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Abstract: NASA’s Psyche mission will launch in August 2022 and begin a journey of 3.6 years to
the metallic asteroid: Psyche, where it will orbits and examine this unique body. This paper presents
an alternative opportunity of the Psyche mission as well as the return opportunity to the Earth. It uses
Mars’s gravity assists to rendezvous with and orbits to the largest metal asteroid in the solar system.
The spacecraft orbits around Psyche for approximately 1710 solar days, then starts its return journey.
In the outer layer of the proposed methodology, the differential evolution algorithm is used to find the
optimal launch, flyby and arrival date. In the inner layer, Lambert’s algorithm is used for finding the
feasible and optimal space trajectories solution. Considering gravity assists, before the gravity assists
impulse, an optimal thrust impulse has been calculated at periapsis of the fly-by planet that gives the
maximum ∆ν2 to the spacecraft.
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1. Introduction

NASA’s first program, which began in 1972, demonstrated the scientific advantage that could be
achieved from a cost-capped, competitively awarded deep space exploration mission. Pioneer 10,
which flew past an unidentified asteroid on August 2, 1972, was the first spacecraft to visit an unknown
asteroid [1]. Then another, on October 18, 1988, the Galileo spacecraft was launched. It was the first
spacecraft to send an entry probe into the atmosphere of an outer planet, in this case Jupiter’s. On
October 29, 1991, he made a flyby with the asteroid 951 Gaspra before entering Jupiter’s parking
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orbit [15]. Whereas, the Near Earth Asteroid Rendezvous-shoemaker mission was initialized on
February 17, 1996. It was the first asteroid mission, with the probe orbiting the 433 Eros asteroid
at a distance of about 50 kilometers. Following that, various asteroid missions to collect physical
samples and return to Earth were launched, like Table 1.

Table 1. The successful asteroid mission.

Mission Year References
Sturdust 1996 [6]
Hayabusa 2003 [30]
Dawn 2007 [20]
Hayabusa2 2014 [25]
OSIRIX-REx 2016 [11]

The proposed project Psyche: journey to a metal world, handed by principal investigator Dr. Linda
Elkins-Tontan of Arizona state university, was selected for implementation as a part of NASA’s
discovery exploration program in January 2017 [16]. The electric propulsion makes possible this
mission and would use SPT-140 Hall-thrusters to rendezvous and orbit around Psyche, one of the
largest asteroid in the solar system. It’s the first time Hall-thrusters have been seen outside lunar
orbit [8] and the references therein [13, 14, 23, 24].

Whereas, the two-point boundary value problem (TPBVP) in the two-body dynamical environment
is known as Lambert’s problem. It requires the positions of any two celestial bodies and the transfer
time between them. The solution of the Lambert’s problem gives the initial and final velocities of
the transfer trajectory. A brief knowledge about Lambert’s problem is given by Blanchard et al. [5].
They discussed various cases of Lambert’s problem in to a single form. The research articles [3,9] have
described related numerical work. It is a fundamental astrodynamics problem. Its solution may be used
in a variety of orbit maneuver missions’ guidance, control, and optimization procedures, including orbit
transfer, orbit interception, and orbit rendezvous [32]. Furthermore, Battin [4] pointed out that in the
two-point boundary value problem, the product of the chordal and radial terminal velocity components
is constant. This characteristic may be utilized to address the challenge of determining the optimal free-
time orbit movement between two fixed endpoints. The minimum-fuel solution for the single-impulse
free-time problem is found by calculating the roots of a quadratic polynomial [4].

Whereas, the differential evolution algorithm (DEA) has been included in this methodology to found
the optimal launch, flyby and arrival date [12, 31]. Most of the basic and advanced properties of the
DEA are given by Uday K. Chakraborty in his book [7]. He described details of the DEA in the
area of optimization research like advanced planning and scheduling model, real time task scheduling
models, reliability optimization models, communication network model, multi-objective rendezvous
model and many more [35]. It has been effectively applied in the trajectory optimization problem
and it gives a better result compare to the Particle swarm optimization technique [10, 17]. The results
of recent research suggests that the non-dominated sorting DEA can be effectively used to discover
various optimal solution, the information on which could be helpful to the best optimal launch date
of trajectory design [18]. Furthermore, [33, 34] developed a simplified approach for determining the
minimum-fuel solution based on the minimum-fuel free-time solution by computing and comparing
two candidates at most. In addition, the shooting technique [21], the homotopic approach [29], and
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differential algebra [2] are used to solve the multiple-revolution perturbed Lambert’s problem.
On the other hand, the interplanetary and interstellar missions frequently employ gravity assistance.

Mariner 10, Pioneer 10, Pioneer 11, Voyager 1, Voyager 2, Galileo, Cassini, Rosetta and Messenger
are just a couple of the missions that have employed gravity assists. The gravity-assist trajectories can
achieve greater orbital energies than those previously feasible with simply chemical rocket propulsion,
offering up new avenues for further exploration of our solar system [26]. The Mariner 10, Messenger,
Cassini and Galileo missions used inner-planetary gravity assists to reach Mercury, Saturn and Jupiter,
respectively. The Voyager and Pioneer missions used gravity assists to escape from the solar system.
The design of interplanetary and interstellar missions presents considerable optimization difficulties.
When the planetary gravity-assist order is changed, they become exceedingly nonlinear, with several
significant discontinuities in the region of optimal solutions [27].

The pressure to reduce the cost of interplanetary missions has resulted in a greater emphasis on
developing missions with shorter flight periods, smaller launch vehicles, and simpler flight systems in
recent years [8, 18]. Because of their high propellant efficiency, these criteria have reignited interest in
low-thrust propulsion systems. The majority of existing trajectory optimization software represents a
sequence of discrete events: launch time, planetary flyby periods, and any deep space maneuvers that
may be necessary [28]. In this regard, we proposed a methodology to obtain an accurate launch date to
minimize ∆v. And to validate this proposed methodology, the Psyche mission has been considered as
an example, which is discussed in the following sections.

Since the Psyche mission was selected, a variety of changes have occurred, including the
development of a new trajectory to support an earlier 2022 lunch opportunity. This paper uses the
differential evolution optimization approach and Lambert’s problem solution to describe a new launch
opportunity and necessary thrust impulse. Section 2 presents the basic description of the differential
evolution algorithm (DEA). Section 3 gives the formulation of the analytic calculation of the maneuver
thrust impulse and gravity impulse during gravity assist. The proposed methodology process with full
details is given in Section 4. Section 5 describes the mission implantation in numerical solution further,
Section 5.1 describes the numerical calculation of Earth to Psyche mission. Section 5.2 provides the
evaluated numerical data of Psyche to Earth return mission and the Section 6 outlines the conclusion.

2. Differential evolution algorithm

The differential evolution algorithm (DEA) is the most frequently used population-based
optimization technique, which is approximately similar to the genetic algorithm. And similar operators
are used in DEA like selection, mutation and crossover [7]. The initial population is randomly
generated and then evaluated, like any other evolutionary algorithm. It is a straightforward and effective
optimizer, particularly for continuous optimization. The DEA uses a self-adaptive scaling factor that
is connected to the value of the last generation’s fitness function, the number of generations, and
a mutation factor to prevent locally optimal solutions. The DEA structure has certain restrictions
in the search logic since it comprises a too-small range of exploration actions. This characteristic
has prompted several computer scientists to enhance DEA by suggesting changes to the original
algorithm. The working principles and the application of the proposed DEA-based methodology have
been discussed throughout this paper.

The main steps of the DEA are given the Algorithm 1:
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Algorithm 1 : Process of differential evolution algorithm
Require: the population Initialization

call Evolution
while optimal value > tolerance do

call Mutation
call Crossover
call Evolution
call S election

end while

When the next number of generations doesn’t improve the global optimal solution, or the maximum
number of generations Gmax is reached, then the DEA process stop searching.

2.1. Population initialization

Generally, each decision variable is assigned a randomly chosen real value from its feasible bounds:

x(0)
j,pop = xmin

j + µ j(xmax
j − xmin

j ), pop = 1, . . . , P; j = 1, . . . ,D, (2.1)

where µ j ∈ [0, 1] is a uniformly distributed random number, generated a new for each value of j. And
xmin

j and xmax
j are the lower and upper bounds of the jth decision variable, respectively.

2.2. Mutation

The mutation operator makes mutant vectors xpop as given below [13]:

x′(G)
pop = x(G)

l + β(x(G)
m − x(G)

n ), pop = 1, . . . , P, (2.2)

where xl, xm and xn are randomly chosen vectors among the P population, and l , m , n. xl, xm and xn

are selected a new for each parent vector. β is the scaling constant, that is used to improve algorithm
convergence. And it also adjusts the perturbation size in the mutation operator.

2.3. Crossover

The crossover operator makes trial vectors x′′pop by using the units of the parent vectors xpop and its
mutant vectors x′pop, as indicated by the below equation [13]:

x′′(G)
j,pop =


x′(G)

j,pop , if α j ≤ CR, or j = q;

x(G)
j,pop, otherwise;

(2.3)

pop = 1, . . . , P; j = 1, . . . ,D,

where α j ∈ [0, 1] is a uniformly distributed random number, generated a new for each value of j. The
crossover constant CR is an algorithm parameter. It aids the algorithm to escape from local minima and
controls the diversity of the population. q ∈ {1, . . . , P} is a randomly chosen index. It guarantees that
the trial vector gets at least one unit from the mutant vector.
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2.4. Selection

The selection operator, select a vector between the parent vectors x(G)
pop and trial vectors x′′(G)

pop, on
the basis of their fitness value. It is chosen for the next generation according to the following criteria.

x(G+1)
pop =


x′′(G)

pop , if x′′(G)
pop ≤ x(G)

pop;

x(G)
pop, otherwise;

(2.4)

pop = 1, . . . , P.

This optimization process is rehashed for several generations, permitting individuals to improve their
fitness as they explore the solution space in search of optimal values.

The population size P, the crossover constant CR ∈ [0, 1] and the scaling factor β ∈ [0, 2] are three
essential control parameters of DEA. The population size determines the number of individuals in the
population and provides the algorithm enough diversity to search the solution space. The diversity of
the population is controlled by crossover constant. And the amount of perturbation in the mutation
process is controlled by the scaling factor.

3. Thrust and gravity impulse

Let’s consider that the time spent in gravity assist isn’t taken into account. The velocity of the
spacecraft in relative to the P2 is ~ν∞, and its magnitude is ν∞ is given as follow:

sin
(
α

2

)
=

µp/r f

ν2
∞ + µp/r f

, (3.1)

where the α is turning angle, µp is the gravitational parameter of the planet and r f is the flyby radius.
The thrust impulse is defined as the sum of the magnitudes of velocity differences between the

arrival velocity (ν−) and the respective departure velocity (ν+). When the gravity assist effect is taken
into account, the thruster does not always have the value |ν+ − ν−|. As a consequence, the issue that
emerges is how to measure the net maneuver impulse analytically. Since

ν+ = ν− + ∆ν, (3.2)

labeling the gravity assist impulse by ∆νG and thrust impulse by ∆νT . Then

∆ν = ∆νG + ∆νT , (3.3)

the goal of this methodology is to determine the ∆νG where ∆νT is minimal.
As a consequence, after gravity assists, the hyperbolic excess velocity assumes this shape as follow:

~ν∞+ = ~ν+ − ~νp. (3.4)

Assume the ~ν∞− in terms of turning angle α, it represented as:

~ν∞− = ν∞ ·
(

sinα cos θ · ~k + sinα sin θ · ~j + cosα ·~i
)
, (3.5)
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where

ν∞ = |~ν∞+|, (3.6)
~j = ~k ×~i and ~k ⊥~i, (3.7)

~i =
~ν∞+

ν∞
, (3.8)

α ∈ [0, αmax], (3.9)
θ ∈ [0, 2π]. (3.10)

The αmax can be calculated by replacing r f with rmin and is given by

αmax = 2 sin−1
( 1
ν2
∞

rmin
µp

+ 1

)
. (3.11)

The unit vector ~k is not unique since it is perpendicular to the unit vector~i. As a result, the only rational
solution is provided by

~k =


[i3, 0,−i1]T ; |i2| ≤ min(|i1|, |i3|),
[−i2, i1, 0]T ; |i3| ≤ min(|i1|, |i2|),
[0,−i3, i2]T ; |i1| ≤ min(|i2|, |i3|),

(3.12)

where i1, i2, i3 are the directional component of the unit vector~i respectively. Then the gravity impulse
is represented as:

∆νG = ~ν∞+ − ~ν∞− (3.13)

= −ν∞ ·
(

sinα cos θ · ~k + sinα sin θ · ~j + (cosα − 1) ·~i
)
. (3.14)

Let’s project ~ν+ − ~ν− onto the frame with base vectors i, j, k and divide each part by ν∞−, then it yields

~ν+ − ~ν− = −ν∞ · (x1 ·~i + x2 · ~j + x3 · ~k), (3.15)

where

x1 = −
(ν+ − ν−)

ν∞
·~i, x2 = −

(ν+ − ν−)
ν∞

· ~j, x3 = −
(ν+ − ν−)

ν∞
· ~k.

From Eqs 3.2, 3.3, 3.14 and 3.15 minimizing |∆νT |, i.e., |ν+ − ν− −∆νG| is equivalent to minimizing the
function:

|ν+ − ν− − ∆νG|
2

ν2
∞

= (sinα cos θ − x3)2 + (sinα sin θ − x2)2 + (cosα − 1 − x1)2, (3.16)

where α ∈ [0, αmax] and θ ∈ [0, 2π] have yet to be discovered. It’s not difficult to get to the point where
Eq 3.16 is minimal.

α = min(αmax, β), θ = arctan 2(x2, x3),
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where

β = cos−1
( 1 + x1√

(1 + x1)2 + x2
2 + x2

3

)
,

the four quadrant inverse tangent function is called arctan 2(y, x).
Thus, the flyby radius r f and the corresponding gravity assist impulse that result in minimal thrust

impulse can be determined analytically for each pair of arrival velocity ~ν− and departure velocity ~ν+.

4. Methodology

A Hohmann transfer is a specific form of lowest fuel transfer orbit for an interplanetary mission.
In reality, the Hohmann transfer takes just a little amount of starting fuel to reach the distant planet.
It is frequently used to go from one circular orbit to another [19]. As a result, it is an appealing
alternative for constructing future expeditions from Earth to Psyche. However, the Hohmann transfer
necessitates a 180-degree change in the true anomaly and only offers a rough approximation of how to
reach Psyche. A more accurate solution to interplanetary transfer is the patched-conic approximation.
It entails breaking down the total transfer into several two-body problems. This approximation, as
opposed to the analytic Hohmann solution, gives a far better understanding of the relationship between
the departure orbit and the total transfer.

Further, the Lambert’s problem is a way to solve for the trajectory connecting two position vectors
with a given time of flight. The ~r0 be the initial position vector at the time t0 and ~r f be the final position
vector at the time t f . ∆t = t f − t0 be the transfer time of the spacecraft between the two positions.
The solution of Lambert’s problem calculated from the general form Kepler’s equation, is defined
in Eq 4.1 [3]:

t f − t0 = ∆t =

√
a3

µ

[
2πk + (E f − e sin E f ) + (E0 − e sin E0)

]
, (4.1)

where E, t, a, e and µ are the eccentric anomaly, time, semi-major axis, eccentricity and gravitational
parameter respectively. The subscripts “0” and “ f ” denote the initial and final states respectively, k is
an integer number refers to the number of staggering.

Furthermore, we need a technique for determining a minimal fuel transfer orbit for an interplanetary
mission from Earth to Psyche. In this regard, we have designed a new methodology with the
combination of DEA, Lambert’s problem and gravity assists, to achieve this goal. The flow chart
of this methodology is given in Figure 1, and the objective function of the DEA is defined as:

Obj. Fun. = ∆v1 + ∆vT + ∆v3. (4.2)

The simulation time depends on the size of the data file like ‘earth.dat’, ‘mars.dat’ and ‘psyche.dat’.
In our case, we have collected 3yr, 4yr and 5yr position and velocity data of the Earth, Mars and Psyche
respectively with time step 1 minute. In our desktop computer, it takes 3–5 seconds to calculate the
optimal opportunity. We run this code up to 100 repetitions to calculate the average simulation time,
which is 4 seconds. The Python interpreted language has been used to code the whole algorithm.
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Figure 1. Flow chart of the methodology simulation process.

So, the last iterated value of this process gives us the optimal launch, flyby and arrival date. The
approach may converge on a physically reasonable solution on every simulation, and only a few
simulation runs are necessary to gain confidence in the strength of the best solution. The degree of
resilience was achieved with the most basic DEA capabilities and significant constraints on the fitness
function’s ability to assess a valuable class of trajectories. The approach, while functional, may benefit
from some enhancements to allow for improved searching and result refining. It has been found that
repopulating a segment of certain generations on a regular basis might assist in potentially avoiding
local minimums while reducing the number of low population simulations necessary.

5. Numerical simulation and discussion

As previously mentioned, the future Psyche mission will be used as a case study for numerical
simulation. The technique and hypotheses have discussed in Sections 2 and 3. All computations are
performed on a desktop with a 3.5 GHz processor and 16 GB of RAM-memory. The heliocentric
position and velocity of planets and asteroid, and their date and period have been collected from the
Jet Propulsion Laboratory (JPL) horizons system.

5.1. Earth to Psyche opportunity

The problem of getting transfer trajectory from Earth to Psyche with the aid of Mars’s gravity is
considered. The spacecraft departs from Earth’s heliocentric position and arrives at the heliocentric
position of Psyche asteroid. The example is exactly same as that of in the article [22]. To start the
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evolution, three separate data files of Earth, Mars and Psyche are collected from JPL Horizon. Each
file contains total 7 columns, column 1 denotes the epoch time, the next 3 columns give the positions
and the next 3 columns give velocities. The row index number of all data files are assumed as the
variable for DEA. The objective function is described in Eq 4.2, with goal to minimize the required ∆ν.
The optimal launch, flyby and arrival epoch have been calculated by DEA optimization and described
in Table 2. All constants are given in Table 3.

Table 2. All calculated data of Psyche mission.

Parameter Value Units
Initial time 2022-08-16 15:37 Coordinate time
Initial position [1.20297254e+08, -9.00620125e+07, 3.40254165e+04] km.
Initial velocity [1.72676218e+01, 2.37833963e+01, -2.10769603e-03] km./sec.
Flyby time 2023-07-01 12:23 Coordinate time
Flyby position [-2.45888470e+08, 4.30296234e+07, 6.93820194e+06] km.
Flyby velocity [-3.30914219, -21.80549084, -0.37539658] km./sec.
Arrival time 2025-04-27 16:07 Coordinate time
Arrival position [3.56039705e+08, 1.24777765e+08, -1.55076566e+07] km.
Arrival velocity [-6.63897994, 18.780373, -0.70081359] km./sec.
Transfer time 985.020833 days

Table 3. All important constants.

Parameter Value Units
Mars radius 3389.50 km.
Mars Gravitational parameter 42828.3744 km.3/sec2

Sun Gravitational parameter 1.32712442·e+11 km.3/sec2

In the evolution process, Lambert’s problem being solved continuously two times from Earth to
Mars and Mars to Psyche respectively. The first solution gives the spacecraft Earth departure and Mars
arrival velocities. To obtain ∆ν1, the Earth velocity is subtracted from spacecraft departure velocity.
Again we solve Lambert’s problem from Mars to Psyche and get the spacecraft velocity vectors at
Mars and Psyche. To obtain ∆ν3, we subtracted the Psyche velocity from spacecraft velocity. On Mars,
there are two impulses act on the spacecraft. One is the maneuver thrust impulse and the other is
gravity impulse. The sum of these two impulses is the total maneuver impulse ∆ν2, which is required
to transfer a spacecraft to the Psyche.

Furthermore, the inbound and outbound legs at Mars have already been calculated . The next step
for obtaining the maneuver thrust is to calculate the optimal flyby radius, which fulfills our aim, that is
to get the maximum gravity impulse with the least thrust impulse. The calculated optimal flyby radius
is r f = 3491.9 km for this mission.

Besides, to calculating the total maneuver impulse (∆ν2) as defined in Eq 3.3, we follow the
algorithm process of Section 3. We consider rmin = 3489.9 km and start the optimization. The calculated
values are represented in Table 4.
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Table 4. Computed optimal impulse of the mission.

Flyby radius ∆ν1 ∆ν2 ∆ν3 Total impulse ( km.
sec ) Comp. time

(km.) ∆νT ∆νG ∆ν1+∆νT +∆ν3 (sec.)
3491.9 4.555484 3.308965 2.121037 3.471180 11.335629 3.4

The spacecraft trajectory portrays in Figure 2(a). In this figure, blue, green and gray orbits represent
the orbit of Earth, Mars and Psyche respectively. The red color arc represents the transfer trajectory
using Mars gravity assists. The blue dot is the Earth’s departure position. Green dot is the Mars’s
position at the flyby time and the red dot is Psyche’s position at arrival time. Figure 2(b) demonstrates
the spacecraft velocity for the whole transfer time.
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Figure 2. Transfer trajectory and spacecraft velocity.

5.2. Psyche to Earth opportunity

The spacecraft analyses the asteroid from their parking orbit and collects asteroid physical samples.
It will begin its return journey to Earth after 1710 solar days (4.68 years). The problem of getting
trajectory solution from Psyche to Earth using Mars gravity assists is discussed. The spacecraft departs
from Psyche’s heliocentric position and arrives at the heliocentric position of Earth. To start the
evolution, three separated new data files of Psyche, Mars and Earth is collected JPL Horizon of later
epoch. The optimal launch, flyby and arrival epoch have been evaluated by DEA optimization and
described in Table 5. For this mission, the calculated optimal flyby radius is r f = 4234.31206 km. The
calculated value of impulses are represented in Table 6.
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Table 5. All calculated data of Earth return mission.

Parameter Value Units
Initial time 2030-01-01 01:07 Coordinate time
Initial position [3.76301980e+08, -7.22865866e+07, -6.80964928e+06] km.
Initial velocity [2.06594109, 14.35277651, 0.21905743] km./sec.
Flyby time 2031-06-25 05:17 Coordinate time
Flyby position [-7.70438786e+07, -2.10799322e+08, -2.52815573e+06] km.
Flyby velocity [18.58929317, -16.57062545, -0.05647533] km./sec.
Arrival time 2033-02-17 19:48 Coordinate time
Arrival position [-1.27430790e+08, 7.60491308e+07, 1.60787188e+04] km.
Arrival velocity [-18.49064939, -29.73439814, -0.40061276] km./sec.
Transfer time 1143.792502 days

Table 6. Computed optimal impulse of the return mission.

Flyby radius ∆ν1 ∆ν2 ∆ν3 Total impulse ( km.
sec ) Comp. time

(km.) ∆νT ∆νG ∆ν1+∆νT +∆ν3 (sec.)
4234.31206 5.349698 1.664216 0.141844 4.893526 11.907440 4.1

The spacecraft trajectory portrays in Figure 3(a). In this figure, gray, green and blue orbits represent
the orbit of Psyche, Mars and Earth respectively. The red color arc represents the transfer trajectory
using Mars gravity assist. The blue dot is the Psyche’s departure position. Green dot represents the
Mars’s position at the flyby time and the red dot represents Earth’s position at arrival time. Figure 3(b)
portrays the spacecraft velocity for the whole transfer time.
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Figure 3. Transfer trajectory and spacecraft velocity.
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6. Conclusions

In this work, a new opportunity to Psyche mission with Mars’s gravity assists is presented. The
DEA is used as the outer layer optimizer, setting the parameter as the row index number of three
data files. Whereas an inner layer, Lambert’s problem is used to find the feasible trajectory of the
rendezvous problem. This methodology show promise as a rapid low fidelity tool to find optimal
transfer trajectories. Many kinds of literature show, the actual Psyche mission will take 1277±15 days
to reach near the Psyche asteroid, and there is no solution for return to the Earth. In our calculation,
the Psyche journey took only 985±21 days. And the return opportunity has also calculated with
a journey time of 1143±13 days. The result shows that the spacecraft required only three thrust
impulses, ∆ν1, ∆νT and ∆ν3 at departure, flyby and arrival positions respectively. Both elliptic and
hyperbolic transfers may be handled using the suggested approach. In addition, the proposed approach
provides high accuracy and a faster speed to get the optimal launch opportunities. Future work focuses
on expanding this technique to high fidelity environments and tighter arrival tolerance to build the
methodology further.
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