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1. Introduction

The modern name for the study of calculus without limits is quantum calculus (shortly, h-calculus
and g-calculus). The fundamental concepts of g-calculus and b-calculus are given by Kac in [18].
It has a wide range of applications in mathematics, including combinatorics, simple hypergeometric
functions, number theory, orthogonal polynomials, and other sciences, as well as mechanics, relativity
theory, and quantum theory [18].

In convex functions theory, Hermite-Hadamard (H-H) inequality is very important which was
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discovered by C. Hermite and J. Hadamard independently (see, also [15], and [24, p.137]),

f(CHﬁ ff(%)d f(a)+f(ﬁ) (1.1)

2

where f is a convex function. In the case of concave mappings, the above inequality is satisfied in
reverse order. For recent variant of different integral inequalities for different kinds of functions, one
can consult [25-27]. The quantum variants of the inequality (1.1) given by Alp et al [8] and Bermudo
et al [10] using the g-integrals as follows:

qa +p f Wy qf( ) +1(B) 12

f( 2}4) e ) T® o (1.2)
and

@ +qp f < (@ TP 5

( ) ) T® &, (1.3)

where f is convex mapping and [2], = 1 + g. It is obvious that the inequalities (1.2) and (1.3) turn
into (1.1)as g — 1°.

Many integral inequalities have been studied using g-integrals for various types of functions. For
example, in [2,5,8-12,17,21], the authors used g-derivatives and g-integrals to prove H-H integral
inequalities and their left-right estimates for convex and coordinated convex functions. In [22], Noor
et al presented a generalized version of g-H-H integral inequalities. For generalized quasi-convex
functions, Nwaeze et al. proved certain parameterized g-integral inequalities in [23]. Khan et al proved
g-H-H inequality using the green function in [19]. Budak et al [13], Ali et al [1,3,7] and Vivas-Cortez
et al [28] developed new g-Simpson’s and g-Newton’s type inequalities for convex and coordinated
convex functions. For g-Ostrowski’s inequalities for convex and co-ordinated convex functions one
can consult [4, 6, 14].

The main goal of this study is to discover h-calculus analogs of various classical integral
inequalities. In particular, we prove b-generalization of Holder’s inequality, H-H inequality and
related inequalities, Ostrowski’s inequality and trapezoidal inequality.

To the best of our knowledge, this is the first research that uses the h-integral to study quantum
integral inequalities.

The following is the structure of this paper: A brief overview of the concepts of ))-calculus, as well as
some related works, is given in Section 2. In Section 3, we use the h-integral and h-derivative to prove
Holder’s inequality, H-H inequality for convex functions, H-H type inequalities for twice differentiable
functions, Ostrowski’s inequality, and trapezoidal inequality. In Section 4, we give application to
special means of real numbers for newly established inequalities. Section 5 concludes with some
applications of newly established results and recommendations for future studies.

2. Preliminaries of h-calculus
In this section, we recollect some formerly regarded concepts of h-calculus.
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Definition 2.1. [18] For a mapping T : [a,B] — R, the h-derivative of T at x € |, B] is defined as:

fle+D)—1()

Dy (7 () = 0 2.1
where b # 0.
The product and quotient rules for h-differentiation are simple to verify:
Dy (F () g (%)) = T (2¢) Dy (g (%)) + g (% + ) Dy (f () , (2.2)
e (%) Dy (7 () — T (%) Dy (g (%))
D‘(;((g) T P 2

Definition 2.2. [18] The h-binomial (x — a)y is expressed as:
x-—a)y=x-a)x-a=-Dh..x—a-(m-1h),

wheren > 1 and (x — a/)g =1.

One can easily observe that
n—1

Dy(x —a)y =n(x —a)y

Definition 2.3. [18] For a mapping § : [a, 8] — R, the definite h-integral of T is defined as:
y: hH@+f(@+h)+..+T(B-D), ifa<p
f F(x)dyx = 0, ifa=p, 2.4)
¢ -HEB@+TB+DH+...+il@-D), ifa>p,
where ) # 0 and B — a € HZ.

Remark 2.4. Iff (%) < g (%), then the following YH-integral relationship is true:

B 8
f (o) dyx < f ¢ Gy de.

Theorem 2.5 (Fundemantal theorem of h-calculus). [I8] If F (x) is an Y-antiderivative of T (x) and
B — a € bZ, we have

B
f () dyx = F(B)— F (@). 2.5)
From (2.2) and (2.5), we have the following b-variant of integration by parts:
B
fﬂf(%)dbg(%) =fBgPB) -Tla)g(a)- f g +Dh)dyf(%).
For more details about the -derivative and h-integral, one can consult [18].
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3. b-integral inequalities

In this section, we prove different quantum integral inequalities via h-integral. Throughout the
section, let I = [, 8] € R and b # 0 be a constant.

Theorem 3.1 (Holder’s inequality ). Let py, p» > 1 such that pil + — = 1. Then, we have the following

inequality

1
P2

v 5 a 7
f |f<t>||g<r)|df,ts( f P dbt) ( f |g<z)|f’2dbr) |

Proof. From the Definition of h-integral and discrete Holder’s inequality, we have

B-a
5 !

b ) li(a+ bllg@+ bl

4
f IF(Ol1g (Dl dyt

1 1
P1 Ba_ 2]
5 1

j=0
ooy
b > li@+ml| [b ) lgl+ bl
Jj=0 j=0

8 B 7
= flf(t)lpldbf) (f |g(t)|p2dbt) ,

and the proof is completed. O

IA

Remark 3.2. If we set the limit as t) — 0, then we obtain the classical integral Holder’s inequality.
We needs the following lemma to prove the next result.

Lemma 3.3. For any integrable mapping f : [, 8] — R and let ¢ be a convex mapping, the following

inequality is true:
1 (* I
QD(EL T(%)db%)sﬁ—afa @ (F(2)) dy. 3.1

Proof. Since ¢ is a convex mapping, therefore for every point (%, ¢ (%)) on the graph of ¢ there is a
line y = a (% — %¢) + ¢ (0) such that ¢ (%) > a (% — %) + ¢ (%) for all x in the domain of ¢. Now, we

assume that », = B_La fa p f () dyx and bh-integrate the inequality

e (F0G0)) 2 a(f(x) —x0) + ¢ (x0),

B
f o (F () dyx = a (2o — 20) (B— @) + (B~ a) ¢ (%) .

Thus,

1 s 1 B
mf ¢(f(%))db%2¢>(ﬁ_—af f(%)db%),

and the proof is completed. m|
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Theorem 3.4 (H-H inequality). For a convex mapping T : I — R, the following inequality holds:

a+p-0h 1 s f(@)+7(B) b (f(@-T(B)
T( > )sﬁ_afaf(%)db%g > +ﬁ_a( > ) (3.2)

Proof. Since f is convex, therefore

1 B
One can easily observe that
5 Ba_
1 1S _
— j; xdyx = e FZO (a+ jb) (3.4)
_a+pB-h
= —0
Thus the first inequality of (3.2) is proved.
To prove the second inequality, we again use the convexity and we have
100 <f@+ O 1Dy, (3.5)
B—a
Applying b-integral on the both sides of (3.5), we have
B —
[tede < G-wi@- (f(ﬁ)—f(a))(m —a)
- f(a)('B_T) T(B)(ﬁ 2 b)
= -0 P D @ - i@,
and the proof is completed. O

Remark 3.5. If we take the limit as ) — 0 in Theorem 3.4, then we recapture the classical H-H
inequality for convex functions.

Example 3.6. We define a convex mapping §(x) = »>. Then, from inequality (3.2) fora = 1, = 2,

andl = 5, we have
(BB _o(S)_(5) .23
2 S \4) \4) 16
1 (* S 13
IB——QLT(%)db%_f;%d;%_g’
and

f@+i(® b fla-i@®)_7
2 2 g

It is obvious that
25 39 7

6244
which shows that the inequality (3.2) is valid for convex functions.
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We prove the following new refinements of H-H type inequality (3.2) for twice differentiable
functions.

Theorem 3.7. For a continuous mapping T : I — R, which is twice differentiable on I°, the following
inequality holds:

2
f(a+,8—b)_@(a+ﬁ—b) +§(a(ﬁ_b)+(ﬁ—a—b)(2(ﬁ—a)—b)) (3.6)

2 2 2 6
1 5
< B——a’fa: f(%) db%
Ha)+i® b @ + P a+p
< TS s (@16 - m +bm( 4)
%(a(ﬁ_m<ﬁ—a—b>(é<ﬁ—a)—b>)’

where m = inf, .- T (%).

Proof. As f is a twice differentiable function on I°. Set g () = f (x) — 2x* and g (%) = §" () —m > 0,
then from inequality (3.2), we have

g(aJr'g_b) < ,Bia faﬁg(%) dyx < 8@ ;g(ﬁ) +ﬁ?a(g(a);g('8)). (3.7)
For g (x) = f (x) — 2%, the inequality (3.7) becomes
() pfesf
< ﬁ%a fjf(%) dyx — 2(ﬁm_ > ff%za’b%
< KB, G- o (22E),
Thus, we obtain the required inequality (3.6) by simple computations in (3.8). D

Remark 3.8. If we take the limit as h) — 0 in Theorem 3.7, then Theorem 3.7
becomes [16, Theorem 1.1].

Example 3.9. We define a mapping § : [0,1] — R by §(x) = %> + »%. Then from inequality (3.6) for
"G)=6x+2, fora=0,=1,m=2andl = % we have

a+B-b) m(a+B-b) m B-a-b)Q2B-a)-b
(240 5 o o)
_ 9
64’
1 B 3
T f f06) dye = = (3.10)
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and
{@+i®) Crp . atp
T 3 (@10 —m o (T (3.11)
o a(ﬁ_b)+(ﬁ—a—b)(2(ﬁ—a)—b))
2 6
_ 3
-2

Finally, we conclude from the equalities (3.9)—(3.11) that the inequality (3.6) is valid and

9 3 3
— < — < -,
64 16 8
Theorem 3.10. For a continuous mapping T : I — R, which is twice differentiable on I°, the following

inequality holds:

2
T(auza—b)_%(aﬂza—b)+%(a(ﬁ_b)+(ﬂ—a—b)(z(ﬁ—a)—b)) (3.12)
1 8
> ,B——a’ff(%) db%
f@)+7(B) b a*+p° a+p
> TSt s (@ 18y - M + oM (“2F)

%(a(ﬁ_m (ﬁ—a—b)(z(ﬁ—a)—b))’

where M = max,c;- f (%) .

Proof. Asfis atwice differentiable function on 1°. Set g (%) = —f (%) + ]‘2—4%2 and g” (%) = —f" () + M >
0, then from inequality (3.2), we have

a+B-D 1 (7 g+g®B b (gl@-gP
g( > )SIB_QL g (%) dyx < > +,8—a( > ) (3.13)

For g (%) = —f () + %2, the inequality (3.13) becomes

a+B-b) M(a+B-0b\
‘f(T) ty (T) (3.14)
1 (7 M s
< —mfa f () dyx + G- f % dyn
fl@+i® ) o+ a+p
S T e (@ 1)+ M +oM (222).
Thus, we obtain the required inequality (3.12) by simple computations in (3.14). m|

Remark 3.11. If we take the limit as ) — 0 in Theorem 3.10, then Theorem 3.10
becomes [16, Theorem 1.2].
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Example 3.12. We define a mapping § : [0, 1] — R by f (%) = %> + »%%. Then from inequality (3.6) for
"H)=6x+2, fora=0,=1,M=2andl = wehave

a+f-b) M(a+B-b (B-a-H)QEB-a)-b
(575 (75 ¢ Ffew-or EmmRGER) s
2l
64’
1 (f 3
5= f T06) dye = (3.16)
and
i@+i@® b Crp @+ p
T 3 (@10 - M o () (3.17)
+%(a(ﬁ_b)+(ﬁ—a—b)(é(ﬁ—a)—b))

= 0.

Finally, we conclude from the equalities (3.15)—(3.17) that the inequality (3.12) is valid and

Now, we prove an Ostrowski inequality and trapezoidal inequality via h-integral.

Theorem 3.13 (Ostrowski inequality). For a Lipschitz mapping T : I — R with

IIflli, = sup {'—y

The following inequality holds:

y}=M<00.

1 B
f(%)—ﬁ_—af; F(0) dyt (3.18)
< - —ath)+ B-n)B-x-D)
_Z(B—a)%a%ab B-—2)(B—x—-D).
Proof. It is easy to note that
T(%)——fﬂf(t)dbt = ‘ﬁ— f(f(%)—f(t))dbt
< ﬁfa 160~ F (0l dyt
B
< ifl%—tla,’bt
IB_Q @
S +D) + ) )]
= 26 x—a)(x—a+bh)+B-x)B-x-b)],
and the proof is completed. O
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Remark 3.14. If we take the limit as &y — 0 in Theorem 3.13, then we have the following classical
Ostrowski inequality

Hm———iff@m

< Z(ﬂ [(% ) + (B - %)

See, also [20].

Theorem 3.15 (Trapezoidal inequality). For an b-differentiable mapping | : I — R with |Dbf (%)| <M,
the following inequality holds:

f(a);f(ﬁ)‘sM(ﬁs_a)[(ﬂ_a+2b)+(ﬁ_a,_2]f))], (3.19)

B
f fE+Db)dy - (B-a)

Proof. Form h-integration by parts, it is easy to note that

faﬁ(z—#)Dbf(t)dbt:(ﬁ—a)w—ff(wb)dﬂ. (3.20)
Taking modulus on the both sides of (3.20), we have
lﬂa+mw-w—mﬁﬂgmﬂ < ﬁQ———N@mM%r
< t _arp db
MO g as2m)+g-a-),
and the proof is finished. o

Remark 3.16. If we set ) — 0 in Theorem 3.15, then we have the following classical trapezoidal

inequality
g f@+i@)| _ MB-a’
[twa-@-o " TE HEZD

See, also [20].
4. Applications

For arbitrary positive numbers k1, k; (k; # k3), we consider the means as follows:

(1) The arithmatic mean

K1 + K>

A=Al k) = —

(2) The geometric mean

G = G (k1,k2) = VKiks.
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(3) The harmonic means
2K 1K2

7‘{ = 7—{(’(1”(2) =

Ki +K2'

Proposition 4.1. For a, € R with a < 3, the following inequality is true:

2
(ﬂ (@.8) - g) <0, < A(Af) - WA @B

where
Ba_ 4

1 (? h <
0, = —f Wi = —— (@ + jH)*.
CB-al, T B-a jZO
Proof. The inequality (3.2) in Theorem 3.4 for mapping f () = % leads to this conclusion.

Proposition 4.2. For a,B € R with a < f3, the following inequality is true:

-2
(ﬂ (@) - g) <0 <H' (A 8)-bH " (@.B) G (a.B)

where
B-a 1

1 (7, 5
0, =— H dyt = ——
ﬁ_a/ a IB_Q :

J

(a+ jH72.

M

Il
=)

Proof. The inequality (3.2) in Theorem 3.4 for mapping f () = %>

Proposition 4.3. For a, € R with a < 3, the following inequality is true:

-1 MO () ()

, % # 0 leads to this conclusion.

Proof. The inequality in Theorem 3.13 for » = # and mapping f(x) = »”, p > 2 leads to this

conclusion.

Proposition 4.4. For o, € R with a < 3, the following inequality is true:

o < HOD S ) (),

1 p S .
®4:m£%_1db%:ﬁ%a2(a+]b)]-

a+

O

Proof. The inequality in Theorem 3.13 for » = Tﬁ and mapping f(x) = x7', % # 0 leads to this

conclusion.

O
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Proposition 4.5. For a, € R with a < 3, the following inequality is true:

M (B - a)

©s - B-a) A’ < —

[(B—a+2b)+(B-a-2b)],

where
By

¥ b
®5:f (t+0) dpe=1 Y (@+(j+DbY.
a =0

Proof. The inequality in Theorem 3.15 for the mapping f (%) = x”, p > 2 leads to this conclusion. O

Proposition 4.6. For a, € R with a < 3, the following inequality is true:

M (B - a)
@ — (B-a)InG (a,p)| < (ﬁT [B—a+2h)+(B-a-2b)],
where
|
5 D
O = f In(t+bh)dyx = Z In(@+(+1)h).
a =0
Proof. The inequality in Theorem 3.15 for the mapping f (%) = In x leads to this conclusion. O

5. Conclusions

In this work, we used b-calculus to prove h-analogs of some classical inequalities, such as H-H
inequality, Ostrowski inequality, and trapezoidal inequality. We have utilized several mathematical
examples to demonstrate the correctness of the stated inequalities. Since the h-integral of the function
is very difficult to calculate, therefore the newly established inequalities (3.2), (3.6) and (3.12) gave the
bounds of A-integral of the function and with the help of these bounds we can approximate the value
of the h-integral of functions. Moreover, the newly established inequalities (3.18) and (3.19) could be
applied to find the error bounds of the A-integral formulas. Future researchers would be able to show
similar inequalities for the other classes of functions and for co-ordinated convex functions in their
future study.
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