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Abstract: In this paper, we investigate the Hyers-Ulam stability problem of the following functional
equation
fx+y)+g(x—y) = h(x)+ k(y),

on an unbounded restricted domain, which generalizes some of the results already obtained by other
authors (for example [9, Theorem 2], [11, Theorem 5] and [21, Theorem 2]). Particular cases of this
functional equation are Cauchy, Jensen, quadratic and Drygas functional equations. As a consequence,
we obtain asymptotic behaviors of this functional equation.
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1. Introduction

Assume that V and W are linear spaces over the field F. Let us recall that a function f : V — W
satisfies the quadratic functional equation provided

Ja+y) + fx-y)=2f(x) +2f(), xyeV. (1.1)

In this case f is called a quadratic function. It is well known that a function f : V. — W between real
vector spaces V and W satisfies (1.1) if and only if there exists a unique symmetric bi-additive function
B : VxV — W such that f(x) = B(x, x) for all x € V (see [1,7,13]). For the case V = W = R, the
function f : R — R defined by f(x) = ax? satisfies (1.1). Indeed, each continuous quadratic function
f : R — R has this form. The functional Eq (1.1) plays an important role in the characterization of
inner product spaces [8]. We notice that if ||.|| is a norm the parallelogram law is specifically true for
norms derived from inner products.
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In this paper, we deal with the stability of the functional equation

Sfx+y) +g(x—y) = h(x) + k(y), (1.2)

on restricted domains, where f, g,h,k : X — Y are unknown functions from normed linear space X
to Banach space V. This functional equation is a generalization of the quadratic functional Eq (1.1).
Special cases of this functional equation include the additive functional equation f(x+y) = f(x)+ f(y),
the Jensen functional equation f (xzﬂ) = f(x)+ f(y), the Pexider Cauchy functional equation f(x+y) =
g(x) + h(y), and many more. The general solutions of (1.2) were given in [4] without any regularity
assumptions on functions f, g, i,k when (1.2) holds for all x,y € V (see also [14]).

The stability of the quadratic functional Eq (1.1) was first investigated by Skof [23].
Czerwik [2] generalized Skof’s result. For more detailed information on the stability results of the
functional Eq (1.1) and other quadratic functional equations, we refer the readers to [5,6,9, 15-22,25].
We also refer the readers to the books [1,3,7,12, 14].

In this paper, stability results of the functional Eq (1.2) on an unbounded restricted domain and its
applications are introduced.

2. Stabillity of pexiderized quadratic functional equation

Let f be any function between two linear spaces. The symbols f, and f, denote the even and odd
parts of f, respectively. Notice that f,(0) = 0 and f,(0) = £(0).

The following theorem generalizes some of the results already obtained by other authors (for
example [9, Theorem 2], [11, Theorem 5] and [21, Theorem 2]).

Theorem 2.1. Let X be a linear normed space and M be a Banach space, and let d > 0 and & > 0.
Suppose that f, g, h,k : X = Y satisfy

1f(x+y) +glx —y) = h(x) = k(I < &, (2.1)

for all x,y € X with ||x|| + |[yl| = d. Then there are a unique quadratic function Q : X — Y and exactly
two additive functions Ay, A, : X — Y such that

() = Q(x) — A1 (x) = f(O)]| < 46¢, (2.2)
l1g(x) = Q(x) — Az(x) — g(0)]| < 46e, (2.3)
lA(x) = 20(x) = (A1 + A2)(x) — h(O)]| < 29¢, (2.4)
llk(x) = 2Q(x) = (A1 = A2)(x) — k(O)]] < 29¢, (2.5)

forall x € X.

Proof. Replacing x by —x and y by —y in (2.1), and adding (subtracting) the resulting inequality to
(from) (2.1), we obtain

Ife(x + ) + ge(x — ¥) — he(x) — ke(y)l

<&, (2.6)
1fo(x +3) + 8o(x =) = ho(x) = k(W < &

|
| <&, 2.7)
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for all x,y € X with ||x|| + [[y]| > d. Putting x =0,y = 0,y = x and y = —x in (2.6), respectively, we get

Ife) + g.(v) = h(0) — kWl < &, [yl >d, (2.8)
Ife(xX) + 8e(x) = he(x) — k(O)| < &, [lx]| = d, (2.9)
Ife(2x) + g(0) — ho(x) — k() < &, |Ixl| > d, (2.10)
I (0) + g.(2x) = ho(x) — k(O < &, |lIxll >d. (2.11)
It follows from (2.8)—(2.10) that
[Ife(2x) = 2fe(x) = 28.(x) + (0) + h(0) + k(O)I| < 3¢, |Ixl| > d. (2.12)
By using (2.8), (2.9) and (2.11), we have
llge(2x) = 2fo(x) — 28.(x) + f(0) + h(0) + k(O)|| < 3&, [Ixl| > d. (2.13)
Hence, (2.12) and (2.13) imply
Ife(2x) — g.(2x) + g(0) — f(O)l| < 6e, [Ixl| > d.
Then
I fe(x) — ge(x) + g(0) — f(O)ll < 6g, |IxI| > 2d. (2.14)
In view of (2.12) and (2.14), we obtain
Ilf.(2x) —4f.(x) + a|| < 15¢, ||x|| > 2d, (2.15)

where @ = 2f(0) — g(0) + h(0) + k(0). If we replace x by 2"x in (2.15), and divide the resulting
inequality by 4"*!, then we obtain

L2 f2%) o« 15¢
gn+1 - 4n + An+1 < gn+1’ ||X|| >2d, n>0.
So
f.(2"x) _ [f(2"x) @ 15¢
qn+1 4m Z TS| pTESh lIxll > 2d, n>m>0. (2.16)
k=m k=m

Therefore, {M}n is a Cauchy sequence for each fixed x € X with ||x|| > 2d. Thus, by the

v Jfe(2"X)
(2" X
Tt ¥

completeness of Y, the sequence is convergent for each fixed x € X with ||x|| > 2d. Then
fe(2 x)

it is easy to see that the sequence {~

Q:X—> Yby

}» 1s convergent for each fixed x € X. We define the function

e X.

0(x) = lim fe(j:x),

It follows from (2.14) that Q(x) = lim,,_, g€(2 D for all x € X. In view of (2.8) and (2.9) we have

k.(2"x) h,(2"x)

20(x) = lim and 2Q(x) = lim 7 e X.

n—ooo 4
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Let x,y € X\ {0} and choose m € N such that ||12"x||, |[2"y|| > d for all n > m. Writing 2"x instead of x
and 2"y instead of y in (2.6) (for n > m), and dividing the resultant inequality by 4", and then letting n
approach infinity, we obtain

Q(x+y)+ Q(x—y) =20(x) +20(y), x,y € X\ {0}

Since Q(0) = 0 and Q is even, we infer that Q is quadratic. Putting m = 0 and taking the limit as
n — oo in (2.16), we get

Jfo(x) = O(x) — %a < Se, x| = 2d. (2.17)

Replacing y by —y in (2.6), we have

lige(x +¥) + fe(x = y) = he(x) = kWl < &, |IxI[ + [lyll > d.

This inequality is similar to inequality (2.6). By a similar argument, we have

1
20 = 0() - gﬁH <5e Il > 2d, 2.18)

where S := 2g(0) — f(0) + h(0) + k(0). Adding (2.17) to (2.18), we get

1
fo(x) + ge(x) = 20(x) — §(af +,B)H < 10g, ||x]| > 2d. (2.19)
In view of (2.8), (2.9) and (2.19), we obtain

< lle, |yl > 2d, (2.20)

1
ke(¥) = 2000) + 1(0) = (e + B)

<lle,  |lx]] = 2d. (2.21)

1
he(x) = 2Q() + K(0) = z(a + )

Now we extend inequalities (2.17), (2.18), (2.20) and (2.21) to X. Let z € X, choose y € X such that
Iyl > 2d + ||z|| and Tet x = z — y. Then min{||x]l, [lx — yIl, [Iyll} > 2d. By (2.18), we have

< 3e. (2.22)

1
glx—y)—0(kx—-y) - 5,3

It follows from (2.6) and (2.20)—(2.22) that

Ife(x +y) + Ox —y) = 20(x) = 20(y) - f(O)l| < 28e.

Since z = x + y and Q is quadratic, we get

1fe(z) = O(2) = f(O)]] < 28e. (@)

Similarly, for an arbitrary z € X, we conclude that
l1g(2) = O(2) = g(O)I| < 28e. (b)
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Now, let x € X and choose y € X such that ||y|| > 2d + ||x||. It is clear that ||x + y|| > 2d. Then by (2.17)

and (2.18), we have

< Se.

1
glx—y)—0(kx—-y) - 5,8

< Se,

1
JZ(X+y)—Q(X+y)—§a

It follows from (2.6), (2.20) and (2.23) that
I0(x +y) + O(x — y) = 20(y) — h.(x) + h(0)|| < 22¢.
Since Q is quadratic, we obtain
1. (x) — 20(x) — h(0)]| < 22&.
Similarly, for an arbitrary x € X, we conclude that
llk.(x) — 20(x) — k(0)]| < 22e.

Letting x =0,y = 0,y = x and y = —x in (2.7), respectively, we get

/o) = 80 = koWl < & [Vl > d,
1/6(x) + 8o(x) = ol < &, Ixl| > d,
1/6(2%) = ho(x) = koDl < &, Ix[| > d,
180(2%) = ho(x) + ko) < &, |Ixll > d.

It follows from (2.24) and (2.25) that

12f0(x) = ho(x) = koDl < 28, [1280(x) = ho(x) + k(0| < 2&,  |[|x]| > d.

In view of (2.26)—(2.28), we obtain
1fo(2x) = 2f,(0ll < 3e,  Igo(2x) — 28,(0)[| < 3e,  |Ixl| > d.
It is easy to see that

£ £27)
2n+l m

n
< 3¢
= 2i+1’
i=m

2,2 x)  g,(2"x)
2n+1 - 2m

=~ 3¢
< Z i+l ?
for all ||x|| > d. So, we can define A}, A; : X —» Y by

Jo(2"x) 8o(2"x)

A(x) := lim o and Ay(x) := lim TE e X.
In view of (2.24) and (2.25), we conclude that
ko (2" . h,(2"
(A, — A)(x) = lim (2n Y and (A + A = lim (2 Y rex

(2.23)

(c)

(d)

(2.24)
(2.25)
(2.26)
(2.27)

(2.28)

(2.29)
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Let x € X and,y € X\ {0}. We can choose m € N such that ||2"y|| > d for all n > m. Writing 2"x
instead of x and 2"y instead of y in (2.7) (for n > m), and dividing the resultant inequality by 2", and

then letting n approach infinity, we obtain

Ai(x +y) + As(x —y) = (A1 + A))(x) + (A — A)().

(2.30)

Since A;(0) = A,(0) = 0, we get (2.30) for all x,y € X. For convenience, we set A = A; + A, and

L =A,—-A,. Then A and L are odd because A; and A, are. By (2.30), we have

Ax+y) +A(x —y) —2A(x) = Ai(x + y) + Aa(x — y) — A(x) — L(y)
+A1(x—y) + Ar(x +y) — A(x) + L(y)
=0, x,yelX.

Hence A is additive. Thus
Ai(x+y) —A1(x) —A1(y) = Ax(x) + Ax(y) — Aa(x +y), x,yeX.

Using (2.30), we obtain
Ar(x+y)—A(x—y) =2A(), x,yelX.

So A, is additive, and consequently A; is additive.
By (2.29), we obtain

Ifo(x) — A1l <3¢ and  |Ig,(x) — Ax(W)Il < 3e, |Ixll > d.

In view of (2.24), (2.25) and (2.31), we get

lho(x) — (A1 + A))(0)| < 7Te and  |lko(x) — (A1 — A < Te, x| > d.

(2.31)

(2.32)

Now we extend inequalities (2.31) and (2.32) to X. Let z € X, choose y € X with ||y|| > d + ||z]| and let

x = z —y. Then min{||x||, [|x — ¥, [Iyll} > d. By (2.31) and (2.32), we have

llgo(x —y) — Ax(x — y)I| < 3,
17,(x) — (A1 + A)(0)I| < T,
| <7

ko) = (A1 = AWl < Te.

Since z = x + y and A, A, are additive, these inequalities and (2.7) yield
If,(2) — A1(2)ll < 18e.

Similarly, one can obtain
llgo(z) — Ar()Il < 18¢, ze€ X.

(a)

(b")

To extend (2.32), let x € X and choose y € X such that ||y|| > d + ||x]|. Then ||x £ y|| > d. By (2.31), we

have
Ifo(x+y) —Ai(x+ VI <3e and ||go(x —y) — Ar(x — Y|l < 3e.

AIMS Mathematics Volume 7, Issue 4, 7001-7011.
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Using (2.7) and these inequalities, we get
170(xX) + ko(y) = A1(x +y) = As(x = Yl < Te. (2.33)

Because k, is odd and A}, A, are additive, interchanging y with —y in (2.33) and adding the resulting
inequality to (2.33), we get

ll7(x) — (A1 + A2)(0)| < 7e. (c")

Similarly, one can obtain
llko(x) = (A1 = A)(0)l| < Te, xe€X. (d)
In view of (a) and (a’), we get (2.2). By (b) and ("), we obtain (2.3). (2.4) follows from (c) and (c’).
Finally, (d) and (d’) yield (2.5). O

Corollary 2.2. Let X,Y be linear normed spaces, and f, g, h,k : X — Y satisfy

lim [|f(x+y)+gx—y) —h(x) - k(I = 0.

[Ixll+llyll—e0

Then (f, g, h,k) ) is a solution of (1.2) and they are given by

J() = Ai(x) + Q(x) + £(0),

8(x) = Az(x) + Q(x) + g(0),

h(x) = (A1 + A2)(x) + 20(x) + h(0),

k(x) = (A] — A))(x) + 20(x) + k(0), x € X,

where A1,A, : X — Y are additive and Q : X — Y is quadratic.
Proof. Let € > 0 be an arbitrary. Then there exists d > 0 such that
If(x+y)+8(x—y) = h(x) -kl <&, [lxl + Iyl > d.
By Theorem 2.1 (we let Y be the completion of Y), we get
Lf(x+y) + g(x = y) = h(x) = k(y) = f(0) = g(0) + 1(0) + k(O)] < 150e, x,y € X.
Since € > 0 was given arbitrarily, we get
J(x+y) +g(x —y) = h(x) = k(y) = f(0) = g(0) + h(0) + k(0) =0, x,yeX.
Hence the result follows from [10, Theorem 3.1]. O

Corollary 2.3. Let X, Y be linear normed spaces, and f : X — Y satisfy
lim If(x+y)+ f(x—y) = 2f(0) - fO) = fIl = 0.

[Ixl+lyll—00
Then f is given by
f() =A@+ 00+ f(0), xel,

where A : X — Y is additive and Q : X — Y is quadratic.

AIMS Mathematics Volume 7, Issue 4, 7001-7011.
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To prove the next theorem, we need the following result.

Lemma 2.4. [24, Corollary 2.8] Let X be a linear normed space and Y be a Banach space, and let
d>0ande > 0. Suppose that f : X — Y is a function such that

Ifx+y)+ fx=y)=2f(0) =2fOll <& lxl+ 1yl > d.
Then there is a unique quadratic function Q : X — Y such that
7
Ilf(x) = QI < g5 X€ X.

Theorem 2.5. Let X be a linear normed space and M be a Banach space, and let d > 0 and € > 0.
Suppose that f : X — Y is a function such that sup . || f(x)|| = +c0 and

If(x+y)+ f(x=y)—af(x) =DfWI <&, (2.34)

for all x,y € X with ||x|| + |IYll = d, where a,b are real constants with b # 0. Then there is a unique
quadratic function Q : X — Y such that

(o IEN

lf(x) =0l < -, xelkX. (2.35)

Proof. By considering the proof of Theorem 2.1, there exists a unique quadratic function Q : X —» Y
such that aQ(x) = bQ(x) = 20(x) and

1/ (x) = Q(x) = f(O)ll < 46, (2.36)

for all x € X. Since f is unbounded, we get Q # 0 by (2.36). So a = b = 2. Consequently, (2.34)
implies that

If(x+y)+ f(x=y)=2f(0) -2/l <&,
for all x,y € X with ||x]| + |[y|| > d. By Lemma 2.4, we get (2.35). O

Corollary 2.6. Suppose that f : X — Y satisfies

lf(x+y)+ flx=y)-bfI<e,
for all x,y € X with ||x|| + ||y|| = d, where b is a real constant. Then f is bounded.

Theorem 2.7. Let X be a linear normed space and M be a Banach space, and let d > 0 and & > 0.
Suppose that f : X — Y is a function such that sup . || f(x)|| = +c0 and

If(x+y) + fx—y)—af(ll <&, (2.37)

for all x,y € X with ||x|| + ||yl| > d, where a is a real constant. Then there is a unique additive function
A : X — Y such that

| W

If(x) —Ax) - fO < 56, xeX. (2.38)
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Proof. By considering the proof of Theorem 2.1, there exists a unique additive function A : X — Y
such that aA(x) = 2A(x) and
1/ (x) = A(x) = (O]l < 46, (2.39)

for all x € X. Since f is unbounded, we get A # 0 by (2.39). So we get a = 2 and consequently, (2.37)
implies that
Ifx+y)+ fx—y)-2fl<e, Ixll+ ]yl > d. (2.40)

Then
lA(x) = f(0) + fONl <& Xl > d. (2.41)

Now we extend (2.41) to X. Let x € X and choose y € X such that ||y|| > d + ||x||. It is clear that
llx + y|| > d. Then (2.41) yields that

lAGx+y) = fx+y) + fOll <& and [A(x—y) - f(x—y) + fO) <&

These inequalities and (2.40) imply that ||[A(x+y) + A(x —y) —2f(x) + 2f(0)|| < 3&. Since A is additive,
we get (2.38). O

In the following corollary, we investigate the Hyers-Ulam stability of Drygas functional equation
which is a special case of Theorem 2.1. In this case we get a sharp bound.

Corollary 2.8. Suppose that f : X — M satisfies

If(x+y)+ fx=y) =2f(x) = fO) = f(DN < &,

for all x,y € X with ||x|| + ||yll = d. Then there are a unique quadratic function Q : X — Y and a
unique additive function A : X — Y such that

W] oo

1f(x) - O(x) —A(x) - 2fO)I < 38, xeX. (2.42)

Proof. By the assumption, we obtain

fe(x +y) + fe(x = y) = 2fe(x) = 2f Ol < &,
1fo(x +y) + folx = y) = 2fo(0)l[ < &

for all x,y € X with ||x|| + ||[yll > d. Then by [24, Corollary 2.8] and the argument in the proof of
Theorem 2.7, there are a quadratic function Q : X — Y and an additive function A : X — Y such that

2

7 3
Ife(x) = Q0 < &, [Ifo(x) —AX) ~ fO)l < &, x€ X.

Hence we get (2.42). The uniqueness of A and Q is clear. O
3. Conclusions

We have investigated the Hyers-Ulam stability of the Pexider functional Eq (1.2) on an unbounded
restricted domain. As a consequence, we have obtained asymptotic behaviors of this functional

equation.
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