Research article

Asymptotic behavior of a generalized functional equation

Mohammad Amin Tareeghee ${ }^{1}$, Abbas Najati ${ }^{1, *}$, Batool Noori ${ }^{1}$ and Choonkil Park ${ }^{2, *}$
${ }^{1}$ Department of Mathematics, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
${ }^{2}$ Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
* Correspondence: Email: a.nejati@yahoo.com, baak@hanyang.ac.kr.

Abstract

In this paper, we investigate the Hyers-Ulam stability problem of the following functional equation $$
f(x+y)+g(x-y)=h(x)+k(y),
$$ on an unbounded restricted domain, which generalizes some of the results already obtained by other authors (for example [9, Theorem 2], [11, Theorem 5] and [21, Theorem 2]). Particular cases of this functional equation are Cauchy, Jensen, quadratic and Drygas functional equations. As a consequence, we obtain asymptotic behaviors of this functional equation.

Keywords: Hyers-Ulam stability; quadratic functional equation; asymptotic behavior Mathematics Subject Classification: 39B82, 39B52, 39B62

1. Introduction

Assume that V and W are linear spaces over the field \mathbb{F}. Let us recall that a function $f: V \rightarrow W$ satisfies the quadratic functional equation provided

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y), \quad x, y \in V . \tag{1.1}
\end{equation*}
$$

In this case f is called a quadratic function. It is well known that a function $f: V \rightarrow W$ between real vector spaces V and W satisfies (1.1) if and only if there exists a unique symmetric bi-additive function $B: V \times V \rightarrow W$ such that $f(x)=B(x, x)$ for all $x \in V$ (see $[1,7,13]$). For the case $V=W=\mathbb{R}$, the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x^{2}$ satisfies (1.1). Indeed, each continuous quadratic function $f: \mathbb{R} \rightarrow \mathbb{R}$ has this form. The functional Eq (1.1) plays an important role in the characterization of inner product spaces [8]. We notice that if ||.\| is a norm the parallelogram law is specifically true for norms derived from inner products.

In this paper, we deal with the stability of the functional equation

$$
\begin{equation*}
f(x+y)+g(x-y)=h(x)+k(y), \tag{1.2}
\end{equation*}
$$

on restricted domains, where $f, g, h, k: \mathcal{X} \rightarrow \mathcal{Y}$ are unknown functions from normed linear space \mathcal{X} to Banach space \mathcal{Y}. This functional equation is a generalization of the quadratic functional Eq (1.1). Special cases of this functional equation include the additive functional equation $f(x+y)=f(x)+f(y)$, the Jensen functional equation $f\left(\frac{x+y}{2}\right)=f(x)+f(y)$, the Pexider Cauchy functional equation $f(x+y)=$ $g(x)+h(y)$, and many more. The general solutions of (1.2) were given in [4] without any regularity assumptions on functions f, g, h, k when (1.2) holds for all $x, y \in V$ (see also [14]).

The stability of the quadratic functional Eq (1.1) was first investigated by Skof [23]. Czerwik [2] generalized Skof's result. For more detailed information on the stability results of the functional Eq (1.1) and other quadratic functional equations, we refer the readers to [5,6,9,15-22,25]. We also refer the readers to the books [1,3,7,12, 14].

In this paper, stability results of the functional Eq (1.2) on an unbounded restricted domain and its applications are introduced.

2. Stabillity of pexiderized quadratic functional equation

Let f be any function between two linear spaces. The symbols f_{e} and f_{o} denote the even and odd parts of f, respectively. Notice that $f_{o}(0)=0$ and $f_{e}(0)=f(0)$.

The following theorem generalizes some of the results already obtained by other authors (for example [9, Theorem 2], [11, Theorem 5] and [21, Theorem 2]).

Theorem 2.1. Let \mathcal{X} be a linear normed space and \mathcal{Y} be a Banach space, and let $d>0$ and $\varepsilon \geqslant 0$. Suppose that $f, g, h, k: \mathcal{X} \rightarrow \mathcal{Y}$ satisfy

$$
\begin{equation*}
\|f(x+y)+g(x-y)-h(x)-k(y)\| \leqslant \varepsilon, \tag{2.1}
\end{equation*}
$$

for all $x, y \in \mathcal{X}$ with $\|x\|+\|y\| \geqslant d$. Then there are a unique quadratic function $Q: \mathcal{X} \rightarrow \mathcal{Y}$ and exactly two additive functions $A_{1}, A_{2}: \mathcal{X} \rightarrow \mathcal{Y}$ such that

$$
\begin{align*}
\left\|f(x)-Q(x)-A_{1}(x)-f(0)\right\| & \leqslant 46 \varepsilon, \tag{2.2}\\
\left\|g(x)-Q(x)-A_{2}(x)-g(0)\right\| & \leqslant 46 \varepsilon, \tag{2.3}\\
\left\|h(x)-2 Q(x)-\left(A_{1}+A_{2}\right)(x)-h(0)\right\| & \leqslant 29 \varepsilon, \tag{2.4}\\
\left\|k(x)-2 Q(x)-\left(A_{1}-A_{2}\right)(x)-k(0)\right\| & \leqslant 29 \varepsilon, \tag{2.5}
\end{align*}
$$

for all $x \in \mathcal{X}$.
Proof. Replacing x by $-x$ and y by $-y$ in (2.1), and adding (subtracting) the resulting inequality to (from) (2.1), we obtain

$$
\begin{align*}
& \left\|f_{e}(x+y)+g_{e}(x-y)-h_{e}(x)-k_{e}(y)\right\| \leqslant \varepsilon, \tag{2.6}\\
& \left\|f_{o}(x+y)+g_{o}(x-y)-h_{o}(x)-k_{o}(y)\right\| \leqslant \varepsilon, \tag{2.7}
\end{align*}
$$

for all $x, y \in \mathcal{X}$ with $\|x\|+\|y\| \geqslant d$. Putting $x=0, y=0, y=x$ and $y=-x$ in (2.6), respectively, we get

$$
\begin{align*}
\left\|f_{e}(y)+g_{e}(y)-h(0)-k_{e}(y)\right\| \leqslant \varepsilon, & \|y\| \geqslant d, \tag{2.8}\\
\left\|f_{e}(x)+g_{e}(x)-h_{e}(x)-k(0)\right\| \leqslant \varepsilon, & \|x\| \geqslant d, \tag{2.9}\\
\left\|f_{e}(2 x)+g(0)-h_{e}(x)-k_{e}(x)\right\| \leqslant \varepsilon, & \|x\| \geqslant d, \tag{2.10}\\
\left\|f(0)+g_{e}(2 x)-h_{e}(x)-k_{e}(x)\right\| \leqslant \varepsilon, & \|x\| \geqslant d . \tag{2.11}
\end{align*}
$$

It follows from (2.8)-(2.10) that

$$
\begin{equation*}
\left\|f_{e}(2 x)-2 f_{e}(x)-2 g_{e}(x)+g(0)+h(0)+k(0)\right\| \leqslant 3 \varepsilon, \quad\|x\| \geqslant d . \tag{2.12}
\end{equation*}
$$

By using (2.8), (2.9) and (2.11), we have

$$
\begin{equation*}
\left\|g_{e}(2 x)-2 f_{e}(x)-2 g_{e}(x)+f(0)+h(0)+k(0)\right\| \leqslant 3 \varepsilon, \quad\|x\| \geqslant d . \tag{2.13}
\end{equation*}
$$

Hence, (2.12) and (2.13) imply

$$
\left\|f_{e}(2 x)-g_{e}(2 x)+g(0)-f(0)\right\| \leqslant 6 \varepsilon, \quad\|x\| \geqslant d .
$$

Then

$$
\begin{equation*}
\left\|f_{e}(x)-g_{e}(x)+g(0)-f(0)\right\| \leqslant 6 \varepsilon, \quad\|x\| \geqslant 2 d . \tag{2.14}
\end{equation*}
$$

In view of (2.12) and (2.14), we obtain

$$
\begin{equation*}
\left\|f_{e}(2 x)-4 f_{e}(x)+\alpha\right\| \leqslant 15 \varepsilon, \quad\|x\| \geqslant 2 d, \tag{2.15}
\end{equation*}
$$

where $\alpha:=2 f(0)-g(0)+h(0)+k(0)$. If we replace x by $2^{n} x$ in (2.15), and divide the resulting inequality by 4^{n+1}, then we obtain

$$
\left\|\frac{f_{e}\left(2^{n+1} x\right)}{4^{n+1}}-\frac{f_{e}\left(2^{n} x\right)}{4^{n}}+\frac{\alpha}{4^{n+1}}\right\| \leqslant \frac{15 \varepsilon}{4^{n+1}}, \quad\|x\| \geqslant 2 d, n \geqslant 0 .
$$

So

$$
\begin{equation*}
\left\|\frac{f_{e}\left(2^{n+1} x\right)}{4^{n+1}}-\frac{f_{e}\left(2^{m} x\right)}{4^{m}}+\sum_{k=m}^{n} \frac{\alpha}{4^{k+1}}\right\| \leqslant \sum_{k=m}^{n} \frac{15 \varepsilon}{4^{k+1}}, \quad\|x\| \geqslant 2 d, n \geqslant m \geqslant 0 . \tag{2.16}
\end{equation*}
$$

Therefore, $\left\{\frac{f_{e}\left(2^{n} x\right)}{4^{n}}\right\}_{n}$ is a Cauchy sequence for each fixed $x \in \mathcal{X}$ with $\|x\| \geqslant 2 d$. Thus, by the completeness of \mathcal{Y}, the sequence $\left\{\frac{f_{c}\left(2^{n} x\right)}{4^{n}}\right\}_{n}$ is convergent for each fixed $x \in \mathcal{X}$ with $\|x\| \geqslant 2 d$. Then it is easy to see that the sequence $\left\{\frac{\left.f_{e} 2^{n} x\right)}{4^{n}}\right\}_{n}$ is convergent for each fixed $x \in \mathcal{X}$. We define the function $Q: \mathcal{X} \rightarrow \mathcal{Y}$ by

$$
Q(x)=\lim _{n \rightarrow \infty} \frac{f_{e}\left(2^{n} x\right)}{4^{n}}, \quad x \in \mathcal{X}
$$

It follows from (2.14) that $Q(x)=\lim _{n \rightarrow \infty} \frac{g_{c}\left(2^{n} x\right)}{4^{n}}$ for all $x \in \mathcal{X}$. In view of (2.8) and (2.9) we have

$$
2 Q(x)=\lim _{n \rightarrow \infty} \frac{k_{e}\left(2^{n} x\right)}{4^{n}} \quad \text { and } \quad 2 Q(x)=\lim _{n \rightarrow \infty} \frac{h_{e}\left(2^{n} x\right)}{4^{n}}, \quad x \in \mathcal{X} .
$$

Let $x, y \in X \backslash\{0\}$ and choose $m \in \mathbb{N}$ such that $\left\|2^{n} x\right\|,\left\|2^{n} y\right\| \geqslant d$ for all $n \geqslant m$. Writing $2^{n} x$ instead of x and $2^{n} y$ instead of y in (2.6) (for $n \geqslant m$), and dividing the resultant inequality by 4^{n}, and then letting n approach infinity, we obtain

$$
Q(x+y)+Q(x-y)=2 Q(x)+2 Q(y), \quad x, y \in \mathcal{X} \backslash\{0\} .
$$

Since $Q(0)=0$ and Q is even, we infer that Q is quadratic. Putting $m=0$ and taking the limit as $n \rightarrow \infty$ in (2.16), we get

$$
\begin{equation*}
\left\|f_{e}(x)-Q(x)-\frac{1}{3} \alpha\right\| \leqslant 5 \varepsilon, \quad\|x\| \geqslant 2 d . \tag{2.17}
\end{equation*}
$$

Replacing y by $-y$ in (2.6), we have

$$
\left\|g_{e}(x+y)+f_{e}(x-y)-h_{e}(x)-k_{e}(y)\right\| \leqslant \varepsilon, \quad\|x\|+\|y\| \geqslant d .
$$

This inequality is similar to inequality (2.6). By a similar argument, we have

$$
\begin{equation*}
\left\|g_{e}(x)-Q(x)-\frac{1}{3} \beta\right\| \leqslant 5 \varepsilon, \quad\|x\| \geqslant 2 d, \tag{2.18}
\end{equation*}
$$

where $\beta:=2 g(0)-f(0)+h(0)+k(0)$. Adding (2.17) to (2.18), we get

$$
\begin{equation*}
\left\|f_{e}(x)+g_{e}(x)-2 Q(x)-\frac{1}{3}(\alpha+\beta)\right\| \leqslant 10 \varepsilon, \quad\|x\| \geqslant 2 d . \tag{2.19}
\end{equation*}
$$

In view of (2.8), (2.9) and (2.19), we obtain

$$
\begin{array}{ll}
\left\|k_{e}(y)-2 Q(y)+h(0)-\frac{1}{3}(\alpha+\beta)\right\| \leqslant 11 \varepsilon, & \|y\| \geqslant 2 d, \\
\left\|h_{e}(x)-2 Q(x)+k(0)-\frac{1}{3}(\alpha+\beta)\right\| \leqslant 11 \varepsilon, & \|x\| \geqslant 2 d . \tag{2.21}
\end{array}
$$

Now we extend inequalities (2.17), (2.18), (2.20) and (2.21) to \mathcal{X}. Let $z \in \mathcal{X}$, choose $y \in \mathcal{X}$ such that $\|y\| \geqslant 2 d+\|z\|$ and let $x=z-y$. Then $\min \{\|x\|,\|x-y\|,\|y\|\} \geqslant 2 d$. By (2.18), we have

$$
\begin{equation*}
\left\|g_{e}(x-y)-Q(x-y)-\frac{1}{3} \beta\right\| \leqslant 5 \varepsilon . \tag{2.22}
\end{equation*}
$$

It follows from (2.6) and (2.20)-(2.22) that

$$
\left\|f_{e}(x+y)+Q(x-y)-2 Q(x)-2 Q(y)-f(0)\right\| \leqslant 28 \varepsilon .
$$

Since $z=x+y$ and Q is quadratic, we get

$$
\begin{equation*}
\left\|f_{e}(z)-Q(z)-f(0)\right\| \leqslant 28 \varepsilon \tag{a}
\end{equation*}
$$

Similarly, for an arbitrary $z \in \mathcal{X}$, we conclude that

$$
\begin{equation*}
\left\|g_{e}(z)-Q(z)-g(0)\right\| \leqslant 28 \varepsilon \tag{b}
\end{equation*}
$$

Now, let $x \in \mathcal{X}$ and choose $y \in \mathcal{X}$ such that $\|y\| \geqslant 2 d+\|x\|$. It is clear that $\|x \pm y\| \geqslant 2 d$. Then by (2.17) and (2.18), we have

$$
\begin{equation*}
\left\|f_{e}(x+y)-Q(x+y)-\frac{1}{3} \alpha\right\| \leqslant 5 \varepsilon, \quad\left\|g_{e}(x-y)-Q(x-y)-\frac{1}{3} \beta\right\| \leqslant 5 \varepsilon . \tag{2.23}
\end{equation*}
$$

It follows from (2.6), (2.20) and (2.23) that

$$
\left\|Q(x+y)+Q(x-y)-2 Q(y)-h_{e}(x)+h(0)\right\| \leqslant 22 \varepsilon .
$$

Since Q is quadratic, we obtain

$$
\begin{equation*}
\left\|h_{e}(x)-2 Q(x)-h(0)\right\| \leqslant 22 \varepsilon . \tag{c}
\end{equation*}
$$

Similarly, for an arbitrary $x \in \mathcal{X}$, we conclude that

$$
\begin{equation*}
\left\|k_{e}(x)-2 Q(x)-k(0)\right\| \leqslant 22 \varepsilon . \tag{d}
\end{equation*}
$$

Letting $x=0, y=0, y=x$ and $y=-x$ in (2.7), respectively, we get

$$
\begin{align*}
\left\|f_{o}(y)-g_{o}(y)-k_{o}(y)\right\| \leqslant \varepsilon, & \|y\| \geqslant d, \tag{2.24}\\
\left\|f_{o}(x)+g_{o}(x)-h_{o}(x)\right\| \leqslant \varepsilon, & \|x\| \geqslant d, \tag{2.25}\\
\left\|f_{o}(2 x)-h_{o}(x)-k_{o}(x)\right\| \leqslant \varepsilon, & \|x\| \geqslant d, \tag{2.26}\\
\left\|g_{o}(2 x)-h_{o}(x)+k_{o}(x)\right\| \leqslant \varepsilon, & \|x\| \geqslant d . \tag{2.27}
\end{align*}
$$

It follows from (2.24) and (2.25) that

$$
\begin{equation*}
\left\|2 f_{o}(x)-h_{o}(x)-k_{o}(x)\right\| \leqslant 2 \varepsilon, \quad\left\|2 g_{o}(x)-h_{o}(x)+k_{o}(x)\right\| \leqslant 2 \varepsilon, \quad\|x\| \geqslant d . \tag{2.28}
\end{equation*}
$$

In view of (2.26)-(2.28), we obtain

$$
\left\|f_{o}(2 x)-2 f_{o}(x)\right\| \leqslant 3 \varepsilon, \quad\left\|g_{o}(2 x)-2 g_{o}(x)\right\| \leqslant 3 \varepsilon, \quad\|x\| \geqslant d
$$

It is easy to see that

$$
\begin{equation*}
\left\|\frac{f_{o}\left(2^{n+1} x\right)}{2^{n+1}}-\frac{f_{o}\left(2^{m} x\right)}{2^{m}}\right\| \leqslant \sum_{i=m}^{n} \frac{3 \varepsilon}{2^{i+1}}, \quad\left\|\frac{g_{o}\left(2^{n+1} x\right)}{2^{n+1}}-\frac{g_{o}\left(2^{m} x\right)}{2^{m}}\right\| \leqslant \sum_{i=m}^{n} \frac{3 \varepsilon}{2^{i+1}}, \tag{2.29}
\end{equation*}
$$

for all $\|x\| \geqslant d$. So, we can define $A_{1}, A_{2}: \mathcal{X} \rightarrow \mathcal{Y}$ by

$$
A_{1}(x):=\lim _{n \rightarrow \infty} \frac{f_{o}\left(2^{n} x\right)}{2^{n}} \quad \text { and } \quad A_{2}(x):=\lim _{n \rightarrow \infty} \frac{g_{o}\left(2^{n} x\right)}{2^{n}}, \quad x \in \mathcal{X} .
$$

In view of (2.24) and (2.25), we conclude that

$$
\left(A_{1}-A_{2}\right)(x)=\lim _{n \rightarrow \infty} \frac{k_{o}\left(2^{n} x\right)}{2^{n}} \quad \text { and } \quad\left(A_{1}+A_{2}\right)(x)=\lim _{n \rightarrow \infty} \frac{h_{o}\left(2^{n} x\right)}{2^{n}}, \quad x \in \mathcal{X} .
$$

Let $x \in \mathcal{X}$ and , $y \in \mathcal{X} \backslash\{0\}$. We can choose $m \in \mathbb{N}$ such that $\left\|2^{n} y\right\| \geqslant d$ for all $n \geqslant m$. Writing $2^{n} x$ instead of x and $2^{n} y$ instead of y in (2.7) (for $n \geqslant m$), and dividing the resultant inequality by 2^{n}, and then letting n approach infinity, we obtain

$$
\begin{equation*}
A_{1}(x+y)+A_{2}(x-y)=\left(A_{1}+A_{2}\right)(x)+\left(A_{1}-A_{2}\right)(y) . \tag{2.30}
\end{equation*}
$$

Since $A_{1}(0)=A_{2}(0)=0$, we get (2.30) for all $x, y \in \mathcal{X}$. For convenience, we set $A=A_{1}+A_{2}$ and $L=A_{1}-A_{2}$. Then A and L are odd because A_{1} and A_{2} are. By (2.30), we have

$$
\begin{aligned}
A(x+y)+A(x-y)-2 A(x)= & A_{1}(x+y)+A_{2}(x-y)-A(x)-L(y) \\
& +A_{1}(x-y)+A_{2}(x+y)-A(x)+L(y) \\
= & 0, \quad x, y \in \mathcal{X} .
\end{aligned}
$$

Hence A is additive. Thus

$$
A_{1}(x+y)-A_{1}(x)-A_{1}(y)=A_{2}(x)+A_{2}(y)-A_{2}(x+y), \quad x, y \in \mathcal{X} .
$$

Using (2.30), we obtain

$$
A_{2}(x+y)-A_{2}(x-y)=2 A_{2}(y), \quad x, y \in \mathcal{X} .
$$

So A_{2} is additive, and consequently A_{1} is additive.
By (2.29), we obtain

$$
\begin{equation*}
\left\|f_{o}(x)-A_{1}(x)\right\| \leqslant 3 \varepsilon \quad \text { and } \quad\left\|g_{o}(x)-A_{2}(x)\right\| \leqslant 3 \varepsilon, \quad\|x\| \geqslant d . \tag{2.31}
\end{equation*}
$$

In view of (2.24), (2.25) and (2.31), we get

$$
\begin{equation*}
\left\|h_{o}(x)-\left(A_{1}+A_{2}\right)(x)\right\| \leqslant 7 \varepsilon \quad \text { and } \quad\left\|k_{o}(x)-\left(A_{1}-A_{2}\right)(x)\right\| \leqslant 7 \varepsilon, \quad\|x\| \geqslant d . \tag{2.32}
\end{equation*}
$$

Now we extend inequalities (2.31) and (2.32) to \mathcal{X}. Let $z \in \mathcal{X}$, choose $y \in \mathcal{X}$ with $\|y\| \geqslant d+\|z\|$ and let $x=z-y$. Then $\min \{\|x\|,\|x-y\|,\|y\|\} \geqslant d$. By (2.31) and (2.32), we have

$$
\begin{array}{r}
\left\|g_{o}(x-y)-A_{2}(x-y)\right\| \leqslant 3 \varepsilon, \\
\left\|h_{o}(x)-\left(A_{1}+A_{2}\right)(x)\right\| \leqslant 7 \varepsilon, \\
\left\|k_{o}(y)-\left(A_{1}-A_{2}\right)(y)\right\| \leqslant 7 \varepsilon .
\end{array}
$$

Since $z=x+y$ and A_{1}, A_{2} are additive, these inequalities and (2.7) yield

$$
\left\|f_{o}(z)-A_{1}(z)\right\| \leqslant 18 \varepsilon .
$$

Similarly, one can obtain

$$
\left\|g_{o}(z)-A_{2}(z)\right\| \leqslant 18 \varepsilon, \quad z \in \mathcal{X} .
$$

To extend (2.32), let $x \in \mathcal{X}$ and choose $y \in \mathcal{X}$ such that $\|y\| \geqslant d+\|x\|$. Then $\|x \pm y\| \geqslant d$. By (2.31), we have

$$
\left\|f_{o}(x+y)-A_{1}(x+y)\right\| \leqslant 3 \varepsilon \quad \text { and } \quad\left\|g_{o}(x-y)-A_{2}(x-y)\right\| \leqslant 3 \varepsilon .
$$

Using (2.7) and these inequalities, we get

$$
\begin{equation*}
\left\|h_{o}(x)+k_{o}(y)-A_{1}(x+y)-A_{2}(x-y)\right\| \leqslant 7 \varepsilon . \tag{2.33}
\end{equation*}
$$

Because k_{o} is odd and A_{1}, A_{2} are additive, interchanging y with $-y$ in (2.33) and adding the resulting inequality to (2.33), we get

$$
\left\|h_{o}(x)-\left(A_{1}+A_{2}\right)(x)\right\| \leqslant 7 \varepsilon .
$$

Similarly, one can obtain

$$
\left\|k_{o}(x)-\left(A_{1}-A_{2}\right)(x)\right\| \leqslant 7 \varepsilon, \quad x \in \mathcal{X} .
$$

In view of (a) and $\left(a^{\prime}\right)$, we get (2.2). By (b) and $\left(b^{\prime}\right)$, we obtain (2.3). (2.4) follows from (c) and $\left(c^{\prime}\right)$. Finally, (d) and (d^{\prime}) yield (2.5).

Corollary 2.2. Let \mathcal{X}, Y be linear normed spaces, and $f, g, h, k: \mathcal{X} \rightarrow Y$ satisfy

$$
\lim _{\|x\|+\|y\| \rightarrow \infty}\|f(x+y)+g(x-y)-h(x)-k(y)\|=0 .
$$

Then (f, g, h, k)) is a solution of (1.2) and they are given by

$$
\begin{aligned}
& f(x)=A_{1}(x)+Q(x)+f(0), \\
& g(x)=A_{2}(x)+Q(x)+g(0), \\
& h(x)=\left(A_{1}+A_{2}\right)(x)+2 Q(x)+h(0), \\
& k(x)=\left(A_{1}-A_{2}\right)(x)+2 Q(x)+k(0), \quad x \in \mathcal{X},
\end{aligned}
$$

where $A_{1}, A_{2}: \mathcal{X} \rightarrow Y$ are additive and $Q: \mathcal{X} \rightarrow Y$ is quadratic.
Proof. Let $\varepsilon>0$ be an arbitrary. Then there exists $d>0$ such that

$$
\|f(x+y)+g(x-y)-h(x)-k(y)\|<\varepsilon, \quad\|x\|+\|y\| \geqslant d .
$$

By Theorem 2.1 (we let \mathcal{Y} be the completion of Y), we get

$$
\|f(x+y)+g(x-y)-h(x)-k(y)-f(0)-g(0)+h(0)+k(0)\| \leqslant 150 \varepsilon, \quad x, y \in \mathcal{X}
$$

Since $\varepsilon>0$ was given arbitrarily, we get

$$
f(x+y)+g(x-y)-h(x)-k(y)-f(0)-g(0)+h(0)+k(0)=0, \quad x, y \in \mathcal{X} .
$$

Hence the result follows from [10, Theorem 3.1].
Corollary 2.3. Let \mathcal{X}, Y be linear normed spaces, and $f: \mathcal{X} \rightarrow Y$ satisfy

$$
\lim _{\|x\|+\|y\| \rightarrow \infty}\|f(x+y)+f(x-y)-2 f(x)-f(y)-f(-y)\|=0 .
$$

Then f is given by

$$
f(x)=A(x)+Q(x)+f(0), \quad x \in \mathcal{X},
$$

where $A: X \rightarrow Y$ is additive and $Q: \mathcal{X} \rightarrow Y$ is quadratic.

To prove the next theorem, we need the following result.
Lemma 2.4. [24, Corollary 2.8] Let \mathcal{X} be a linear normed space and \mathcal{Y} be a Banach space, and let $d>0$ and $\varepsilon \geqslant 0$. Suppose that $f: \mathcal{X} \rightarrow \mathcal{Y}$ is a function such that

$$
\|f(x+y)+f(x-y)-2 f(x)-2 f(y)\| \leqslant \varepsilon, \quad\|x\|+\|y\| \geqslant d .
$$

Then there is a unique quadratic function $Q: \mathcal{X} \rightarrow \mathcal{Y}$ such that

$$
\|f(x)-Q(x)\| \leqslant \frac{7}{6} \varepsilon, \quad x \in \mathcal{X}
$$

Theorem 2.5. Let \mathcal{X} be a linear normed space and \mathcal{Y} be a Banach space, and let $d>0$ and $\varepsilon \geqslant 0$. Suppose that $f: \mathcal{X} \rightarrow \mathcal{Y}$ is a function such that $\sup _{x \in \mathcal{X}}\|f(x)\|=+\infty$ and

$$
\begin{equation*}
\|f(x+y)+f(x-y)-a f(x)-b f(y)\| \leqslant \varepsilon, \tag{2.34}
\end{equation*}
$$

for all $x, y \in \mathcal{X}$ with $\|x\|+\|y\| \geqslant d$, where a, b are real constants with $b \neq 0$. Then there is a unique quadratic function $Q: \mathcal{X} \rightarrow \mathcal{Y}$ such that

$$
\begin{equation*}
\|f(x)-Q(x)\| \leqslant \frac{7}{6} \varepsilon, \quad x \in \mathcal{X} \tag{2.35}
\end{equation*}
$$

Proof. By considering the proof of Theorem 2.1, there exists a unique quadratic function $Q: \mathcal{X} \rightarrow \mathcal{Y}$ such that $a Q(x)=b Q(x)=2 Q(x)$ and

$$
\begin{equation*}
\|f(x)-Q(x)-f(0)\| \leqslant 46 \varepsilon, \tag{2.36}
\end{equation*}
$$

for all $x \in \mathcal{X}$. Since f is unbounded, we get $Q \neq 0$ by (2.36). So $a=b=2$. Consequently, (2.34) implies that

$$
\|f(x+y)+f(x-y)-2 f(x)-2 f(y)\| \leqslant \varepsilon,
$$

for all $x, y \in \mathcal{X}$ with $\|x\|+\|y\| \geqslant d$. By Lemma 2.4, we get (2.35).
Corollary 2.6. Suppose that $f: \mathcal{X} \rightarrow \mathcal{Y}$ satisfies

$$
\|f(x+y)+f(x-y)-b f(y)\| \leqslant \varepsilon
$$

for all $x, y \in \mathcal{X}$ with $\|x\|+\|y\| \geqslant d$, where b is a real constant. Then f is bounded.
Theorem 2.7. Let \mathcal{X} be a linear normed space and \mathcal{Y} be a Banach space, and let $d>0$ and $\varepsilon \geqslant 0$. Suppose that $f: \mathcal{X} \rightarrow \mathcal{Y}$ is a function such that $\sup _{x \in \mathcal{X}}\|f(x)\|=+\infty$ and

$$
\begin{equation*}
\|f(x+y)+f(x-y)-a f(x)\| \leqslant \varepsilon \tag{2.37}
\end{equation*}
$$

for all $x, y \in \mathcal{X}$ with $\|x\|+\|y\| \geqslant d$, where a is a real constant. Then there is a unique additive function $A: \mathcal{X} \rightarrow \mathcal{Y}$ such that

$$
\begin{equation*}
\|f(x)-A(x)-f(0)\| \leqslant \frac{3}{2} \varepsilon, \quad x \in \mathcal{X} \tag{2.38}
\end{equation*}
$$

Proof. By considering the proof of Theorem 2.1, there exists a unique additive function $A: \mathcal{X} \rightarrow \boldsymbol{y}$ such that $a A(x)=2 A(x)$ and

$$
\begin{equation*}
\|f(x)-A(x)-f(0)\| \leqslant 46 \varepsilon, \tag{2.39}
\end{equation*}
$$

for all $x \in \mathcal{X}$. Since f is unbounded, we get $A \neq 0$ by (2.39). So we get $a=2$ and consequently, (2.37) implies that

$$
\begin{equation*}
\|f(x+y)+f(x-y)-2 f(x)\| \leqslant \varepsilon, \quad\|x\|+\|y\| \geqslant d . \tag{2.40}
\end{equation*}
$$

Then

$$
\begin{equation*}
\|A(x)-f(x)+f(0)\| \leqslant \varepsilon, \quad\|x\| \geqslant d . \tag{2.41}
\end{equation*}
$$

Now we extend (2.41) to \mathcal{X}. Let $x \in \mathcal{X}$ and choose $y \in \mathcal{X}$ such that $\|y\| \geqslant d+\|x\|$. It is clear that $\|x \pm y\| \geqslant d$. Then (2.41) yields that

$$
\|A(x+y)-f(x+y)+f(0)\| \leqslant \varepsilon \text { and } \quad\|A(x-y)-f(x-y)+f(0)\| \leqslant \varepsilon .
$$

These inequalities and (2.40) imply that $\|A(x+y)+A(x-y)-2 f(x)+2 f(0)\| \leqslant 3 \varepsilon$. Since A is additive, we get (2.38).

In the following corollary, we investigate the Hyers-Ulam stability of Drygas functional equation which is a special case of Theorem 2.1. In this case we get a sharp bound.

Corollary 2.8. Suppose that $f: \mathcal{X} \rightarrow \mathcal{Y}$ satisfies

$$
\|f(x+y)+f(x-y)-2 f(x)-f(y)-f(-y)\| \leqslant \varepsilon,
$$

for all $x, y \in \mathcal{X}$ with $\|x\|+\|y\| \geqslant d$. Then there are a unique quadratic function $Q: \mathcal{X} \rightarrow \mathcal{Y}$ and a unique additive function $A: \mathcal{X} \rightarrow \boldsymbol{y}$ such that

$$
\begin{equation*}
\|f(x)-Q(x)-A(x)-2 f(0)\| \leqslant \frac{8}{3} \varepsilon, \quad x \in \mathcal{X} . \tag{2.42}
\end{equation*}
$$

Proof. By the assumption, we obtain

$$
\begin{array}{r}
\left\|f_{e}(x+y)+f_{e}(x-y)-2 f_{e}(x)-2 f_{e}(y)\right\| \leqslant \varepsilon, \\
\left\|f_{o}(x+y)+f_{o}(x-y)-2 f_{o}(x)\right\| \leqslant \varepsilon,
\end{array}
$$

for all $x, y \in \mathcal{X}$ with $\|x\|+\|y\| \geqslant d$. Then by [24, Corollary 2.8] and the argument in the proof of Theorem 2.7, there are a quadratic function $Q: \mathcal{X} \rightarrow \mathcal{Y}$ and an additive function $A: \mathcal{X} \rightarrow \mathcal{Y}$ such that

$$
\left\|f_{e}(x)-Q(x)\right\| \leqslant \frac{7}{6} \varepsilon, \quad\left\|f_{o}(x)-A(x)-f(0)\right\| \leqslant \frac{3}{2} \varepsilon, \quad x \in \mathcal{X} .
$$

Hence we get (2.42). The uniqueness of A and Q is clear.

3. Conclusions

We have investigated the Hyers-Ulam stability of the Pexider functional Eq (1.2) on an unbounded restricted domain. As a consequence, we have obtained asymptotic behaviors of this functional equation.

Conflict of interest

The authors declare that they have no competing interests.

References

1. J. Aczél, J. Dhombres, Functional equations in several variables, Cambridge University Press, Cambridge, 1989.
2. S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Hamburg, 62 (1992), 59-64. http://dx.doi.org/10.1007/BF02941618
3. S. Czerwik, Functional equations and inequalities in several variables, World Scientific Publishing Company, Singapore, 2002.
4. B. R. Ebanks, P. Kannappan, P. K. Sahoo, A common generalization of functional equations characterizing normed and quasi-inner product spaces, Can. Math. Bull., 35 (1992), 321-327. http://dx.doi.org/10.4153/CMB-1992-044-6
5. B. Fadli, D. Zeglami, S. Kabbaj, A variant of the quadratic functional equation on semigroups, Proyecciones, 37 (2018), 45-55. http://dx.doi.org/10.4067/S0716-09172018000100045
6. D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27 (1941), 222-224. http://dx.doi.org/10.1073/pnas.27.4.222
7. D. H. Hyers, G. Isac, T. M. Rassias, Stability of functional equations in several variables, Birkhäuser, Basel, 1998.
8. P. Jordan, J. V. Neumann, On inner products in linear metric spaces, Ann. Math., 36 (1935), 719723. http://dx.doi.org/10.2307/1968653
9. S. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl., 222 (1998), 126-137. http://dx.doi.org/10.1006/jmaa.1998.5916
10. S. Jung, Quadratic functional equations of Pexider type, Int. J. Math. Math. Sci., 24 (2000), 351359. http://dx.doi.org/10.1155/S0161171200004075
11. S. Jung, P. K. Sahoo, Stability of a functional equation of Drygas, Aequationes Math., 64 (2002), 263-273. http://dx.doi.org/10.1007/PL00012407
12. S. Jung, Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis, Springer, New York, 2011.
13. P. Kannappan, Quadratic functional equation and inner product spaces, Results Math., 27 (1995), 368-372. http://dx.doi.org/10.1007/BF03322841
14. P. Kannappan, Functional equations and inequalities with applications, Springer, New York, 2009.
15. A. Najati, Hyers-Ulam stability of an n-Apollonius type quadratic mapping, B. Belg. Math. Soc.Sim., 14 (2007), 755-774. http://dx.doi.org/10.36045/bbms/1195157142
16. A. Najati, S. Jung, Approximately quadratic mappings on restricted domains, J. Inequal. Appl., 2010 (2010). http://dx.doi.org/10.1155/2010/503458
17. A. Najati, C. Park, Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras associated to the pexiderized Cauchy functional equation, J. Math. Anal. Appl., 335 (2007), 763778. http://dx.doi.org/10.1016/j.jmaa.2007.02.009
18. A. Najati, C. Park, The pexiderized Apollonius-Jensen type additive mapping and isomorphisms between C^{*}-algebras, J. Differ. Equ. Appl., 14 (2008), 459-479. http://dx.doi.org/10.1080/10236190701466546
19. B. Noori, M. B. Moghimi, B. Khosravi, C. Park, Stability of some functional equations on bounded domains, J. Math. Inequal., 14 (2020), 455-472. http://dx.doi.org/10.7153/jmi-2020-14-29
20. C. Park, A. Najati, B. Noori, M. B. Moghimi, Additive and Fréchet functional equations on restricted domains with some characterizations of inner product spaces, AIMS Math., 7 (2021), 3379-3394. http://dx.doi.org/10.3934/math. 2022188
21. J. M. Rassias, On the Ulam stability of mixed type mappings on restricted domains, J. Math. Anal. Appl., 276 (2002), 747-762. http://dx.doi.org/10.1016/S0022-247X(02)00439-0
22. M. Sarfraz, Y. Li, Minimum functional equation and some Pexider-type functional equation on any group, AIMS Math., 6 (2021), 11305-11317. http://dx.doi.org/10.3934/math. 2021656
23. F. Skof, Proprieta locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano, 53 (1983), 113-129. http://dx.doi.org/10.1007/BF02924890
24. M. A. Tareeghee, A. Najati, M. R. Abdollahpour, B. Noori, On restricted functional inequalities associated with quadratic functional equations, In press.
25. Z. Wang, Approximate mixed type quadratic-cubic functional equation, AIMS Math., 6 (2021), 3546-3561. http://dx.doi.org/10.3934/math. 2021211

AIMS Press

© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

