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1. Introduction

Assume that f is a non-empty, closed and convex subset of a real Banach space Ω. The normalized
duality mapping J : Ω→ 2Ω∗ (Ω∗ is the dual space of Ω) is defined by

J(ν) =
{
κ ∈ Ω∗ : 〈ν, κ〉 = ‖ν‖2 = ‖κ‖2

}
.

A mapping Z : f→ f is called nonexpansive if

‖Zν − Z℘‖ ≤ ‖ν − ℘‖ , ∀ν, ℘ ∈ f.

Here, we denote ∇(Z) by the set of fixed points of Z, that is ∇(Z) = {ν ∈ f : Zν = ν} and we consider
∇(Z) , ∅.

One of the strong contributions with important applications to fixed point theory is Banach
contraction principle, which states:
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Theorem 1.1. [1] Every contraction mapping Z : } → } defined on a complete metric space (}, σ)
has a unique fixed point, where σ is the distance that describes the mapping Z, i.e.,

σ(Zν,Z℘) ≤ µσ(ν, ℘), ∀ν, ℘ ∈ }, µ < 1. (1.1)

Moreover, for arbitrary ν0 ∈ }, the sequence {νm} created by

νm+1 = Zνm, m ≥ 0, (1.2)

converges strongly to the unique fixed point.

It should be noted that a mapping Z verifying (1.1) is called a strict contraction and if µ = 1 in
(1.2), then it is called nonexpansive. The iterative sequence (1.2) is due to Picard [2]. For the iterative
formula, it was observed that if the condition µ < 1 on the operator Z is weakened to µ = 1, the
sequence {νn} defined by (1.2) may fail to converge to a fixed point of Z. To overcome this shortcoming,
Krasnoselskii [3], replaced Picard iteration formula by the following formula:

ν0 ∈ }, νm+1 =
1
2

(νm + Zνm), m ≥ 0.

He proved that the iterative sequence converges to the fixed point.
In the light of [3], the successful iterative method presented and known as Krasnoselskii-Mann

iterative scheme and formulated as follows:

ν0 ∈ f, νm+1 = (1 − ηm)νm + ηmZνm, m ≥ 0, (1.3)

where {ηm} is a sequence of non-negative real numbers in (0, 1). It was observed that via the stipulation
∇(Z) , ∅ and mild assumptions forced on {ηm}, the sequence {νm} generated by (1.3) converges weakly
to a fixed point of Z.

Krasnoselskii-Mann algorithm is one of many successful iteration schemes for approximating fixed
points of nonexpansive mappings. It provides a unified framework for many algorithms in various
disciplines, so the following approach is important.

Theorem 1.2. [4] Assume that Z is a nonexpansive mapping on a real Hilbert space k and ∇(Z) , ∅.
Then the sequence {νn} maked by (1.3) converges weakly to a fixed point of Z, provided that ηm ∈ [0, 1]

and
∞∑

m=0
ηm = ∞.

It should be remarked that all previous contributions on Krasnoselskii-Mann algorithm for
nonexpansive mappings have only weak convergence even in a real HS, see [4]. Further, Krasnoselskii-
Mann algorithm was generalized by Yang and Zhao [5]. They introduced some important theorems
about it and they called their theorems KM theorems.

Bruck [6] noted that the importance of studying nonexpansive mappings lies in two main reasons:

i) nonexpansive mappings are closely related to the monotonicity methods that were updated in the
early 1960s and constitute one of the first classes of nonlinear mapping to be treated using the
fixed point technique by studying the exact geometrical properties of the basic Banach spaces
rather than the compactness properties.
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ii) nonexpansive mappings assignments in applications appear as transitional parameters for initial
value problems of differential inclusions in the form 0 ∈ dµ

dτ + Υ(τ)µ = 0, where a set-valued
operators {Υ(τ)}, are accretive or minimally continuous and dissipative.

In nonlinear mapping theory and its applications, building fixed point for nonexpansive mappings
assignments is a very important topic, especially, in signal processing and image recovery, see [7–
9]. Study of Krasnoselskii-Mann iterative procedures to approximate fixed points of nonexpansive
mappings assignments and fixed points of some of their generalizations and approximate zeros of
operators of accretive-type has become more widespread and prosperous over the past thirty years or
so, for further clarification, we would like to guide the reader to [10–14].

Very recently, a new form for Mann’s algorithm is proposed by Bot et al. [15] to overcome the
deficiency described before, and he described it as follows: let ϕ0 be arbitrary in k, for all m ≥ 0,

νm+1 = ηmνm+1 + ζm (Z(ηmνm) − ηmνm) , (1.4)

they showed that the iterative sequence {νn} generated by (1.4) is strongly convergent via suitable
assumptions for {ηm} and {ζm}. A sequence {ζm} in (1.2) has an effective role in acceleration, it
called Tikhonov regularization sequence. Many theoretical and numerical discussions to study strong
convergence using Tikhonov regularization methodology have been presented by [18–20].

Recently newer types of algorithms have been developed and introduced, such as the inertia
algorithm first introduced by Polyak [18]. He used an inertial extrapolation methodology for
minimizing a smooth convex function. It is worth noting that, these simple changes affected positively
in the performance and effectiveness of these algorithms.

After adopting this concept, researchers were able to implicate additional terms to the inertial
algorithm to delve into the study of many vital applications, for example, but not limited to, inertial
extragradient algorithms [19–21], inertial projection algorithms [22–26], inertial Mann algorithms [27]
and inertial forward-backward splitting algorithms [28,29]. There is no doubt that these algorithms are
significantly faster than the inertial algorithms.

Based on the above work, in the present manuscript, Ishikawa algorithm has been developed by
adding the term of the inertial to obtain an advanced algorithm, called a modified inertial Ishikawa
algorithm. A strong convergence using the proposed algorithm is also discussed in a real uniformly
convex Banach space with uniformly Gâteaux differentiable norm. Moreover, as an application, we
find zeros of accretive mappings. Our results generalize and extend many of the older findings in
this regard. Finally, two numerical experiments are given to illustrate the behavior of the purposed
algorithm.

2. Preliminaries

Assume that Ω is a real normed linear space and assume ℵ = {ν ∈ Ω : ‖ν‖ = 1} . We say that Ω have
a Gâteaux differentiable norm if the limit below exists for all ν, ℘ ∈ ℵ,

lim
τ→∞

‖ν + τ℘‖ − ‖ν‖

τ
,

and Ω is called smooth. Furthermore, we say that Ω has a uniformly Gâteaux differentiable norm, if
for any ℘ ∈ ℵ the limit is attained uniformly for ν ∈ ℵ. Also, Ω is called uniformly smooth if the limit
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exists uniformly for (ν, ℘) ∈ ℵ. It is obvious that any duality mapping on Ω is a single-valued if Ω

is smooth and if Ω has a uniformly Gâteaux differentiable norm then the duality mapping is norm-to-
weak∗ uniformly continuous on bounded subsets of Ω.

Suppose that ∆ is a non-empty, closed, convex and bounded subset of a real Banach space Ω and
let d(∆) = sup {‖ν − ℘‖ , ν, ℘ ∈ ∆} refer to the diameter of ∆, and for w(∆) = inf {w(ν, ℘), ν ∈ ∆} refer
to the Chebyshev radius of ∆ relative to itself, where for ν ∈ ∆, w(ν,∆) = sup {‖ν − ℘‖ , ℘ ∈ ∆}. The
normal structure coefficient N(Ω) of Ω introduced by Bynum [30] as follows: Let ∆ be a non-empty,
closed, convex, and bounded subset of Ω, then N(Ω) is defined by N(Ω) = inf

{
d(∆)
w(∆) : d(∆) > 0

}
. If

N(Ω) > 1, then the space Ω has a uniform normal structure. It should be noted that, every space with
a uniform normal structure is reflexive, this implies that all uniformly convex and uniformly smooth
Banach spaces have a uniform normal structure, for example, see, [11, 31].

The lemmas below are very important in the sequel.

Lemma 2.1. [32] Let Ω be a real uniformly convex Banach space. For arbitrary u > 0, assume that
ℵu(0) = {ν ∈ Ω : ‖ν‖ ≤ u} and α ∈ [0, 1]. Then there is a continuous strictly increasing convex function
r : [0, 2u]→ R, r(0) = 0 so that the inequality below holds

‖αν + (1 − α)℘‖2 ≤ α ‖ν‖2 + (1 − α) ‖℘‖2 − α(1 − α)r(‖ν − ℘‖).

Lemma 2.2. Let Ω be a real normed linear space, then for all ν, ℘ ∈ Ω, j(ν + ℘) ∈ J(ν + ℘), we have

‖ν + ℘‖2 ≤ ‖ν‖2 + 2〈℘, j(ν + ℘)〉.

Lemma 2.3. [33] Let Ω be a uniformly convex Banach space, ∆ be a non-empty, closed and convex,
subset of Ω and Z : ∆ → ∆ be a nonexpansive mapping with a fixed point. Suppose that the sequence
{νm} in ∆ is so that νm ⇀ ν and νm − Zνm −→ ℘. Then ν − Zν = ℘.

Lemma 2.4. [31] Assume that Ω is a Banach space with uniform normal structure, ∆ is a
nononexpansive mapping bounded subset of Ω and Z : ∆→ ∆ is a uniformly L−Lipschitzian mapping
with L < N(Ω)

1
2 . Consider there is a non-empty bounded closed convex subset< of ∆ with the property

(D) below:
ν ∈ < ⇒ $w(ν) ∈ <.

Then Z has a fixed point in ∆.

Note: $w(ν) here is the $−limit set of Z at ν, that is, the set {℘ ∈ Ω : y =weak $ − lim Zn jν, for
some n j → ∞}.

Lemma 2.5. [34] Assume that (ν0, ν1, ν2, ...) ∈ l∞, is so that δmνm ≤ 0 for all Banach limits δ. If
lim sup

m→∞
(νm+1 − νm) ≤ 0, then lim sup

m→∞
νm ≤ 0.

Lemma 2.6. [35] Suppose that {en} is a sequence of non-negative real numbers verifying the inequality
below

em+1 ≤ (1 − cm)em + fmσm + πm, m ≥ 1,

if

• {cm} ⊂ [0, 1],
∑

cm = ∞;
• lim sup

m→∞
σm ≤ 0;

• for each m ≥ 0, πm ≥ 0,
∑
πm < ∞.

Then, lim
m→∞

em = 0.
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3. Main results

Under mild conditions, in this section, we shall discuss the strong convergence of a modified inertial
Ishikawa algorithm for nonexpansive mappings.

Theorem 3.1. Let Ω be a real uniformly convex Banach space with uniformly Gâteaux differentiable
norm. Suppose that Z : Ω→ Ω is a nonexpansive mapping so that ∇(Z) , ∅. Consider the hypotheses
below hold:

(i) lim
m→∞

σm = 0,
∞∑

m=1
σm = ∞, σm ∈ (0, 1), ρm ∈ [`1, `2] ⊂ (0, 1),

(ii) lim
m→∞

πm = 0, πm ∈ (0, 1) and
∞∑

m=0
πm ‖νm − νm−1‖ < ∞.

Set ν0, ν1 arbitrary. Let the sequence {νm} created iteratively by
~m = νm + πm(νm − νm−1),
℘m = (1 − σm)~m,

νm+1 = (1 − ρm)℘m + ρmZ℘m, m ≥ 1.
(3.1)

Then the sequence {νm} converges strongly to a point in ∇(Z).

Proof. For any d ∈ ∇(Z), by (3.1), we have

‖νm+1 − d‖ = ‖(1 − ρm) (℘m − d) + ρm (Z℘m − d)‖
≤ (1 − ρm) ‖℘m − d‖ + ρm ‖Z℘m − d‖

= (1 − ρm) ‖℘m − d‖ + ρm ‖Z℘m − Zd‖

≤ (1 − ρm) ‖℘m − d‖ + ρm ‖℘m − d‖

≤ ‖℘m − d‖

= ‖(1 − σm)~m − d‖

≤ (1 − σm) ‖~m − d‖ + σm ‖d‖

≤ (1 − σm) ‖(νm − d) + πm(νm − νm−1)‖ + σm ‖d‖

≤ (1 − σm) ‖νm − d‖ + (1 − σm) πm ‖νm − νm−1‖ + σm ‖d‖

≤ max{‖νm − d‖ , ‖νm − νm−1‖ , ‖d‖}.

By mathematical induction, it is easy to see that

‖νm − d‖ ≤ max{‖ν1 − d‖ , ‖ν1 − ν0‖ , ‖d‖}, ∀m ≥ 0.

This shows that {νm} is bounded and also are {~m} and {℘m}.
Based on Lemmas 2.1, 2.2 and Algorithm (3.1), one sees that

‖νm+1 − d‖2 = ‖(1 − ρm)(℘m − d) + ρm(Z℘m − d)‖2

≤ (1 − ρm) ‖℘m − d‖2 + ρm ‖Z℘m − d‖2 − ρm (1 − ρm) r (‖Z℘m − ℘m‖)

≤ (1 − ρm) ‖℘m − d‖2 + ρm ‖℘m − d‖2 − ρm (1 − ρm) r (‖Z℘m − ℘m‖)
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= ‖℘m − d‖2 − ρm (1 − ρm) r (‖Z℘m − ℘m‖)

≤ ‖~m − d‖2 + 2σm〈~m − d, j(℘m − d)〉 − ρm (1 − ρm) r (‖Z℘m − ℘m‖)

≤ ‖νm − d‖2 + 2πm〈νm − d, j(~m − d)〉 + 2σm〈~m − d, j(℘m − d)〉
−ρm (1 − ρm) r (‖Z℘m − ℘m‖) .

On the other hand, one can write

ρm (1 − ρm) r (‖Z℘m − ℘m‖) ≤ ‖νm − d‖2 − ‖νm+1 − d‖2 + 2πm〈νm − d, j(~m − d)〉
+2σm〈~m − d, j(℘m − d)〉. (3.2)

The boundedness of {νm}, {~m} and {℘m} leads to there are constants Λ1, Λ2 > 0 so that

〈νm − d, j(~m − d)〉 ≤ Λ1 and 〈~m − d, j(℘m − d)〉 ≤ Λ2 for all m ≥ 1. (3.3)

Applying (3.3) in (3.2), we have

ρm (1 − ρm) r (‖Z℘m − ℘m‖) ≤ ‖νm − d‖2 − ‖νm+1 − d‖2 + 2πmΛ1 + 2σmΛ2. (3.4)

In order to obtain the strong convergence, we discuss the following cases:
Case (a). If the sequence {‖νm − d‖} is monotonically decreasing, then {‖νm − d‖} is convergent. It

is easy to see that
‖νm+1 − d‖2 − ‖νm − d‖2 → 0,

as m→ ∞, this leads to directly by (3.4),

ρm (1 − ρm) r (‖Z℘m − ℘m‖)→ 0.

By the property of r and since ρm ∈ [`1, `2] ⊂ (0, 1), we have

‖Z℘m − ℘m‖ → 0. (3.5)

Combining (3.1) and (3.5), we have

‖νm+1 − ℘m‖ = ρm (Z℘m − ℘m)→ 0. (3.6)

It follows from (3.1) and condition (i) that

‖℘m − ~m‖ = σm ‖~m‖ → 0. (3.7)

By condition (ii), we get
‖~m − νm‖ = πm ‖νm − νm−1‖ → 0. (3.8)

Based on (3.7) and (3.8), we can write

‖℘m − νm‖ ≤ ‖℘m − ~m‖ + ‖~m − νm‖ → 0. (3.9)

Using (3.6) and (3.9), we have

‖νm+1 − νm‖ ≤ ‖νm+1 − ℘m‖ + ‖℘m − νm‖ → 0 as m→ ∞.
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From (3.5), (3.7) and (3.8), we get

‖Zνm − νm‖ ≤ ‖Zνm − Z℘m‖ + ‖Z℘m − ℘m‖ + ‖νm − ℘m‖

≤ 2 ‖νm − ℘m‖ + ‖Z℘m − ℘m‖

≤ 2 (‖℘m − ~m‖ + ‖~m − νm‖) + ‖Z℘m − ℘m‖ → 0.

Since {νm} is bounded, then there exists the subsequence {νmb} ⊂ {νm} so that it converges weakly to
d ∈ Ω. Furthermore, Lemma 2.3 implies that d ∈ ∇(Z).

Now, we shall show that
lim sup

m→∞
〈−d, j(℘m − d)〉 ≤ 0.

For this, define a map χ : Ω→ R by

χ(ν) = δm ‖℘m − ν‖
2 , ∀ν ∈ Ω.

Then, χ(ν) → ∞ as ‖ν‖ → ∞, χ is convex and continuous. As Ω is reflexive, then there is ℘∗ ∈ Ω so
that χ(℘∗) = mina∈Ω χ(a). Thus, the set <̂ , ∅, where <̂ is defined as

<̂ =

{
ν ∈ Ω : χ(ν) = min

a∈Ω
χ(a)

}
.

Again, since lim
m→∞
‖Z℘m − ℘m‖ = 0, then by induction, we can see that lim

m→∞
‖Zn℘m − ℘m‖ = 0 for all n ≥

1. Hence, from Lemma 2.4, if ν ∈ < and ℘ = $ − lim j→∞ Zn jν, then from weak lower semi-continuity
of χ and lim

m→∞
‖Z℘m − ℘m‖ = 0, we get (since lim

m→∞
‖Z℘m − ℘m‖ = 0 implies lim

m→∞
‖Zn℘m − ℘m‖ = 0,

n ≥ 1, this is easily proved by induction)

χ(℘) ≤ lim inf
j→∞

χ (Zn jν)

≤ lim sup
n→∞

χ (Znν)

= lim sup
n→∞

(
δm ‖℘m − Znν‖2

)
= lim sup

n→∞

(
δm ‖℘m − Z℘m + Z℘m − Znν‖2

)
≤ lim sup

n→∞

(
δm ‖Z℘m − Znν‖2

)
≤ lim sup

n→∞

(
δm ‖℘m − ν‖

2
)

= χ(ν) = inf
a∈Ω

χ(a).

Thus, ℘∗ ∈ <̂. Therefore by Lemma 2.4, Z has a fixed point in <̂ and so <̂ ∩ ∇(Z) , ∅. As a special
case without losing the general case, suppose that ℘∗ = d ∈ <̂ ∩ ∇(Z). Consider τ ∈ (0, 1). Then it is
easy to see that χ(d) ≤ χ(d − τd) with the helping of Lemma 2.2, one sees that

‖℘m − d + τd‖2 ≤ ‖℘m − d‖2 + 2τ〈d, j(℘m − d + τd)〉,

by the properties of χ, we can write

1
δm
χ(d − τd) ≤

1
δm
χ(d) + 2τ〈d, j(℘m − d + τd)〉,
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By arranging the above inequality, we have

2τδm〈−d, j(℘m − d + τd)〉 ≤ χ(d) − χ(d − τd) ≤ 0.

This leads to
δm〈−d, j(℘m − d + τd)〉 ≤ 0.

Moreover,

δm〈−d, j(℘m − d)〉 ≤ δm〈−d, j(℘m − d) − j(℘m − d + τd)〉 + δm〈−d, j(℘m − d + τd)〉
≤ δm〈−d, j(℘m − d) − j(℘m − d + τd)〉. (3.10)

Since the normalized duality mapping is norm-to-weak∗ uniformly continuous on bounded subsets of
Ω, then we have, as τ→ 0 and for fixed n,

〈−d, j(℘m − d) − j(℘m − d + τd)〉
≤ 〈−d, j(℘m − d)〉 − 〈−d, j(℘m − d + τd)〉 → 0.

Thus, for each ε > 0, there is ςε > 0 so that for all τ ∈ (0, ςε),

〈−d, j(℘m − d)〉 − 〈−d, j(℘m − d + τd)〉 < ε.

Hence,
δm〈−d, j(℘m − d)〉 − δm〈−d, j(℘m − d + τd)〉 ≤ ε.

Because ε is an arbitrary, then by (3.10), one can obtain

δm〈−d, j(℘m − d)〉 ≤ 0.

By triangle inequality, we have

‖℘m+1 − ℘m‖ ≤ ‖℘m+1 − νm+1‖ + ‖νm+1 − ℘m‖ .

According to (3.6) and (3.9), we get

lim
m→∞
‖℘m+1 − ℘m‖ = 0.

Since the normalized duality mapping is norm-to-weak∗ uniformly continuous on bounded subsets of
Ω, then we have

lim
m→∞

(〈−d, j(℘m − d)〉 − 〈−d, j(℘m+1 − d)〉) = 0.

It follows from Lemma 2.5 that
lim sup

m→∞
〈−d, j(℘m − d)〉 ≤ 0.

Ultimately, from (3.1), Stipulation (ii) and Lemma 2.2, we have

‖νm+1 − d‖2 = ‖(1 − ρm)(℘m − d) + ρm(Z℘m − d)‖2

≤ (1 − ρm) ‖℘m − d‖2 + ρm ‖Z℘m − d‖2
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≤ ‖℘m − d‖2

= ‖(1 − σm) (~m − d) − σmd‖2

= (1 − σm) ‖~m − d‖2 + 2σm〈−d, j(℘m − d)〉
≤ (1 − σm) ‖(νm − d) + πm(νm − νm−1)‖2 + 2σm〈−d, j(℘m − d)〉
≤ (1 − σm) ‖νm − d‖2 + 2πm〈νm − νm−1, j(~m − d)〉 + 2σm〈−d, j(℘m − d)〉
= (1 − σm) ‖νm − d‖2 + 2σm〈−d, j(℘m − d)〉. (3.11)

Applying Lemma 2.6, we conclude that, {νm} → d ∈ ∇(Z).
Case (b). If the sequence {‖νm − d‖} is not monotonically decreasing. Put Ξm = ‖νm − d‖2 and

assume that Π : N → N is a mapping defined by

Π(m) = max{~ ∈ N : ~ ≤ m, Ξ~ ≤ Ξ~+1}.

Obviously, Π is a non-decreasing sequence so that limm→∞Π(m) = ∞ and ΞΠ(m) ≤ ΞΠ(m)+1 for m ≥ m0

(for some m0 large enough). Based on (3.4), one sees that

ρΠ(m)
(
1 − ρΠ(m)

)
r
(∥∥∥Z℘Π(m) − ℘Π(m)

∥∥∥)
≤

∥∥∥νΠ(m) − d
∥∥∥2
−

∥∥∥νΠ(m)+1 − d
∥∥∥2

+ 2πΠ(m)Λ1 + 2σΠ(m)Λ2

= ΞΠ(m) − ΞΠ(m)+1 + 2πΠ(m)Λ1 + 2σΠ(m)Λ2

≤ 2πΠ(m)Λ1 + 2σΠ(m)Λ2 → 0 as m→ ∞.

Furthermore, we get ∥∥∥Z℘Π(m) − ℘Π(m)

∥∥∥→ 0 as m→ ∞.

By following the same scenario in Case (a) we can prove that {νΠ(m)} ⇀ d as Π(m) → ∞ and
lim sup
Π(m)→∞

〈−d, j(℘Π(m) − d)〉 ≤ 0. For all m ≥ m0, we obtain by (3.11) that

0 ≤
∥∥∥ν

Π(m)+1 − d
∥∥∥2
−

∥∥∥ν
Π(m) − d

∥∥∥2
≤ σ

Π(m)

[
2〈−d, j(℘

Π(m) − d)〉 −
∥∥∥ν

Π(m) − d
∥∥∥2

]
,

this implies that ∥∥∥ν
Π(m) − d

∥∥∥2
≤ 2〈−d, j(℘

Π(m) − d)〉.

Since lim sup
Π(m)→∞

〈−d, j(℘Π(m) − d)〉 ≤ 0, then we have after taking the limit as m → ∞ in the above

inequality,
lim

m→∞

∥∥∥ν
Π(m) − d

∥∥∥2
= 0.

Hence
lim

m→∞
ΞΠ(m) = lim

m→∞
ΞΠ(m)+1 = 0.

Moreover, for all m ≥ m0, it is easy to notice that Ξm ≤ ΞΠ(m)+1 if m , Π(m) (that is, Π(m) < m), since
Ξi > Ξi+1 for Π(m) + 1 ≤ i ≤ m. As a result, for all m ≥ m0, we get

0 ≤ Ξm ≤ max{ΞΠ(m),ΞΠ(m)+1} = ΞΠ(m)+1.

Thus, lim
m→∞

Ξm = 0, this conclude that {νm} converges strongly to a point d. This finishes the proof. �

AIMS Mathematics Volume 7, Issue 4, 6984–7000.



6993

Remark 3.2. (r1) Here, the results of Tan and Cho [36] are generalized from a real HS to a real
uniformly convex Banach space with uniformly Gâteaux differentiable norm.

(r2) Because of the wide applications in most branches of mathematics and engineering for the
problem of finding fixed points of nonexpansive mappings, it has attracted the attention of many
researchers.

(r3) Since every uniformly smooth Banach space has uniformly Gâteaux differentiable norm. Then,
our theorem can be stated in a uniformly convex Banach space which is also uniformly smooth.
(Corollary 3.3).

Corollary 3.3. Let Ω be a real uniformly convex Banach space which is also uniformly smooth. Assume
that Z : Ω→ Ω is a nonexpansive mapping so that ∇(Z) , ∅. Let {νm} be a sequence created iteratively
by (3.1). Then the sequence {νm} converges strongly to a point in ∇(Z).

4. An application

Let Ω be a real uniformly convex Banach space with uniformly Gâteaux differentiable norm. We
say that a mapping Υ : D(Υ)→ Ω that has a domain D(Υ) is accereative if there is j(ν−℘) ∈ J (ν − ℘)
such that

〈 j(ν − ℘),Υν − Υ℘)〉 ≥ 0, for ν, ℘ ∈ D(Υ). (4.1)

According to Inequality (4.1), Kato [37] introduced another definition of the accereative mapping
as follows: A mapping Υ is called accereative if the inequality below holds

‖ν − ℘‖ ≤ ‖ν − ℘ + b (Υν − Υ℘)‖ ∀s > 0 and for each ν, ℘ ∈ D(Υ). (4.2)

We must recall that accerative operators are monotone if Ω is a Hilbert space. Moreover, if Υ

is accretive and its range is R(I + eA) = Ω, for all e > 0, then Υ is called m−accretive. Also, if
D(Υ) ⊆ R(I + eΥ) for all e > 0, then Υ is said to satisfy the range condition, where D(Υ) is the closure
of the domain of Υ. Furthermore, if Υ is accerative [38], then the mapping JΥ : R(I + Υ) → D(Υ),
which defined by JΥ = (I + Υ)−1 is a single-valued nonexpansive and ∇(JΥ) = N(Υ), where N(Υ) =

{ν ∈ D(Υ) : Υν = 0} and ∇(JΥ) = {ν ∈ Ω : JΥν = ν}.

In 1967, the accerative operators are presented independently by Browder [39] and Kato [37]. The
study of such mappings is extremely interesting because of their firm link with the existence theory for
nonlinear equations of evolution in Banach spaces.

Accerative operators are heavily involved under a suitable Banach space in many physically
significant problems where these problems can be formulated as an initial boundary value problem
of the form

dµ
dτ

+ Υµ = 0, µ(0) = µ0. (4.3)

There are several embedded models of evolution equations such as Schrödinger, heat and wave
equation [40]. Heavy work on the theory of accretive operators has been published by Browder [39]
explains that if Υ is locally Lipschitzian and accretive on Ω, then Problem (4.3) has a solution. Also,
under the same conditions and the existence result of (4.3), he proved that Υ is m−accretive and there
is a solution to the equation below

Υµ = 0. (4.4)
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By Ray [40], Browder’s results are elegantly and refined using fixed point theory of Caristi [41].
Martin [42] generalized the results of Browder by proving that in the space Ω. Problem (4.3) is solvable
if Υ is continuous and accretive. Moreover, he showed that if Υ is continuous and accretive, then Υ is
m−accretive. For more details about theorems for zeros of accretive operators see Browder [43] and
Deimling [44].

It should be noted that, if µ is independent of τ in Eq (4.3), then dµ
dτ = 0. Thus, Eq (4.3) reduces to

(4.4) whose solution describes the stable or the equilibrium state of the problem created by (4.3). This
in turn is very exciting in many elegant applications such as, to name but a few, economics, physics and
ecology. As a result, strenuous efforts have been made to solve Eq (4.4) when Υ is accretive. Because
Υ, in general, is nonlinear, there is no known way to find a close solution to this equation, and this
is what made researchers interested in studying the fixed point and approximate iterative methods for
zeros of m−accretive mappings. So it became a thriving area for research to the present time.

In this part, we involve the results of Theorem 3.1 to describe applications of the above results
to finding zeros of accretive mappings. Recall, we assume that Ω is a real uniformly convex Banach
space with uniformly Gâteaux differentiable norm and consider Υ : Ω→ Ω is continuous and accretive
mapping. We will find a solution to the equation:

find ν ∈ Ω so that Υν = 0. (4.5)

Now the statements and proof of the theorem for finding the solution to Eq (4.5) are fit for presentation.

Theorem 4.1. Let Ω be a real uniformly convex Banach space with uniformly Gâteaux differentiable
norm. Assume that Υ : Ω → Ω is a continuous and accretive mapping so that N(Υ) , ∅. Let the
sequence {νm} created iteratively by ν0, ν1 ∈ Ω,

~m = νm + πm(νm − νm−1),
℘m = (1 − σm)~m,

νm+1 = (1 − ρm)℘m + ρmJΥ℘m, m ≥ 1,

where JΥ = (I + Υ)−1. Then the sequence {νm} converges strongly to a point in N(Υ), provided that the
assumptions below hold:

(i) lim
m→∞

σm = 0,
∞∑

m=1
σm = ∞, σm ∈ (0, 1), ρm ∈ [`1, `2] ⊂ (0, 1).

(ii)
∞∑

m=0
πm ‖νm − νm−1‖ < ∞.

Proof. Based on the results of Martin [42, 43] and Cioranescu [38], Υ is m−accretive. This shows that
JΥ = (I + Υ)−1 is nonexpansive and ∇(JΥ) = N(Υ). Putting JΥ = Z in Theorem 3.1 and continuing with
the same approach, we get the desired result. �

Remark 4.2. • The problem of finding zeros of accretive mappings in a real uniformly convex
Banach space with uniformly Gâteaux differentiable norm given in (4.5) above gave us the
motivation to extend the result of Tan and Cho [37] from Hilbert spaces to real uniformly convex
Banach spaces with uniformly Gâteaux differentiable norm.
• If we set πm = 0 in our algorithm (3.1), then, we have Ishikawa iterative scheme [45]. So, our

results extend comparable results for approximating fixed point of nonexapnsive mappings, like
the results of Tan and Xu [46]. Moreover, the obtained results here complement the results of
Aoyama et al. [47], Chapter 16 of Chidume [11] and Theorem 5.4 of Berinde [10].
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5. Numerical experiments

Now, we study the behavior of Algorithm (3.1) for approximating the fixed point by the following
two experiments:

Example 5.1. Assume that Ω = R with the usual norm. Define a mapping Z : Ω→ Ω by

Z(ν) = (5ν2 − 2ν + 48)
1
3 , ∀ν ∈ A,

where the set A is defined by A = {ν : 0 ≤ ν ≤ 50}.

Experiment 1: In this experiment we have use different values of control parameter σm = 1
(km+2)

for k = 1, 2, 3, 5, 10. Also, consider σm = 1
(km+2) , ρm = 0.80, ν0 = ν1 = 10, Dn = ‖νn+1 − νn‖, , we have

Figures 1 and 2.

0 50 100 150 200 250 300 350

Number of iterations

10-5

10-4

10-3

10-2

10-1

100

101

Figure 1. Numerical illustration of Algorithm (3.1) while σm = 1
(k∗m+2) and the number of

iterations are 319, 227, 186, 145, 104.
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10-2
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100

101

Figure 2. Numerical illustration of Algorithm (3.1) while σm = 1
(km+2) and elapsed time are

0.012251, 0.014747, 0.008005, 0.010552, 0.009017.

Experiment 2: In this experiment we have use different values of control parameter ρm = k for
k = 0.15, 0.35, 0.55, 0.75, 0.95.

Also, consider σm = 1
(2m+2) , ρm = k, ν0 = ν1 = 10, Dn = ‖νn+1 − νn‖, we have Figures 3 and 4.
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Figure 3. Numerical illustration of Algorithm (3.1) while ρm = k and the number of iterations
are 642, 397, 298, 239, 197.
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0 0.002 0.004 0.006 0.008 0.01 0.012 0.014

Elapsed time [sec]

10-5

10-4

10-3

10-2

10-1

100

101

Figure 4. Numerical illustration of Algorithm (3.1) while ρm = k and elapsed time are
0.011210, 0.009185, 0.012973, 0.009414, 0.010425.

6. Conclusions

Krasnoselskii-Mann iterative scheme is widely used in the solution of the fixed point equation
which takes the shape Zx = x, where Z : f → f is nonexpansive mapping and f is a non-empty,
closed and convex, subset of a Banach space Ω. This algorithm converges weakly to the fixed point
of Z provided the underlying space Ω is a Hilbert space. It is interesting to address the apparent
deficiency of the previous algorithm by building an algorithm that converges strongly to the fixed point
of Z. For this purpose, in this manuscript, we introduce an inertial Krasnoselskii-Mann Algorithm
(3.1) for nonexpansive mappings in a real uniformly convex Banach space with uniformly Gâteaux
differentiable norm and prove that the proposed Algorithm (3.1) has strong convergence. Moreover, it
should be noted that the evidence here differs from previous literature.
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