modeled with fractional derivatives. Chaotic behavior
has also been reported in some fractional models. There exist theoretical results related to existence
and uniqueness of solutions to initial and boundary value problems with fractional differential
equations; for the nonlinear case, there are still few of them. So, in this manuscript, we were able to
study existence of a unique solution to a system of FDEs with nonlocal integral boundary conditions
using Banach contraction principle. Ultimately, theoretical results were supported by an illustrative
example. As a future work, our method can be applied to obtain existence of solutions for two
fractional q−differential inclusions under some integral boundary value conditions as the work
of [33, 34]. Moreover, the kernel can be taken as a singular one to solve partial integro-differential
equations and to study Hyers-Ulam stability for a nonlinear singular fractional differential equations
with Mittag-Leffler kernel motivated by the work of [35–37]. In addition, we can replace Caputo
fractional derivatives with conformable derivative functions to obtain a solution to fractional-order
differential equations. These new investigations and applications would enhance the impact of the
new setup.
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intégrales, Fund. Math., 3 (1922), 133–181.
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