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1. Introduction

The realization of warped product manifolds came into existence after the approach of R. L. Bishop
and B. O’Neill [7] on manifolds of negative curvature. Examining the fact that a Riemannian product
of manifolds can not have negative curvature, they construct the model of warped product manifolds
for the class of manifolds of negative (or non positive) curvature which is defined as follows:

Let (N1, g1) and (N2, g2) be two Riemannian manifolds with Riemannian metrics g1 and g2

respectively and ψ be a positive smooth function on N1. If π : N1 ×N2 → N1 and η : N1 ×N2 → N2 are
the projection maps given by π(p, q) = p and η(p, q) = q for every (p, q) ∈ N1 × N2, then the warped
product manifold is the product manifold N1 × N2 equipped with the Riemannian structure such that

g(X,Y) = g1(π∗X, π∗Y) + (ψ ◦ π)2g2(η∗X, η∗Y),
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for all X,Y ∈ T M. The function ψ is called the warping function of the warped product manifold. If
the warping function is constant, then the warped product is trivial, i.e., simply Riemannian product.
On the grounds that warped product manifolds admit a number of applications in Physics and theory
of relativity [5], this has been a topic of extensive research. Warped products provide many basic
solutions to Einstein field equations [5]. The concept of modelling of space-time near black holes
adopts the idea of warped product manifolds [19]. Schwartzschild space-time is an example of warped
product P ×r S 2, where the base P = R × R+ is a half plane r > 0 and the fibre S 2 is the unit sphere.
Under certain conditions, the Schwartzchild space-time becomes the black hole. A cosmological model
to model the universe as a space-time known as Robertson-Walker model is a warped product [30].

Some natural properties of warped product manifolds were studied in [7]. B. Y. Chen (see [9, 11])
performed an extrinsic study of warped product submanifolds in a Kaehler manifold. Since then,
many geometers have explored warped product manifolds in different settings like almost complex
and almost contact manifolds and various existence results have been investigated (see the survey
article [13]).

In 1999, Chen [10] discovered a relationship between Ricci curvature and squared mean curvature
vector for an arbitrary Riemannian manifold. On the line of Chen, a series of articles have been
appeared to formulate the relationship between Ricci curvature and squared mean curvature in the
setting of some important structures on Riemannian manifolds (see [3, 4, 16, 20–22, 26, 27, 34]).
Recently Ali et al. [1] established a relationship between Ricci curvature and squared mean curvature
for warped product submanifolds of a sphere and provide many physical applications.

In this paper our aim is to obtain a relationship between Ricci curvature and squared mean curvature
for semi-slant warped product submanifolds in the setting of generalized complex space form
admitting a nearly Kaehler structure. Further, we provide some applications in terms of Hamiltonians
and Euler-Lagrange equation. In the last we also worked out some applications of Obata’s differential
equation.

2. Preliminaries

Let M̄ be an almost Hermitian manifold with an almost complex structure J and Riemannian metric
g satisfying the following

J2 = −I, g(JX, JY) = g(X,Y), (2.1)

for all vector fields X,Y on M̄. If almost Hermitian manifold satisfies the following property

(∇̄X J)Y + (∇̄Y J)X = 0 (2.2)

for all vector fields X,Y ∈ T M̄, then M̄ is called the nearly Kaehler manifold. The six dimensional
sphere S 6 is an example of nearly Kaehler manifold which is not a Kaehler manifold. S 6 has an
almost complex structure J defined by the vector cross product in the space of purely imaginary Cayley
numbers which satisfies the tensorial equation of nearly Kaehler manifold. There is a more general
class of almost Hermitian manifolds than nearly Kaehler manifold, this class is known as RK-manifold.
A generalized complex space form is an RK-manifold of constant holomorphic sectional curvature c
and of constant α and is denoted by M̄(c, α). The sphere S 6 endowed with the standard nearly Kaehler
structure is an example of generalized complex space form which is not a complex space form. The
curvature tensor R̄ of a generalized complex space form M̄(c, α) is given by
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R̄(X,Y,Z,W) =
c + 3α

4
[g(Y,Z)g(X,W) − g(X,Z)g(Y,W)] (2.3)

+
c − α

4
[g(X, JZ)g(JY,W) − g(Y, JZ)g(JX,W)

+ 2g(X, JY)g(JZ,W)],

for any X,Y,Z,W ∈ T M̄.

Let M be an n-dimensional Riemannian manifold isometrically immersed in a m-dimensional
Riemannian manifold M̄. Then the Gauss and Weingarten formulas are ∇̄XY = ∇XY + h(X,Y) and
∇̄Xξ = −AξX + ∇⊥Xξ respectively, for all X,Y ∈ T M and ξ ∈ T⊥M, where ∇ is the induced Levi-Civita
connection on M, ξ is a vector field normal to M, h is the second fundamental form of M, ∇⊥ is the
normal connection in the normal bundle T⊥M and Aξ is the shape operator of the second fundamental
form. The second fundamental form h and the shape operator are associated by the following formula

g(h(X,Y), ξ) = g(AξX,Y). (2.4)

The equation of Gauss is given by

R(X,Y,Z,W) = R̄(X,Y,Z,W) + g(h(X,W), h(Y,Z)) (2.5)
− g(h(X,Z), h(Y,W)),

for all X,Y,Z,W ∈ T M, where R̄ and R are the curvature tensors of M̄ and M respectively. For any
X ∈ T M and N ∈ T⊥M, JX and JN can be decomposed as follows

JX = PX + FX (2.6)

and
JN = tN + f N, (2.7)

where PX (resp. tN) is the tangential and FX (resp. f N) is the normal component of JX ( resp. JN).
For any orthonormal basis {e1, e2, · · · , en} of the tangent space TxM, the mean curvature vector H(x)

and its squared norm are defined as follows

H(x) =
1
n

n∑
i=1

h(ei, ei), ‖H‖2 =
1
n2

n∑
i, j=1

g(h(ei, ei), h(e j, e j)), (2.8)

where n is the dimension of M. If h = 0 then the submanifold is said to be totally geodesic and minimal
if H = 0. If h(X,Y) = g(X,Y)H for all X,Y ∈ T M, then M is called totally umbilical.

The scalar curvature of M̄ is denoted by τ̄(M̄) and is defined as

τ̄(Mn) =
∑

1≤p<q≤m

κ̄pq, (2.9)

where κ̄pq = κ̄(ep ∧ eq) and m is the dimension of the Riemannian manifold M̄. Throughout this study,
we shall use the equivalent version of the above equation, which is given by
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2τ̄(Mn) =
∑

1≤p,q≤m

κ̄pq. (2.10)

In a similar way, the scalar curvature τ̄(Lx) of a L-plane is given by

τ̄(Lx) =
∑

1≤p<q≤m

κ̄pq. (2.11)

Let {e1, · · · , en} be an orthonormal basis of the tangent space TxM and if er belongs to the
orthonormal basis {en+1, · · · , em} of the normal space T⊥M, then we have

hr
pq = g(h(ep, eq), er)) (2.12)

and

‖h‖2 =

n∑
p,q=1

g(h(ep, eq), h(ep, eq)). (2.13)

Let κpq and κ̄pq be the sectional curvatures of the plane sections spanned by ep and eq at x in the
submanifold Mn and in the Riemannian space form M̄m(c), respectively. Thus by Gauss equation, we
have

κpq = κ̄pq +

m∑
r=n+1

(hr
pphr

qq − (hr
pq)2). (2.14)

The global tensor field for orthonormal frame of vector field {e1, · · · , en} on Mn is defined as

S̄ (X,Y) =

n∑
i=1

{g(R̄(ei, X)Y, ei)}, (2.15)

for all X,Y ∈ TxMn. The above tensor is called the Ricci tensor. If we fix a distinct vector eu from
{e1, · · · , en} on Mn, which is governed by χ. Then the Ricci curvature is defined by

Ric(χ) =

n∑
p=1
p,u

K(ep ∧ eu). (2.16)

Consider the warped product submanifold N1 ×ψ N2. Let X be a vector field on M1 and Z be a vector
field on M2, then from Lemma 7.3 of [7], we have

∇XZ = ∇ZX = (
Xψ
ψ

)Z (2.17)

where ∇ is the Levi-Civita connection on M. For a warped product M = M1×ψ M2 it is easy to observe
that

∇XZ = ∇ZX = (X lnψ)Z (2.18)

for X ∈ T M1 and Z ∈ T M2.

∇ψ is the gradient of ψ and is defined as

g(∇ψ, X) = Xψ, (2.19)
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for all X ∈ T M.
Let M be an n-dimensional Riemannian manifold with the Riemannian metric g and let
{e1, e2, · · · , en} be an orthogonal basis of T M. Then as a result of (2.19), we get

‖∇ψ‖2 =

n∑
i=1

(ei(ψ))2. (2.20)

The Laplacian of ψ is defined by

∆ψ =

n∑
i=1

{(∇eiei)ψ − eieiψ}. (2.21)

The Hessian tensor for a differentiable function ψ is a symmetric covariant tensor of rank 2 and is
defined as

∆ψ = −trace Hψ

For the warped product submanifolds, we have following well known result [14]

n1∑
p=1

n2∑
q=1

κ(ep ∧ eq) =
n2∆ψ

ψ
= n2(∆ lnψ − ‖∇ lnψ‖2). (2.22)

Now, we state the Hopf’s Lemma.
Hopf’s Lemma. [12] Let M be a m-dimensional connected compact Riemannian manifold. If ψ is a
differentiable function on M such that ∆ψ ≥ 0 everywhere on M (or ∆ψ ≤ 0 everywhere on M), then ψ
is a constant function.

For a compact orientable Riemannian manifold M with or without boundary and as a consequences
of the integration theory of manifolds, we have∫

M
∆ψ dV = 0, (2.23)

where ψ is a function on M and dV is the volume element of M.

3. Semi-slant warped product submanifolds of a nearly Kaehler manifold

The notion of semi-slant submanifolds of a Kaehler manifold is geometrically new and interesting.
Infact, the study of differential geometry of semi-slant submanifolds as a generalization of CR-
submanifolds and slant submanifolds of a Kaehlerian submanifolds was initiated by N. Papaghiuc [32].
In [23] V. A. Khan and M. A. Khan studied semi-slant submanifolds of a nearly Kaehler manifold and
obtained some basic and interesting results. Further, B. Sahin [33] proved the non existence proper
semi-slant warped product submanifolds in the setting of Kaehler manifold. So, it was natural to
see the existence of semi-slant warped product submanifolds in a more general setting namely nearly
Kaehler manifold and in this series V. A. Khan and K. A. Khan [24] studied different types of warped
product submanifolds in nearly Kaehler manifolds. Suppose, NT and Nθ be the holomorphic and slant
submanifolds of an almost Hermitian manifold M̄. Now, there are two possibilities of warped product
submanifolds of M̄, these warped products are Nθ ×ψ NT and NT ×ψ Nθ. In [24] V. A. Khan and K. A.
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Khan proved the non-existence of the first type of warped product Nθ×ψNT in nearly Kaehler manifolds
and they studied the existence of the warped product NT ×ψ Nθ, these warped product submanifolds are
called semi-slant warped product submanifolds and studied extensively (see [2, 24, 25]). Throughout
this study, we consider the warped product submanifolds M = Nn1

T ×ψNn2
θ of a nearly Kaehler manifold,

where n1 and n2 are the dimensions of the holomorphic and slant submanifolds.
Now, we have the following initial result:

Lemma 3.1. Let M = Nn1
T ×ψ Nn2

θ be a semi-slant warped product submanifold isometrically immersed
in a nearly Kaehler manifold M̄. Then

(i) g(h(X, Y), JZ) = 0,
(ii) g(h(JX, JX), N) = - g(h(X, X), N),

for any X,Y ∈ T NT , Z ∈ T Nθ and N ∈ µ, where µ is the invariant subbundle of T⊥M.

Proof. By using Gauss and Weingarten formulae in Eq (2.2), we have

∇XPZ + h(X, PZ) − AFZX + ∇⊥X FZ − J∇XZ − Jh(X,Z) + ∇Z JX+

+h(JX,Z) − J∇ZX − Jh(X,Z) = 0,

taking inner product with Y and using (2.4), we get the required result.
To prove (ii), for any X ∈ T NT we have

∇̄X JX = (∇̄X J)X + J∇̄XX.

Using Gauss formula and (2.2) in above, we get

∇X JX + h(JX, X) = J∇XX + Jh(X, X).

Taking inner product with JN, above equation yields

g(h(JX, X), JN) = g(h(X, X),N). (3.1)

Interchanging X by JX the above equation gives

g(h(JX, X), JN) = −g(h(JX, JX),N). (3.2)

From (3.1) and (3.2), we get the required result. �

From the above result it is evident that the isometric immersion Nn1
T ×ψ Nn2

θ into a nearly Kaehler
manifold is DT -minimal. The DT - minimality property provides us a useful relationship between the
semi-slant warped product submanifold NT ×ψ Nθ and the equation of Gauss.
Definition 3.1 The warped product N1 ×ψ N2 isometrically immersed in a Riemannian manifold M̄ is
called Ni totally geodesic if the partial second fundamental form hi vanishes identically. It is called
Ni-minimal if the partial mean curvature vector Hi becomes zero for i = 1, 2.

Let {e1, · · · , ep, ep+1 = Je1, · · · , en1 = Jep, en1+1 = e1, · · · , en1+q = eq, en1+q+1 = eq+1 =

sec θPe1, · · · , e(n2=2q) = en2 = sec θPeq} be a local orthonormal frame of vector fields on the semi-slant
warped product submanifold Mn = Nn1

T ×ψ Nn2
θ such that the set {e1, · · · , ep, ep+1 = Je1, · · · , en1 = Jep}
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is tangent to NT and the set {e1, · · · , eq, · · · en2} is tangent to Nθ. Moreover, {en+1 = csc θFe1, · · · , en+n2 =

csc θFeq, en+n2+1 = ē1, · · · , em = ēk} is a basis for the normal bundle T⊥M, such that the set {en+1 =

csc θFe1, · · · , en+n2 = csc θFeq} is tangent to FDθ and {ē1, · · · , ēk} is tangent to the complementary
invariant subbundle µ with even dimension k.

From Lemma 3.1, it is easy to conclude that

m∑
r=n+1

n1∑
i, j=1

g(h(ei, e j), Jer) = 0. (3.3)

Thus it follows that the trace of h due to NT becomes zero. Hence in view of the Definition 3.1, we
obtain the following important result.

Theorem 3.1. Let Mn = Nn1
T ×ψ Nn2

θ be a semi-slant warped product submanifold isometrically
immersed in a nearly Kaehler manifold. Then Mn is DT -minimal.

So, it is easy to conclude the following

‖H‖2 =
1
n2

m∑
r=n+1

(hr
n1+1n1+1 + · · · + hr

nn)2, (3.4)

where ‖H‖2 is the squared mean curvature.

4. Ricci curvature for semi-slant warped product submanifold

In this section, we investigate Ricci curvature in terms of the squared norm of mean curvature and
the warping function as follows:

Theorem 4.1. Let M = Nn1
T ×ψNn2

θ be a semi-slant warped product submanifold isometrically immersed
in a generalized complex space form M̄(c, α) admitting nearly Kaehler structure. Then for each
orthogonal unit vector field χ ∈ TxM, either tangent to NT or Nθ, we have

(1) The Ricci curvature satisfy the following inequality

(i) If χ is tangent to Nn1
T , then

Ric(χ) ≤
1
4

n2‖H‖2 −
n2∆ψ

ψ
+

c + 3α
4

(n + n1n2 − 1) +
3(c − α)

8
. (4.1)

(ii) If χ is tangent to Nn2
θ , then

Ric(χ) ≤
1
4

n2‖H‖2 −
n2∆ψ

ψ
+

c + 3α
4

(n + n1n2 − 1) +
3(c − α)

8
cos2 θ. (4.2)

(2) If H(x) = 0, then for each point x ∈ Mn there is a unit vector field X which satisfies the equality
case of (1) if and only if Mn is mixed totally geodesic and χ lies in the relative null space Nx at x.

(3) For the equality case we have

(a) The equality case of (4.1) holds identically for all unit vector fields tangent to Nn1
T at each

x ∈ Mn if and only if Mn is mixed totally geodesic and DT -totally geodesic semi-slant warped
product submanifold in M̄m(c, α).
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(b) The equality case of (4.2) holds identically for all unit vector fields tangent to Nn2
θ at each

x ∈ Mn if and only if M is mixed totally geodesic and either Mn is Dθ- totally geodesic
semi-slant warped product or Mn is a Dθ totally umbilical in M̄m(c, α) with dim Dθ = 2.

(c) The equality case of (1) holds identically for all unit tangent vectors to Mn at each x ∈ Mn if
and only if either Mn is totally geodesic submanifold or Mn is a mixed totally geodesic totally
umbilical and DT -totally geodesic submanifold with dim Nn2

θ = 2.

where n1 and n2 are the dimensions of NT and Nθ respectively.

Proof. Suppose that M = Nn1
T ×ψ Nn2

θ be a semi-slant warped product submanifold of a generalized
complex space form. From Gauss equation, we have

n2‖H‖2 = 2τ(Mn) + ‖h‖2 − 2τ̄(Mn). (4.3)

Let {e1, · · · , en1 , en1+1, · · · , en} be a local orthonormal frame of vector fields on Mn such that
{e1, · · · , en1} are tangent to NT and {en1+1, · · · , en} are tangent to Nθ. So, the unit tangent vector
χ = eA ∈ {e1, · · · , en} can be expanded (4.3) as follows

n2‖H‖2 = 2τ(Mn) +
1
2

m∑
r=n+1

{(hr
11 + · · · + hr

nn − hr
AA)2 + (hr

AA)2} −

m∑
r=n+1

∑
1≤p,q≤n

hr
pphr

qq (4.4)

− 2τ̄(Mn).

The above expression can be written as follows

n2‖H‖2 = 2τ(Mn) +
1
2

m∑
r=n+1

{(hr
11 + · · · + hr

nn)2 + (2hr
AA − (hr

11 + · · · + hr
nn))2}

+ 2
m∑

r=n+1

∑
1≤p<q≤n

(hr
pq)2 − 2

m∑
r=n+1

∑
1≤p<q≤n

hr
pphr

qq − 2τ̄(Mn).

In view of the Lemma 3.1, the preceding expression takes the form

n2‖H‖2 =

m∑
r=n+1

{(hr
n1+1n1+1 + · · · + hr

nn)2 + +(2hr
AA − (hr

n1+1n1+1 + · · · + hr
nn))2}

+ 2τ(Mn) +

m∑
r=n+1

∑
1≤p<q≤n

(hr
pq)2 −

m∑
r=n+1

∑
1≤p<q≤n

hr
pphr

qq +

m∑
r=n+1

∑
a=1
a,A

(hr
aA)2

+

m∑
r=n+1

∑
1≤p<q≤n

p,q,A

(hr
pq)2 −

m∑
r=n+1

∑
1≤p<q≤n

p,q,A

hr
pphr

qq − 2τ̄(Mn).

(4.5)

By Eq (2.14), we have

m∑
r=n+1

∑
1≤p<q≤n

p,q,A

(hr
pq)2 −

m∑
r=n+1

∑
1≤p<q≤n

p,q,A

hr
pphr

qq =
∑

1≤p<q≤n
p,q,A

κ̄pq −
∑

1≤p<q≤n
p,q,A

κpq (4.6)
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Substituting the values of Eq (4.6) in (4.5), we discover

n2‖H‖2 =2τ(Mn) +
1
2

m∑
r=n+1

(2hr
AA − (hr

n1+1n1+1 + · · · + hr
nn))2 +

m∑
r=n+1

∑
1≤p<q≤n

(hr
pq)2

−

m∑
r=n+1

∑
1≤p<q≤n

hr
pphr

qq − 2τ̄(Mn) +

m∑
r=n+1

∑
a=1
a,A

(hr
aA)2 +

∑
1≤p<q≤n

p,q,A

κ̄p,q −
∑

1≤p<q≤n
p,q,A

κpq.
(4.7)

Since, Mn = Nn1
T ×ψ Nn2

θ , then from (2.11), the scalar curvature of Mn can be defined as follows

τ(Mn) =
∑

1≤p<q≤n

κ(ep ∧ eq) =

n1∑
i=1

n∑
j=n1+1

κ(ei ∧ e j) +
∑

1≤r<k≤n1

κ(er ∧ ek) +
∑

n1+1≤l<o≤n

κ(el ∧ eo) (4.8)

The usage of (2.11) and (2.22), we derive

τ(Mn) =
n2∆ψ

ψ
+ τ(Nn1

T ) + τ(Nn2
θ ) (4.9)

Utilizing (4.9) together with (2.14) and (2.3) in (4.7), we have

1
2

n2‖H‖2 =
n2∆ψ

ψ
+

∑
1≤p<q≤n

p,q,A

κ̄p,q + τ̄(Nn1
T ) + τ̄(Nn2

θ ) +

m∑
r=n+1

{ ∑
1≤p<q≤n

(hr
pq)2 −

∑
1≤p<q≤n

p,q,A

hr
pphr

qq
}

+

m∑
r=n+1

∑
a=1
a,A

(hr
aA)2 +

m∑
r=n+1

∑
1≤i, j≤n1

(hr
iih

r
j j − (hr

i j)
2) +

m∑
r=n+1

∑
n1+1≤s,t≤n

(hr
ssh

r
tt − (hr

st)
2)

+
1
2

m∑
r=n+1

(2hr
AA − (hr

n1+1n1+1 + · · · + hr
nn))2 −

c + 3α
4

(n(n − 1)) −
(c − α)

4
(3n1 + 3n2 cos2 θ).

(4.10)

Considering unit tangent vector χ = ea, we have two choices: χ is either tangent to the base manifold
Nn1

T or to the fibre Nn2
θ .

Case i: If ea is tangent to Nn1
T , then fix a unit tangent vector from {e1, · · · , en1} and suppose χ = ea = e1.

Then from (4.10) and (2.16), we find

Ric(χ) ≤
1
2

n2‖H‖2 −
n2∆ψ

ψ
−

1
2

m∑
r=n+1

(2hr
11 − (hr

n1+1n1+1 + · · · hr
nn))2

−

m∑
r=n+1

∑
1≤p<q≤n1

(hr
pq)2 +

m∑
r=n+1

[
∑

1≤i< j≤n1

(hr
i j)

2 −
∑

1≤i< j≤n1

hr
iih

r
j j]

+

m∑
r=n+1

∑
n1+1≤s<t≤n

(hr
st)

2 +

m∑
r=n+1

[
∑

n1+1≤s<t≤n

(hr
i j)

2 −
∑

n1+1≤s<t≤n

hr
ssh

r
tt]

+

m∑
r=n+1

∑
2≤p<q≤n

hr
pphr

qq +
c + 3α

4
(n(n − 1)) +

(c − α)
4

(3n1

+ 3n2 cos2 θ) −
∑

2≤p<q≤n

κ̄pq − τ̄(Nn1
T ) − τ̄(Nn2

θ ).

(4.11)

AIMS Mathematics Volume 7, Issue 4, 7069–7092.



7078

From (2.3), (2.11) and (2.12), we have∑
2≤p<q≤n

κ̄p,q =
c + 3α

8
(n − 1)(n − 2) +

c − α
8

[3(n1 − 1) + 3n2 cos2 θ], (4.12)

τ̄(Nn1
T ) =

c + 3α
8

n1(n1 − 1) +
c − α

8
3n1, (4.13)

τ̄(Nn2
θ ) =

c + 3α
8

n2(n2 − 1) +
c − α

8
3n2 cos2 θ. (4.14)

Using (4.19)–(4.21) in (4.11), we have

Ric(χ) ≤
1
2

n2‖H‖2 −
n2∆ψ

ψ
+

c + 3α
4

(n + n1n2 − 1) +
3(c − α)

8
−

1
2

m∑
r=n+1

(2hr
11 − (hr

n1+1n1+1 + · · ·

+ hr
nn))2 −

m∑
r=n+1

∑
1≤p<q≤n

(hr
pq)2 +

m∑
r=n+1

[
∑

1≤i< j≤n1

(hr
i j)

2 +

m∑
r=n+1

∑
n1+1≤s<t≤n

(hr
st)

2]

−

m∑
r=n+1

[
∑

1≤i< j≤n1

hr
iih

r
j j +

∑
n1+1≤s<t≤n

hr
ssh

r
tt] +

m∑
r=n+1

∑
2≤p<q≤n

hr
pphr

qq.

(4.15)

Further, the sixth and seventh terms on right hand side of the last inequality can be written as

m∑
r=n+1

[
∑

1≤i< j≤n1

(hr
i j)

2 +
∑

n1+1≤s<t≤n

(hr
st)

2] −
m∑

r=n+1

∑
1≤p<q≤n

(hr
pq)2 = −

m∑
r=n+1

n1∑
p=1

n∑
q=n1+1

(hr
pq)2.

Similarly, we have

m∑
r=n+1

[
∑

1≤i< j≤n1

hr
iih

r
j j +

∑
n1+1≤s,t≤n

hr
ssh

r
tt −

∑
2≤p<q≤n

hr
pphr

qq] =

m∑
r=n+1

[
n1∑

p=2

n∑
q=n1+1

hr
pphr

qq −

n1∑
j=2

hr
11hr

j j].

Utilizing above two values in (4.15), we get

Ric(χ) ≤
1
2

n2‖H‖2 −
n2∆ψ

ψ
+

c + 3α
4

(n + n1n2 − 1) +
3(c − α)

8
−

1
2

m∑
r=n+1

(
2hr

11 (4.16)

− (hr
n1+1n1+1 + · · · hr

nn)
)2
−

m∑
r=n+1

 n1∑
p=1

n∑
q=n1+1

(hr
pq)2 +

n1∑
b=2

hr
11hr

bb −

n1∑
p=2

n∑
q=n1+1

hr
pphr

qq

 .
Since Mn = Nn1

T ×ψ Nn2
θ is Nn1

T -minimal then we can observe the following

m∑
r=n+1

n1∑
p=2

n∑
q=n1+1

hr
pphr

qq = −

m∑
r=n+1

n∑
q=n1+1

hr
11hr

qq (4.17)

and
m∑

r=n+1

n1∑
b=2

hr
11hr

bb = −

m∑
r=n+1

(hr
11)2. (4.18)
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Simultaneously, we can conclude

1
2

m∑
r=n+1

(2hr
11 − (hr

n1+1n1+1 + · · · + hr
nn))2 +

m∑
r=n+1

n∑
q=n1+1

hr
11hr

qq = 2
m∑

r=n+1

(hr
11)2 +

1
2

n2‖H‖2. (4.19)

Using (4.17) and (4.18) in (4.16), after the assessment of (4.19), we finally get

Ric(χ) ≤
1
2

n2‖H‖2 −
n2∆ψ

ψ
+

c + 3α
4

(n + n1n2 − 1) +
3(c − α)

8
(4.20)

−
1
4

m∑
r=n+1

n∑
q=n1+1

(hr
qq)2 −

m∑
r=n+1

{(hr
11)2 −

n∑
q=n1+1

hr
11hr

qq +
1
4

(hr
n1+1n1+1 + · · · + hr

nn)2}.

Further, using the fact that
∑m

r=n+1(hr
n1+1n1+1 + · · · + hr

nn) = n2‖H‖2, we get

Ric(χ) ≤
1
4

n2‖H‖2 −
n2∆ψ

ψ
+

c + 3α
4

(n + n1n2 − 1) +
3(c − α)

8
(4.21)

−
1
4

m∑
r=n+1

(2hr
11 −

n∑
q=n1+1

hr
qq)2.

From the above inequality, we can conclude the inequality (4.1).

Case ii: If ea is tangent to Nn2
θ , then we choose the unit vector from {en1+1, · · · , en}, suppose that the

unit vector is en, i.e. χ = en. Then from (2.3), (2.11) and (2.12), we have∑
1≤p<q≤n−1

κ̄pq =
c + 3α

8
(n − 1)(n − 2) −

c − α
8

(3n1 + 3(n2 − 1) cos2 θ), (4.22)

τ̄(Nn1
T ) =

c + 3α
8

n1(n1 − 1) +
c − α

8
(3n1), (4.23)

τ̄(Nn2
θ ) =

c + 3α
8

n2(n2 − 1) +
c − α

8
(3n2 cos2 θ). (4.24)

Now, in a similar way as in Case i, using (4.22)–(4.24), we have

Ric(χ) ≤
1
2

n2‖H‖2 −
n2∆ψ

ψ
−

1
2

m∑
r=n+1

((hr
n1+1n1+1 + · · · hr

nn) − 2hr
nn)2 (4.25)

−

m∑
r=n+1

∑
1≤p<q≤n1

(hr
pq)2 +

m∑
r=n+1

[
∑

1≤i< j≤n1

(hr
i j)

2 −
∑

1≤i< j≤n1

hr
iih

r
j j]

+

m∑
r=n+1

∑
n1+1≤s<t≤n

(hr
st)

2 +

m∑
r=n+1

[
∑

n1+1≤s<t≤n

(hr
i j)

2 −
∑

n1+1≤s<t≤n

hr
ssh

r
tt]

+

m∑
r=n+1

∑
1≤p<q≤n−1

hr
pphr

qq +
c + 3α

4
(n + n1n2 − 1) +

3(c − α)
8

cos2 θ.
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Using similar steps of Case i, the above inequality takes the form

Ric(χ) ≤
1
2

n2‖H‖2 −
n2∆ψ

ψ
+

c + 3α
4

(n + n1n2 − 1) +
3(c − α)

8
cos2 θ −

1
2

m∑
r=n+1

{(hr
n1+1n1+1 + · · ·

+ hr
nn) − 2hr

nn}
2 −

m∑
r=n+1

[
n1∑

p=1

n∑
q=n1+1

(hr
pq)2 +

n−1∑
b=n1+1

hr
nnhr

bb −

n1∑
p=1

n−1∑
q=n1+1

hr
pphr

qq].

(4.26)

By the Lemma 3.1, one can observe that
m∑

r=n+1

n1∑
p=1

n−1∑
q=n1+1

hr
pphr

qq = 0. (4.27)

Utilizing this in (4.26), we get

Ric(χ) ≤
1
2

n2‖H‖2 −
n2∆ψ

ψ
+

c + 3α
4

(n + n1n2 − 1) +
3(c − α)

8
cos2 θ

−
1
2

m∑
r=n+1

((hr
n1+1n1+1 + · · · hr

nn) − 2hr
nn)2 −

m∑
r=n+1

n1∑
p=1

n∑
q=n1+1

(hr
pq)2 −

m∑
r=n+1

n−1∑
b=n1+1

hr
nnhr

bb.

(4.28)

The last term of the above inequality can be written as

−

m∑
r=n+1

n−1∑
b=n1+1

hr
nnhr

bb = −

m∑
r=n+1

n∑
b=n1+1

hr
nnhr

bb +

m∑
r=n+1

(hr
nn)2

Moreover, the fifth term of (4.28) can be expanded as

−
1
2

m∑
r=n+1

((hr
n1+1n1+1 + · · · + hr

nn) − 2hr
nn)2 = −

1
2

m∑
r=n+1

(hr
n1+1n1+1 + · · · + hr

nn)2

− 2
m∑

r=n+1

(hr
nn)2 +

m∑
r=n+1

n∑
j=n1+1

hr
nnhr

j j.

(4.29)

Using last two values in (4.28), we have

Ric(χ) ≤
1
2

n2‖H‖2 −
n2∆ψ

ψ
+

c + 3α
4

(n + n1n2 − 1) +
3(c − α)

8
cos2 θ

−
1
2

m∑
r=n+1

(hr
n1+1n1+1 + · · · hr

nn)2 − 2
m∑

r=n+1

(hr
nn)2 + 2

m∑
r=n+1

n∑
j=n1+1

hr
nnhr

j j

−

m∑
r=n+1

n1∑
p=1

n∑
q=n1+1

(hr
pq)2 −

m∑
r=n+1

n∑
b=n1+1

hr
nnhr

bb +

m∑
r=n+1

(hr
nn)2,

(4.30)

or equivalently

Ric(χ) ≤
1
2

n2‖H‖2 −
n2∆ψ

ψ
+

c + 3α
4

(n + n1n2 − 1) +
3(c − α)

8
cos2 θ

−
1
2

m∑
r=n+1

(hr
n1+1n1+1 + · · · hr

nn)2 −

m∑
r=n+1

(hr
nn)2 +

m∑
r=n+1

n∑
j=n1+1

hr
nnhr

j j −

m∑
r=n+1

n1∑
p=1

n∑
q=n1+1

(hr
pq)2.

(4.31)
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On applying similar techniques as in the proof of Case i, we arrive

Ric(χ) ≤
1
4

n2‖H‖2 −
n2∆ψ

ψ
+

c + 3α
4

(n + n1n2 − 1) +
3(c − α)

8
cos2 θ

−
1
4

m∑
r=n+1

(2hr
nn − (hr

n1+1n1+1 + · · · + hr
nn))2,

(4.32)

which gives the inequality (4.2).
Next, we explore the equality cases of the inequality (4.1). First, we redefine the notion of the relative
null space Nx of the submanifold Mn in the generalized complex space form M̄m(c, α) at any point
x ∈ Mn, the relative null space was defined by B. Y. Chen [10], as follows

Nx = {X ∈ TxMn : h(X,Y) = 0, ∀ Y ∈ TxMn}.

For A ∈ {1, · · · , n} a unit vector field eA tangent to Mn at x satisfies the equality sign of (4.1)
identically if and only if

(i)
n1∑

p=1

n∑
q=n1+1

hr
pq = 0 (ii)

n∑
b=1

n∑
A=1
b,A

hr
bA = 0 (iii) 2hr

AA =

n∑
q=n1+1

hr
qq, (4.33)

such that r ∈ {n + 1, · · ·m} the condition (i) implies that Mn is mixed totally geodesic semi-slant warped
product submanifold. Combining statements (ii) and (iii) with the fact that Mn is semi-slant warped
product submanifold, we get that the unit vector field χ = eA belongs to the relative null space Nx. The
converse is trivial, this proves statement (2).

For a semi-slant warped product submanifold, the equality sign of (4.1) holds identically for all unit
tangent vector belong to Nn1

T at x if and only if

(i)
n1∑

p=1

n∑
q=n1+1

hr
pq = 0 (ii)

n∑
b=1

n1∑
A=1
b,A

hr
bA = 0 (iii) 2hr

pp =

n∑
q=n1+1

hr
qq, (4.34)

where p ∈ {1, · · · , n1} and r ∈ {n + 1, · · · ,m}. Since Mn is semi-slant warped product submanifold, the
third condition implies that hr

pp = 0, p ∈ {1, · · · , n1}. Using this in the condition (ii), we conclude
that Mn is DT -totally geodesic semi-slant warped product submanifold in M̄m(c, α) and mixed totally
geodesicness follows from the condition (i), which proves (a) in the statement (3).

For a semi-slant warped product submanifold, the equality sign of (4.2) holds identically for all unit
tangent vector fields tangent to Nn2

θ at x if and only if

(i)
n1∑

p=1

n∑
q=n1+1

hr
pq = 0 (ii)

n∑
b=1

n∑
A=n1+1

b,A

hr
bA = 0 (iii) 2hr

KK =

n∑
q=n1+1

hr
qq, (4.35)

such that K ∈ {n1 + 1, · · · , n} and r ∈ {n + 1, · · · ,m}. From the condition (iii) two cases emerge, that is

hr
KK = 0, ∀K ∈ {n1 + 1, · · · , n} and r ∈ {n + 1, · · · ,m} or dim Nn2

θ = 2. (4.36)

AIMS Mathematics Volume 7, Issue 4, 7069–7092.



7082

If the first case of (4.35) satisfies, then by virtue of condition (ii), it is easy to conclude that Mn is a Dθ-
totally geodesic semi-slant warped product submanifold in M̄m(c, α). This is the first case of part (b)
of statement (3).

For the other case, assume that Mn is not Dθ-totally geodesic semi-slant warped product submanifold
and dim Nn2

θ = 2. Then condition (ii) of (4.35) implies that Mn is Dθ-totally umbilical semi-slant warped
product submanifold in M̄(c, α), which is second case of this part. This verifies part (b) of (3).

To prove (c) using parts (a) and (b) of (3), we combine (4.34) and (4.35). For the first case of this
part, assume that dimNn2

θ , 2. Since from parts (a) and (b) of statement (3) we conclude that Mn is
DT -totally geodesic and Dθ-totally geodesic submanifold in M̄m(c, α). Hence Mn is a totally geodesic
submanifold in M̄m(c, α).

For another case, suppose that first case does not satisfy. Then parts (a) and (b) provide that Mn

is mixed totally geodesic and DT -totally geodesic submanifold of M̄m(c, α) with dimNn2
θ = 2. From

the condition (b) it follows that Mn is Dθ-totally umbilical semi-slant warped product submanifold and
from (a) it is DT -totally geodesic, which is part (c). This proves the theorem. �

In view of (2.22), we have another version of the Theorem 4.1 as follows:

Theorem 4.2. Let M = Nn1
T ×ψNn2

θ be a semi-slant warped product submanifold isometrically immersed
in a generalized complex space form M̄(c, α) admitting nearly Kaehler structure. Then for each
orthogonal unit vector field χ ∈ TxM, either tangent to NT or Nθ, then the Ricci curvature satisfy
the following inequalities:

(i) If χ is tangent to NT , then

Ric(χ) ≤
1
4

n2‖H‖2 − n2∆ lnψ + n2‖∇ lnψ‖2 +
c + 3α

4
(n + n1n2 − 1) +

3(c − α)
8

. (4.37)

(ii) If χ is tangent to Nθ, then

Ric(χ) ≤
1
4

n2‖H‖2 − n2∆ lnψ + n2‖∇ lnψ‖2 +
c + 3α

4
(n + n1n2 − 1) +

3(c − α)
8

cos2 θ. (4.38)

The equality cases are similar as Theorem 4.1.

Since, CR-warped product submanifolds are semi-slant submanifolds with the slant angle θ = π
2 .

Therefore, as an example of CR-warped product submanifold, we compile some result of [18] as
follows.

Example 4.1. Let {e0, ei(1 ≤ i ≤ 7)} be the canonical basis of Cayley division algebra on R8 over R,
and R7 is the subspace of R8 generated by the purely imaginary Cayley numbers ei(1 ≤ i ≤ 7). Then

S 6 = {x1e1 + x2e2 + · · · + x7e7 : x2
1 + x2

2 + · · · + x2
7 = 1}

is an unit sphere admitting nearly Kaehler structure (∇̄, J, g). Now suppose that S 2 = {x = (x2, x4, x6) ∈
R3 : x2

2 + x2
4 + x2

6 = 1} is an unit sphere. For a real triple P = {p1, p2, p3) : p1 + p2 + p3 = 0 and
p1 p2 p3 , 0}, let FP : S 2 × R→ S 5 ⊂ S 6 be a mapping, which is define as follows

FP(x1, x2, x3, t) =x1(cos(tp1)e1 + sin(tp1)e5) + x2(cos(tp2)e2 + sin(tp2)e6)
+ x3(cos(tp3)e3 + sin(tp3)e7),

(4.39)
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where x2
1 + x2

2 + x2
3 = 1 and t ∈ R. Then it is clear that FP is an isometric immersion of CR-warped

product submanifold S 2 × f R in to S 6. Moreover, induced warped product metric ḡ on S 2 × f R is given
by

ḡ = π∗1g0 + (
3∑

i=1

(xi pi)2)π∗2dt2,

where π1 : S 2 × f R → S 2 and π2 : S 2 × R → R are the natural projections and g0 is the Riemannian

metric on S 2 and the warping function is given by f =

√∑3
i=1(xi pi)2.

5. Some geometric applications in Mechanics

In this section, we investigate some applications of our attained inequalities, this section is divided
in different subsections as follows:

5.1. Application of Hopf’s Lemma

In this subsection, we shall consider that the submanifold Mn is a compact such that ∂M = φ. In the
next theorem, we will see the application of Hopf’s lemma for semi-slant warped product submanifold.

Theorem 5.1. Let Mn = Nn1
T ×ψ Nn2

θ be a semi-slant warped product submanifold isometrically
immersed in a generalized complex space form M̄(c, α) admitting nearly Kaehler structure. If the
unit tangent vector χ is tangent to either NT or Nθ, then Mn is simply Riemannian product submanifold
if the Ricci curvature satisfy one of the following inequalities:

(i) the unit vector field χ is tangent to NT and

Ric(χ) ≤
1
4

n2‖H‖2 +
c + 3α

4
(n + n1n2 − 1) +

3(c − α)
8

. (5.1)

(ii) the unit vector field χ is tangent to Nθ and

Ric(χ) ≤
1
4

n2‖H‖2 +
c + 3α

4
(n + n1n2 − 1) +

3(c − α)
8

cos2 θ. (5.2)

Proof. Suppose that inequality (5.1) holds. Then from (4.1), we get ∆ψ

ψ
≤ 0, which implies ∆ψ ≤ 0,

on using Hopf’s Lemma, we observe that the warping function is constant and the submanifold Mn is
Riemannian product. Similar result can be proved by using inequality (5.2). �

5.2. First eigenvalue of the warping function

The lower bound of Ricci curvature contains numerous geometric properties. Suppose the
submanifold Mn is complete non-compact and x be a any arbitrary point on Mn. For the Riemannian
manifold Mn, λ1(Mn) denotes the first eigenvalue of the following Dirichlet boundary value problem.

∆φ = λφ in Mn and φ = 0 on ∂Mn, (5.3)

where ∆ denotes the Laplacian on Mn and defined as ∆φ = −div(∇φ). By the principle of monotonicity
one has r < t which indicates that λ1(Mn

r ) > λ1(Mn
t ) and lim

r→∞
λ1(Dr) exists and first eigenvalue is

defined as
λ1(M) = lim

r→∞
λ1(Dr).
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Several geometers have been worked on the analysis of first eigenvalue of the Laplacian operator
(see [15, 17, 31] ). For a non-constant warping function the maximum (minimum) principle on the
eigenvalue λ1, we have ( [6, 10])

λ1

∫
Mn
φ2dv ≤

∫
Mn
‖∇φ‖2dV. (5.4)

The equality holds if and only if ∆φ = λ1φ.

The relation between Ricci curvature and first eigenvalue is derived in the following theorem:

Theorem 5.2. Let Mn = Nn1
T ×ψ Nn2

θ be a semi-slant warped product submanifold isometrically
immersed in a generalized complex space form M̄(c, α) admitting nearly Kaehler structure. Suppose
that the warping function lnψ is an eigenfunction of the Laplacian of Mn associated to the first
eigenvalue λ1(Mn) of the problem (5.3), then the following inequalities hold:

(i) If the unit vector field χ is tangent to NT then∫
Mn

Ric(χ)dV ≤
1
4

n2
∫

Mn
‖H‖2dV + n2λ1

∫
Mn

(lnψ)2dV+

+
[c + 3α

4
(n + n1n2 − 1) +

3(c − α)
8

]
Vol(Mn).

(5.5)

(ii) If the unit vector field χ is tangent to Nθ then∫
Mn

Ric(χ)dV ≤
1
4

n2
∫

Mn
‖H‖2dV + n2λ1

∫
Mn

(lnψ)2dV+

+
[c + 3α

4
(n + n1n2 − 1) +

3(c − α)
8

cos2 θ
]
Vol(Mn).

(5.6)

The equality cases are same as in Theorem 4.1.

Proof. Since Mn is compact that mean it has lower and upper bounds. Let λ1 = λ1(M) and lnψ
be a solution of Dirichlet boundary problem corresponding to the first eigenvalue λ1(Mn). Suppose
χ ∈ T NT , then the inequality (4.37) can be written as follows

Ric(χ) − n2‖∇ lnψ‖2 ≤
1
4

n2‖H‖2 − n2∆ lnψ +
c + 3α

4
(n + n1n2 − 1) +

3(c − α)
8

. (5.7)

Integrating above inequality with respect to volume element dV, we find∫
Mn

Ric(χ)dV − n2

∫
Mn
‖∇ lnψ‖2dv ≤

n2

4

∫
Mn
‖H‖2dV +

3(c − α)
8

Vol(Mn)

+
c + 3α

4
(n + n1n2 − 1)Vol(Mn).

(5.8)

Since λ1 is an eigenvalue of the eigenfunction lnψ, such that ∆ lnψ = λ1 lnψ, then equality in (5.4)
holds for φ = lnψ, ∫

Mn
‖∇ lnψ‖2dV = λ1

∫
Mn

(lnψ)2dV, (5.9)
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using in (5.8), we obtain∫
Mn

Ric(χ)dV − n2λ1

∫
Mn

(lnψ)2dV ≤
n2

4

∫
Mn
‖H‖2dV +

3(c − α)
8

)Vol(Mn)

+
c + 3α

4
(n + n1n2 − 1)Vol(Mn),

(5.10)

which proves the part (i). Similarly, one can proves the part (ii). �

5.3. Dirichlet energy and Euler-Lagrangian equation for the warping function

Let Mn be a compact Riemannian manifold and φ be a positive differentiable function on Mn. Then
formula for Dirichlet energy of a function φ is given by [8]

E(φ) =
1
2

∫
Mn
‖∇φ‖2dV, (5.11)

where dV is the volume element of Mn and formula for Lagrangian of the function φ on Mn is given
in [8]

Lφ =
1
2
‖∇φ‖2. (5.12)

The Euler-Lagrange equation for Lφ is given by

∆φ = 0. (5.13)

Considering that the semi-slant warped product submanifold Mn = Nn1
T ×ψ Nn1

θ is a compact orientable
without boundary such that ∂Mn = φ. Then in the following theorem we have a relation between
Dirichlet energy, Ricci curvature and mean curvature vector.

Theorem 5.3. Let Mn = Nn1
T ×ψ Nn2

θ be a semi-slant warped product submanifold of a generalized
complex space form admitting nearly Kaehler manifold. Then we have the following inequalities for
the Dirichlet energy of the warping function lnψ:

(i) If the unit vector field χ is tangent to NT then

E(lnψ) ≥
1

2n2

∫
Mn

Ric(χ)dV −
n2

8n2

∫
Mn
‖H‖2dV −

[ (c + 3α)
8

.
(n + n1n2 − 1)

n2

+
3(c − α)

16n2

]
Vol(Mn).

(5.14)

(ii) If the unit vector field χ is tangent to Nθ then

E(lnψ) ≥
1

2n2

∫
Mn

Ric(χ)dV −
n2

8n2

∫
Mn
‖H‖2dV −

[ (c + 3α)
8

.
(n + n1n2 − 1)

n2

+
3(c − α)

16n2
cos2 θ)

]
Vol(Mn).

(5.15)

The equality cases are similar as in Theorem 4.1.
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Proof. For a positive valued differentiable function φ defined on a compact orientable Riemannian
manifold without boundary, by theory of integration on Riemannian manifold we have

∫
Mn ∆φdV = 0.

On applying this fact for the warping function lnψ, we have∫
Mn

∆ lnψdV = 0. (5.16)

Integrating inequality (4.1) with respect to volume element dV on semi-slant warped product
submanifold Mn, which is compact and orientable without boundary, we get∫

Mn
Ric(χ)dV ≤

n2

4

∫
Mn
‖H‖2dV + n2

∫
Mn
‖∇ lnψ‖2dV − n2

∫
Mn

∆ lnψdV

+
[c + 3α

4
(n + n1n2 − 1) +

3(c − α)
8

]
Vol(Mn).

(5.17)

�

Using the formula (5.11) and after some computation, the required inequality is derived. In a similar
method, we can prove the inequality (5.15)

Further, in the following theorem we will compute the Lagrangian for the warping function lnψ.

Theorem 5.4. Let Mn = Nn1
T ×ψ Nn2

θ be a compact orientable semi-slant warped submanifold
isometrically immersed in a generalized complex space form admitting nearly Kaehler manifold such
that the warping function lnψ satisfies the Euler-Lagrangian equation, then

(i) If the unit vector field χ is tangent to NT , then

Llnψ ≥
1

2n2
Ric(χ) −

n2

8n2
‖H‖2 −

(c + 3α)
8

.
(n + n1n2 − 1)

n2
−

3(c − α)
16n2

. (5.18)

(ii) If the unit vector field χ is tangent to Nθ, then

Llnψ ≥
1

2n2
Ric(χ) −

n2

8n2
‖H‖2 −

(c + 3α)
8

.
(n + n1n2 − 1)

n2
−

3(c − α)
16n2

cos2 θ, (5.19)

where Llnψ is the Lagrangian of the warping function defined in (5.12). The equality cases are same as
Theorem 4.1.

Proof. The proof follows immediately on using (5.12) and (5.13) in Theorem 4.1. �

Further, the Hamiltonian for a local orthonormal frame at any point x ∈ Mn is expressed as
follows [8]

H(p, x) =
1
2

n∑
i=1

p(ei)2. (5.20)

On replacing p by a differential operator dφ, then from (2.20), we get

H(dφ, x) =
1
2

n∑
i=1

dφ(ei)2 =
1
2

n∑
i=1

ei(φ)2 =
1
2
‖∇φ‖2. (5.21)

In the next result we obtain a relation between Hamiltonian of warping function, Ricci curvature and
squared norm of mean curvature vector.
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Theorem 5.5. Let Mn = Nn1
T ×ψ Nn2

θ be a semi-slant warped product submanifold isometrically
immersed in a generalized complex space form M̄(c, α) admitting nearly Kaehler structure then the
Hamiltonian of the warping function satisfy the following inequalities

(i) If χ ∈ T NT , then

H(d lnψ, x) ≥
1

2n2
{Ric(χ) + n2∆ lnψ −

n2

4
‖H‖2 −

c + 3α
4

(n + n1n2 − 1) −
3(c − α)

8
} (5.22)

(ii) If χ ∈ T Nθ, then

H(d lnψ, x) ≥
1

2n2
{Ric(χ) + n2∆ lnψ −

n2

4
‖H‖2 −

c + 3α
4

(n + n1n2 − 1) −
3(c − α)

8
cos2 θ}

(5.23)

Proof. By the application of (5.21) in theorem 4.1, we get the required results.
�

5.4. Applications of Obata’s differential equation

This subsection is based on the study of Obata [29]. Basically, Obata characterized a Riemannian
manifolds by a specific ordinary differential equation and derived that an n-dimensional complete
and connected Riemannian manifold (Mn, g) to be isometric to the n-sphere S n if and only if there
exists a non-constant smooth function φ on Mn that is the solution of the differential equation
Hφ = −cφg, where Hφ is the Hessian of φ. Inspired by the work of Obata [29], we obtain the following
characterization

Theorem 5.6. Suppose Mn = Nn1
T ×ψ Nn2

θ is a compact orientable warped product submanifold
isometrically immersed in a generalized complex space form Mm(c, α) admitting nearly Kaehler
structure with positive Ricci curvature and satisfying one of the following relation

(i) χ ∈ T NT and

‖Hessφ‖2 = −
3λ1n2

4n1n2
‖H‖2 −

3λ1

4n1n2

[
(c + 3α)(n + n1n2 − 1) +

3(c − α)
2

]
, (5.24)

(ii) χ ∈ T Nθ and

‖Hessφ‖2 = −
3λ1n2

4n1n2
‖H‖2 −

3λ1

4n1n2

[
(c + 3α)(n + n1n2 − 1) −

3(c − α)
2

cos2 θ)
]
, (5.25)

where λ1 > 0 is an eigenvalue of the warping function φ = lnψ. Then the base manifold Nn1
T is

isometric to the sphere S n1(λ1
n1

) with constant sectional curvature λ1
n1

.

Proof. Let χ ∈ T NT . Consider that φ = lnψ and define the following relation as

‖Hessφ − tφI‖2 = ‖Hessφ‖2 + t2φ2‖I‖2 − 2tφg(Hessφ, I). (5.26)

But we know that ‖I‖2 = trace(II∗) = p and

g(Hess(φ), I∗) = trace(Hessφ, I∗) = traceHess(φ).
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Then Eq (5.26) transform to

‖Hessφ − tφI‖2 = ‖Hessφ‖2 + pt2φ2 − 2tφ∆φ. (5.27)

Assuming λ1 is an eigenvalue of the eigenfunction φ then ∆φ = λ1φ. Thus we get

‖Hessφ − tφI‖2 = ‖Hessφ‖2 + (pt2 − 2tλ)φ2. (5.28)

On the other hand, we obtain ∆φ2 = 2φ∆φ + ‖∇φ‖2 or λ1φ
2 = 2λ1φ

2 + ‖∇φ‖2 which implies that
φ2 = − 1

λ1
‖∇φ‖2, using this in Eq (5.28), we have

‖Hessφ − tφI‖2 = ‖Hessφ‖2 + (2t −
pt2

λ1
)‖∇φ‖2. (5.29)

In particular t = −λ1
n1

on (5.29) and integrating with respect to dV , we get∫
Mn
‖Hessφ +

λ1

n1
φI‖2dV =

∫
Mn
‖Hessφ‖2dV −

3λ1

n1

∫
Mn
‖∇φ‖2dV. (5.30)

Integrating the inequality (4.37 ) and using the fact
∫

Mn ∆φdV = 0, we have∫
Mn

Ric(χ)dV ≤
n2

4

∫
Mn
‖H‖2dV + n2

∫
Mn
‖∇φ‖2dV+

+
c + 3α

4
(n + n1n2 − 1)Vol(Mn) +

3(c − α)
8

Vol(Mn).
(5.31)

From (5.30) and (5.31) we derive

1
n2

∫
Mn

Ric(χ)dV ≤
n2

4n2

∫
Mn
‖H‖2dV −

n1

3λ1

∫
Mn
‖Hessφ +

λ1

n1
φI‖2dV

+
n1

3λ1

∫
Mn
‖Hessφ‖2dV +

c + 3α
4

(n + n1n2 − 1)
n2

Vol(Mn)

+
3(c − α)

8n2
Vol(Mn).

(5.32)

According to assumption Ric(χ) ≥ 0, the above inequality gives∫
Mn
‖Hessφ +

λ1

n1
φI‖2dV ≤

3n2λ1

4n1n2

∫
Mn
‖H‖2dV +

∫
Mn
‖Hessφ‖2dV

+
c + 3α

4
3λ1(n + n1n2 − 1)

n1n2
Vol(Mn) +

9λ1(c − α)
8n1n2

Vol(Mn).
(5.33)

From (5.24), we get ∫
Mn
‖Hessφ +

λ1

n1
φI‖2dV ≤ 0, (5.34)

but we know that ∫
Mn
‖Hessφ +

λ1

n1
φI‖2dV ≥ 0. (5.35)
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Combining last two statements, we get∫
Mn
‖Hessφ +

λ1

n1
φI‖2dV = 0⇒ Hessφ = −

λ1

n1
φI. (5.36)

Since the warping function φ = lnψ is not constant function on Mn so Eq (5.36) is Obata’s [29]
differential equation with constant c = λ1

n1
> 0. As λ1 > 0 and therefore the base submanifold Nn1

T

is isometric to the sphere S n1(λ1
n1

) with constant sectional curvature λ1
n1

. Similarly, we can prove the
theorem by using part (ii). �

In [17] Rio et al. studied another version of Obata’s differential equation in the characterization
of Euclidean sphere. Basically, they proved that if φ is a real valued non constant function on a
Riemannian manifold satisfying ∆φ + λ1φ = 0 such that λ < 0, then Mn is isometric to a warped
product of the Euclidean line and a complete Riemannian manifold whose warping function φ is the
solution of the following differential equation

d2φ

dt2 + λ1φ = 0. (5.37)

Motivated by the study of Rio et al. [17] and Ali et al. [1] we obtain the following characterization.

Theorem 5.7. Suppose Mn = Nn1
T ×ψ Nn2

θ is a compact orientable semi-slant warped product
submanifold isometrically immersed in generalized complex space form M̄(c, α) admitting nearly
Kaehler structure with positive Ricci curvature and satisfying one of the following statement:

(i) χ ∈ T NT and

‖Hessφ‖2 = −
3λ1n2

4n1n2
‖H‖2 −

3λ1

4n1n2

[
(c + 3α)(n + n1n2 − 1) +

3(c − α)
2

]
(5.38)

(ii) χ ∈ T Nθ and

‖Hessφ‖2 = −
3λ1n2

4n1n2
‖H‖2 −

3λ1

4n1n2

[
(c + 3α)(n + n1n2 − 1) +

3(c − α)
2

cos2 θ)
]
, (5.39)

where λ1 < 0 is a negative eigenvalue of the eigenfunction φ = lnψ. Then Nn1
T is isometric to a warped

product of the Euclidean line and a complete Riemannian manifold whose warping function φ = lnψ
satisfies the differential equation

d2φ

dt2 + λ1φ = 0. (5.40)

Proof. Since we assumed that the Ricci curvature is positive then by the Myers’s theorem according
to which, a complete Riemannian manifold with positive Ricci curvature is compact that mean Mn is
compact semi-slant warped product submanifold with free boundary [28]. Then by (5.32) we get

1
n2

∫
Mn

Ric(χ)dV ≤
n2

4n2

∫
Mn
‖H‖2dV −

n1

3λ1

∫
Mn
‖Hessφ +

λ1

n1
φI‖2dV

+
n1

3λ1

∫
Mn
‖Hessφ‖2dV +

c + 3α
4

(n + n1n2 − 1)
n2

Vol(Mn) +
3(c − α)

8n2
Vol(Mn).

(5.41)
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According to hypothesis, Ricci curvature is positive Ric(χ) > 0, then we have∫
Mn
‖Hessφ +

λ1

n1
φI‖2dV <

3n2λ1

4n1n2

∫
Mn
‖H‖2dV +

∫
Mn
‖Hessφ‖2dV

+
c + 3α

4
.
3λ1(n + n1n2 − 1)

n1n2
Vol(Mn) +

9λ1(c − α)
8n2

Vol(Mn).
(5.42)

If Eq (5.38) holds, then from above inequality we get ‖Hessφ + λ1
n1
ψI‖2 < 0, which is not possible

hence ‖Hessφ + λ1
n1
φI‖2 = 0. Since λ < 0, then by result of [17], the submanifold Nn1

T is isometric
to a warped product of the Euclidean line and a complete Riemannian manifold, where the warping
function on R is the solution of the differential equation (5.40). This proves the theorem. Similarly by
assuming (5.39), we can also prove the theorem.

�

6. Conclusions

In this paper firstly we have obtained a Ricci curvature inequality of a semi-slant warped product
submanifold isometrically immersed in a generalized complex space form admitting a nearly Kaehler
structure. Then we have given some applications on Hopf’s Lemma, Dirichlet energy, Euler-
Lagrangian equation, Hamiltonian of warping functions of a semi-slant warped product submanifold
isometrically immersed in a generalized complex space form admitting a nearly Kaehler structure.
In last we have characterized semi-slant warped product submanifold isometrically immersed in a
generalized complex space form admitting a nearly Kaehler structure in the basis of Obata differential
equation.
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