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Abstract: Let f : V(G)∪ E(G)→ {1, 2, . . . , k} be a total k-coloring of G. Define a weight function on
total coloring as

φ(x) = f (x) +
∑
e3x

f (e) +
∑

y∈N(x)

f (y),

where N(x) = {y ∈ V(G)|xy ∈ E(G)}. If φ(x) , φ(y) for any edge xy ∈ E(G), then f is called a neighbor
full sum distinguishing total k-coloring of G. The smallest value k for which G has such a coloring
is called the neighbor full sum distinguishing total chromatic number of G and denoted by fgndi∑(G).
Suppose that H = T ∪ C is a Halin graph, where T and C are called the characteristic tree and the
adjoint cycle, respectively. Let V0 ⊆ V(H) \ V(C) and each vertex in V0 is adjacent to some vertices
on C. In this paper, we prove that the neighbor full sum distinguishing total chromatic number of two
types of Halin graphs are not more than three: (i) 3-regular Halin graphs and (ii) every vertex of V0 of
a Halin graph with degree at least 4. The above results support a conjecture that fgndi∑(G) ≤ 3 for any
connected graph G of order at least three (Chang et al., 2022).

Keywords: total coloring; neighbor full sum distinguishing total coloring; neighbor full sum
distinguishing total chromatic number; Halin graphs
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1. Introduction and concepts

All considered graphs are finite, undirected, connected, without loops and multiple edges. Let [1, n]
denote the set of positive integers {1, 2, . . . , n}. Let dG(v) and ∆(G) (or ∆) denote the degree of vertex v
and the maximum degree of G, respectively. For general theoretic notations, we follow [3].

A type of distinguishing coloring on the sum of colors of vertices and edges has attracted extensive
attention. Karoński et al. [9] firstly introduced and investigated neighbor sum distinguishing edge

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2022386


6960

coloring of graphs. Let f : E(G)→ [k] be an edge k-coloring of G. For any vertex x ∈ V , set

σ(x) =
∑
x∈e

f (e).

An edge k-coloring f of G is called neighbor sum distinguishing edge coloring of G if σ(x) , σ(y) for
any edge xy ∈ E(G). The minimum integer k for which there is a neighbor sum distinguishing edge
coloring of a graph G will be denoted by gndi∑(G). In particular, there is a famous 1-2-3 conjecture on
neighbor sum distinguishing edge coloring as follows:

Conjecture 1.1. [9] For any connected graph G of order at least 3, gndi∑(G) ≤ 3.

Karoński et al. [9] showed that if G is a k-colorable graph with k odd then G admits a vertex-coloring
k-edge-weighting. So, for the class of 3-colorable graphs, including bipartite graphs, the answer is
affirmative. Addario-Berry et al. [1] showed that every graph without isolated edges has a proper k-
weighting when k = 30. After improvements to k = 16 in [2] and k = 13 in [16], Kalkowski et al. [8]
showed that every graph without isolated edges has a proper 5-weighting. Recently, Przybylo [12]
showed that every d-regular graph with d ≥ 2 admits a vertex-coloring edge 4-weighting and every
d-regular graph with d ≥ 108 admits a vertex-coloring edge 3-weighting.

Przybylo and Wozniak [11] added the vertex coloring to the sum of colors of its incident edges, they
gave the notation of neighbor sum distinguishing total coloring of graphs. Let f : V(G) ∪ E(G) → [k]
be a total k-coloring of a graph G. For every vertex x, let

t(x) = f (x) + σ(x).

Then f is called a neighbor sum distinguishing total coloring of G if t(x) , t(y) for all adjacent vertices
x and y in G. Similarly as above, the minimum value of k for which there exists a neighbor sum
distinguishing total coloring of a graph G will be denoted by tgndi∑(G). Moreover, Przybylo and
Wozniak [11] also put forward to a 1-2 conjecture with respect to this definition.

Conjecture 1.2. [11] For any connected graph G, tgndi∑(G) ≤ 2.

Note that Conjecture 1.2 is true when G is a 3-colourable, complete or 4-regular graph (see [11]).
Up to now, it is known that for every graph G, tgndiΣ(G) ≤ 3 (see [7]).

Inspired by the product versions of 1-2 conjecture (see [14]) and 1-2-3 conjecture (see [15]), and
the neighbor product distinguishing total colorings of graphs were further studied in [17,18]. Flandrin
et al. [6] considered that the color of the vertex is added to the sum of its neighbors and incident edges,
they defined neighbor full sum distinguishing total coloring of graphs. Let f : V(G) ∪ E(G) → [k] be
a total k-coloring of G. Set

φ(x) = t(x) +
∑

y∈N(x)

f (y).

For any edge xy ∈ E(G), if φ(x) , φ(y), then f is called a neighbor full sum distinguishing (NFSD) total
k-coloring of G. The smallest value k for which G has a NFSD-total coloring is called the neighbor
full sum distinguishing total chromatic number of G and denoted by fgndi∑(G). In [5], Chang et al.
obtained the neighbor full sum distinguishing total chromatic number of paths, cycles, 3-regular graphs,
stars, complete graphs, trees, hypercubes, bipartite graphs and complete r-partite graphs. Meanwhile
they posed a conjecture on NFSD-total coloring as follow:
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Conjecture 1.3. [5] For any connected graph G of order at least 3, fgndi∑(G) ≤ 3.

A Halin graph is a plane graph H which constructed as follows. Let T be a tree having at least 4
vertices, called the characteristic tree of H. All vertices of T are either of degree 1, called leaves, or
of degree at least 3. Let C be a cycle, called the adjoint cycle of H, connecting all leaves of T in such
a way that C forms the boundary of the unbounded face. We usually write H = T ∪ C to reveal the
characteristic tree and the adjoint cycle. Let V0 ⊆ V(H) \ V(C) and each vertex in V0 is adjacent to
some vertices on C.

This paper is organized as follows. In Section 2, by induction on the length of the adjoint cycle C,
we get that fgndi∑(H) ≤ 3 for any 3-regular Halin graph H. In Section 3, for a Halin graph H with
maximum degree ∆(H) ≥ 4, if every vertex in V0 has degree at least four, via a coloring algorithm
of tree T and by assigning colors to the edges of cycle C, we have fgndi∑(H) ≤ 3. Therefore,
Conjecture 1.3 is valid for the above two types of Halin graphs.

2. 3-regular Halin graphs

A graph is said to be 3-regular if the degree of every vertex is 3. For k ≥ 1, a 3-regular Halin
graph Nek , called a necklace, was introduced in [13]. Its characteristic tree Tk consists of the path
v0, v1, . . . , vk, vk+1 and leaves v′1, v

′
2, . . . , v

′
k such that the unique neighbor of v′i in Th is vi for 1 ≤ i ≤ k

and vertices v0, v′1, v
′
2, . . . , v

′
k, vk+1 are in order to form the adjoint cycle Ch+2.

Lemma 2.1. For any necklace Nek, fgndi∑(Ne1) = 3 and fgndi∑(Nek) = 2 for k ≥ 2.

Proof. Suppose that the necklace Nek is defined as above. Observe that Nek is a 3-regular Halin graph,
if all vertices and edges of Nek are colored by 1, then φ(x) = 7 for any vertex x of Nek, it conflicts with
the definition of the NFSD-total coloring. In other words, we should use at least two colors to achieve
an NFSD-total coloring of Nek. Observe that Ne1 = K4, it is easy to verify that fgndi∑(K4) = 3. An
NFSD-total 2-coloring of Ne2 is shown in Figure 1.

2

11
1 1

1

2

22

22

1

1 1 1

Figure 1. An NFSD-total 2-coloring of Ne2.

For k ≥ 3, we offer a total coloring f of Nek as follows:

f (v′i) =


1 i f i ≡ 1(mod 2) and i ∈ [1, k],

2 i f i ≡ 0(mod 2) and i ∈ [1, k];

f (vi) =


2 i f i = 0 or i ≡ 1(mod 2) and i ∈ [1, k],

1 i f i ≡ 0(mod 2) and i ∈ [1, k].
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If k is odd, set f (vk+1) = f (v0v′1) = f (v0vk+1) = 2 and f (e) = 1 for e ∈ E(Nek) − {v0v′1, v0vk+1}, then
we have φ(v0) = 12, φ(v′1) = φ(vk+1) = 11, φ(vk−1) = 10 and φ(vk) = 9. For even k, set f (vk+1) = 1,
f (v0v′1) = f (vk−1vk) = 2 and f (e) = 1 for e ∈ E(Nek) − {v0v′1, vk−1vk}, then φ(v0) = φ(vk) = 10,
φ(v′1) = 11 and φ(vk−1) = φ(vk+1) = 9. Meanwhile,

φ(v′i) =


10 i f i ≡ 1(mod 2) and i ∈ [2, k],

8 i f i ≡ 0(mod 2) and i ∈ [2, k];

φ(vi) =


8 i f i ≡ 1(mod 2) and i ∈ [2, k − 2],

10 i f i ≡ 0(mod 2) and i ∈ [2, k − 2].

Hence f is an NFSD-total 2-coloring of Nek.
As a fact that every vertex has degree 3 in the 3-regular Halin graph H, that is to say, the neighbor

full sum distinguishing total coloring of H is actually a neighbor sum distinguishing edge coloring.
Therefore, we need only to consider a neighbor sum distinguishing edge coloring of H.

Theorem 2.1. If a 3-regular Halin graph H = T∪C is different from Ne2 and Ne4, then fgndi∑(H) ≤ 3.

Proof. We prove the theorem by induction on the length m of the adjoint cycle C. It is easy to see
that the only 3-regular Halin graphs with m = 3, 4 and 5 are Ne1, Ne2 and Ne3, respectively. They all
satisfy our theorem by Lemma 2.1. Now assume that m ≥ 6.

We firstly use 1 to color all vertices of H. In our later inductive steps, we use two basic operations
to reduce a cubic Halin graph H to another cubic Halin graph H′ such that the length of the adjoint
cycle of H′ is shorter than that of H. If H′ is equal to neither Ne2 nor Ne4, then fgndi∑(H′) ≤ 3
by the induction hypothesis. Up to symmetry, Lih et al. [10] constructed eleven basic cubic Halin
graphs based on Ne2 and Ne4. It is easy to give each cubic Halin graph an NSD-edge coloring by using
three colors.

Let P = u0u1 . . . uh be a longest path in T . When h ≤ 4, H must be a necklace Nek, k ≤ 3. It is
solved in Lemma 2.1. For h ≥ 5, since P is of maximum length, all neighbors of u1, except u2, are
leaves. We may change notation to let w = u3, u = u2, v = u1, and v1 and v2, be the neighbors of v on
C as depicted in Figure 2. Since dH(u) = 3, there exists a path Q from u to x1 or y1 with P ∩ Q = u.
Without loss of generality, we may assume that Q is a path from u to y1. Since P is a longest path in
T , Q has length at most two. It follows that uy3 ∈ E(T ) or u = y3. The former implies that uy3 ∈ E(T )
and the latter means uy1 ∈ E(T ).

w=u3

x1 v1 v2 y1 y2

y3

x2

x3

u=u2

v=u1

Figure 2. Around the end of a longest path in the characteristic tree.
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Case 1. uy3 ∈ E(T ). Consider Figure 3. Now let H′ be the graph obtained from H by deleting six
vertices v, v1, v2, y1, y2, y3, and adding two new edges ux1 and uz. By the induction hypothesis, we may
assume that there exists an edge coloring f ′ for E(H′) using colors from the set [1, 3]. Assume that
f ′(uw) = a, f (ux1) = f ′(uv) = b, f (uz) = f ′(uy3) = c, {a, b, c} ∈ {1, 2, 3}.

w

u

v

x1 v1 v2 y1 y2 z

y3

Figure 3. uy3 ∈ E(T ).

Case 1.1. {a, b, c} = {1, 2, 3}.
Without loss of generality, set a = 1, b = 2, c = 3. Let f be an edge coloring of H, and f is defined

as follows:

f (θ) =


1 i f θ ∈ {v1v2, v2y1, y1y2},

2 i f θ ∈ {uv, x1v1, vv2, y2y3},

3 i f θ ∈ {uy3, vv1, y1y3, y2z},
f ′(θ) i f otherwise.

Then φ(v) = 11, φ(v1) = 10, φ(v2) = 8, φ(y1) = 9, φ(y2) = 10, φ(y3) = 12, φ(u) = 10, φ(x1) , 10,
φ(z) , 10, and the weight of the remaining vertices keep the same as in H′, which deduces that f is an
NFSD-total 3-coloring of H.

Case 1.2. a = b = c.
For a = b = c , 2, set d ∈ [1, 3] − {a} and e ∈ [1, 3] − {a, d}. Let f be an edge coloring of H, and f

is defined as follows:

f (θ) =


a i f θ ∈ {v1v2, y1y2, uv, x1v1, y2y3, uy3, vv1, y2z},
d i f θ ∈ {v2y1, y1y3},

e i f θ ∈ {vv2},

f ′(θ) i f otherwise.

Then φ(v) = 2a + e + 4, φ(v1) = 3a + 4, φ(v2) = a + d + e + 4, φ(y1) = a + 2d + 4, φ(y2) = 3a + 4,
φ(y3) = 2a + d + 4, φ(u) = 3a + 4, φ(x1) , 3a + 4, φ(z) , 3a + 4. Because a , 2, then φ(v) , φ(v2),
φ(y3) , φ(u) and φ(y3) , φ(y2). The weights of the remaining vertices keep the same as that in H′,
which implies that f is an NFSD-total 3-coloring of H.

For a = b = c = 2. Let f be an edge coloring of H, and f is defined as follows:

f (θ) =


1 i f θ ∈ {uy3, y1y3},

2 i f θ ∈ {uw, vv1, x1v1, v1v2, y1v2, y1y2, y2y3, y2z},
3 i f θ ∈ {uv, vv2},

f ′(θ) i f otherwise.
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Then φ(v) = 12, φ(v1) = 10, φ(v2) = 11, φ(y1) = 9, φ(y2) = 10, φ(y3) = 8, φ(u) = 10, φ(x1) , 10,
φ(z) , 10, and the weights of the remaining vertices keep the same as that in H′, it follows that f is an
NFSD-total coloring of H.

Case 1.3. a = b , c (or a = c , b or b = c , a).
Set d ∈ [1, 3] − {a, c}. For d , 2, let f be an edge coloring of H, and f is defined as follows:

f (θ) =


a i f θ ∈ {v1v2, y1y2, uv, x1v1, y2y3},

c i f θ ∈ {uy3, vv1, vv2, y2z},
f ′(θ) i f otherwise.

Then φ(v) = a + 2c + 4, φ(v1) = 2a + c + 4, φ(v2) = a + c + d + 4, φ(y1) = a + 2d + 4, φ(y2) = 2a + c + 4,
φ(y3) = b + c + d + 4, φ(u) = 2a + c + 4, φ(x1) , 2a + c + 4, φ(z) , 2a + c + 4, and the weights of the
remaining vertices keep the same as that in H′, it gets that f is an NFSD-total 3-coloring of H.

For d = 2, without loss of generality, set a = b = 1, c = 3. Let f be an edge coloring of H, and f is
defined as follows:

f (θ) =


1 i f θ ∈ {uw, x1v1, v1v2, y1y2, y2y3},

2 i f θ ∈ {uv, uy3, vv2},

3 i f θ ∈ {vv1, v2y1, y1y3, y2z},
f ′(θ) i f otherwise.

Then φ(v) = 11, φ(v1) = 9, φ(v2) = 10, φ(y1) = 11, φ(y2) = 9, φ(y3) = 10, φ(u) = 9, φ(x1) , 9,
φ(z) , 9, and the weights of the remaining vertices keep the same as that in H′, which deduces that f
is an NFSD-total 3-coloring of H.

Case 2. u = y3. Consider Figure 4. Let H′ be the graph obtained from H by deleting four vertices
v, v1, v2, y1, and adding two new edges ux1 and uy2. By the induction hypothesis, we may assume that
there exists an edge coloring f for E(H′) using colors from the set [1, 3]. Assume that f ′(uw) = a,
f (ux1) = f ′(uv) = b, f (uy2) = f ′(uy1) = c, {a, b, c} ∈ {1, 2, 3}.

w

u

v

x1 v1 v2 y1 y2

Figure 4. u = y3.

Case 2.1. a = b = c.
Set d ∈ [1, 3] − {a} and e ∈ [1, 3] − {a, d}. We define an edge coloring f of H as follows:

f (θ) =


a i f θ ∈ {uw, v1v2, uv, x1v1, uy1, vv1, y1y2},

d i f θ ∈ {vv2},

d or e i f θ ∈ {v2y1},

f ′(θ) i f otherwise.
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Then φ(v) = 2a + d + 4, φ(v1) = 3a + 4, φ(v2) ∈ {a + 2d + 4, a + d + e + 4}, φ(y1) ∈ {e + 2a + 4, d + 2a + 4},
φ(u) = 3a + 4, φ(x1) , 3a + 4. Without loss of generality, we assume that a = b = c = 1. Then
φ(v) = 6 + d, φ(v1) = 7, φ(v2) ∈ {5 + 2d, 5 + d + e}, φ(y1) ∈ {6 + e, 6 + d}, hence there exists a color d or
e for edge v2y1 such that φ(y1) , φ(y2) and φ(v2) , φ(y1). The weights of the remaining vertices keep
the same as that in H′, namely, f is an NFSD-total 3-coloring of H.

Case 2.2. {a, b, c} = {1, 2, 3}.
We define an edge coloring f of H as follows:

f (θ) =



a i f θ ∈ {uw, v1v2},

b i f θ ∈ {uv, x1v1},

c i f θ ∈ {uy1, vv1, vv2, y1y2},

a or c i f θ ∈ {v2y1},

f ′(θ) i f otherwise.

Then φ(v) = b + 2c, φ(v1) = a + b + c + 4, φ(v2) ∈ {2a + c + 4, a + 2c + 4}, φ(y1) ∈ {a + 2c + 4, 3c + 4},
so there exists a color a or c of edge v2y1 such that φ(y1) , φ(v2) and φ(y1) , φ(y2). The weights of the
remaining vertices keep the same as that in H′, hence f is an NFSD-total 3-coloring of H.

Case 2.3. a = b , c (or a = c , b or b = c , a).
Set d ∈ [1, 3]−{a, c}. Without loss of generality, assume that 2a , c+d. We define an edge coloring

f of H as follows:

f (θ) =


a i f θ ∈ {uv, x1v1, vv1, uy1, y1y2},

c i f θ ∈ {uw, v1v2, v2y1},

f ′(θ) i f otherwise.

Then φ(v) = 2a + d + 4, φ(v1) = 2a + c + 4, φ(v2) = d + 2c + 4, φ(y1) = 2a + c + 4 and the weights of
remaining vertices keep the same as that in H′, so f is an NFSD-total 3-coloring of H.

3. Every vertex in V0 with degree at least four

Theorem 3.1. Let H = T ∪ C be a Halin graph. If every vertex in V0 has degree at least four, then
fgndi∑(H) ≤ 3.

Proof. For any tree T , fgndi∑(T ) ≤ 2 (see [5]). Namely, there exists an NFSD-total coloring of T with
two colors. Now assume that all vertices in T are colored by 2, and the edges of T are colored by 2
and 3. We propose the following algorithm and verify the feasibility of our coloring method.

Step 1. Label each vertex of T with 2.
Step 2. Select a vertex with maximum degree ∆ in T and regard it as v. Initially, all incident edges

of v are colored by 2.
Step 3. Let vi be a neighboring vertex of v. If dT (vi) = dT (v) then color an incident edge of vi

(except for vvi) with 3 and the other incident edges of vi are colored by 2. If dT (vi) , dT (v) then color
all incident edges (except for vvi) of vi with 2.

Step 4. Let vi j be a neighboring vertex of vi. Then color the incident edges of vi j as follows:
Case 1. φ(vi) = 4dT (vi) + 2. If dT (vi j) , dT (vi), then color all incident edges (except for vivi j) of vi j

with 2. Color any one incident edge (except for vivi j) of vi j with 3 if dT (vi j) = dT (vi) and the remaining
incident edges of vi j are colored by 2.
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Case 2. φ(vi) = 4dT (vi) + 3. For f (vivi j) = 3, if dT (vi j) = dT (vi), then color an incident edge (except
for vivi j) of vi j with 3 and the remaining incident edges of vi j are colored by 2. If dT (vi j) , dT (vi), then
color all incident edges (except for vivi j) of vi j with 2. For f (vivi j) = 2, color all incident edges (except
for vivi j) of vi j with 2.

Step 5. Let vi jk be a neighboring vertex of vi j. Label the incident edges of vi jk in the following ways.
Case 1. φ(vi j) = 4dT (vi j) + 2. If dT (vi jk) , dT (vi j), then color all incident edges (except for vi jvi jk)

of vi jk with 2. If dT (vi jk) = dT (vi j) , then color any one incident edge (except for vi jvi jk) of vi jk with 3
and the remaining incident edges of vi jk are colored by 2.

Case 2. φ(vi j) = 4dT (vi j) + 3. For f (vi jvi jk) = 3, if dT (vi jk) = dT (vi j), then color one incident edge
(except for vi jvi jk) of vi jk with 3 and other incident edges are colored by 2. If dT (vi jk) , dT (vi j), then
color all incident edges (except for vi jvi jk) of vi jk with 2. For f (vi jvi jk) = 2, color all incident edges
(except for vi jvi jk) of vi jk with 2.

Case 3. φ(vi j) = 4dT (vi j) + 4. Color all incident edges (not including vi jvi jk) of vi jk with 2.
Step 6. Continue this progress until all vertices of T achieving an NFSD-total coloring.
Now we use {1, 2, 3} to color the edges on the adjoint cycle C. For an edge xy ∈ E(H), x ∈ V(C),

y ∈ V0, because dH(x) = 3, it follows that φ(x) ∈ [12, 17]. And for dH(y) ≥ 4, we have φ(y) ≥ 18.
Hence φ(x) , φ(y) is always true. The remaining task is to distinguish the weight of neighboring
vertices on the adjoint circle C. Let C = x1x2...xmx1 and ei = xixi+1, 1 ≤ i ≤ m and the subscripts are
taken modulo m.

Case A. There exist two adjacent vertices on the adjoint cycle receiving different weights in the
characteristic tree T .

Without loss of generality, suppose that x1 and xm are the adjacent vertices such that φT (x1) = 7
and φT (xm) = 6, where φT (x) is the weight of vertex x in tree T . We give each edge ei a color f in the
following cases.

(1) m ≡ 0 (mod 4)
Set

f (ei) =

{
1 i ≡ 1, 2 (mod 4),
3 i ≡ 0, 3 (mod 4).

Then

φ(xi) ∈


{12, 13} i ≡ 2 (mod 4),
{14, 15} i ≡ 1 (mod 2),
{16, 17} i ≡ 0 (mod 4).

(2) m ≡ 1 (mod 4)
Set

f (ei) =

{
1 i ≡ 0, 1 (mod 4),
3 i ≡ 2, 3 (mod 4).

Then

φ(xi) ∈



{12} i = m,
{13} i = 1,

{12, 13} i ≡ 1 (mod 4) and i , 1,m,
{14, 15} i ≡ 0 (mod 2),
{16, 17} i ≡ 3 (mod 4).
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(3) m ≡ 2 (mod 4)
Set

f (ei) =


1 i ≡ 1, 2 (mod 4) and i , m,
3 i ≡ 0, 3 (mod 4),
2 i = m.

Then

φ(xi) ∈



{13} i = m,
{14} i = 1,

{12, 13} i ≡ 2 mod 4) and i , m,
{14, 15} i ≡ 1 (mod 2) and i , 1,
{16, 17} i ≡ 0 (mod 4).

(4) m ≡ 3 (mod 4)
Set

f (ei) =

{
1 i ≡ 1, 2 (mod 4),
3 i ≡ 0, 3 (mod 4).

Then

φ(xi) ∈



{14} i = m,
{15} i = 1,

{12, 13} i ≡ 2 (mod 4),
{14, 15} i ≡ 1 (mod 2) and i , 1,m,
{16, 17} i ≡ 0 (mod 4).

Case B. All vertices on the adjoint cycle receive the same weights 6 (or 7) in the characteristic
tree T . We give an edge coloring f of C as follows.

(1) m ≡ 0 (mod 3)
Set

f (ei) =


1 i ≡ 1 (mod 3),
2 i ≡ 2 (mod 3),
3 i ≡ 0 (mod 3).

Then

φ(xi) =


13 i ≡ 2 (mod 3),
14 i ≡ 1 (mod 3),
15 i ≡ 0 (mod 3),

or

φ(xi) =


14 i ≡ 2 (mod 3),
15 i ≡ 1 (mod 3),
16 i ≡ 0 (mod 3).

(2) m ≡ 1 (mod 3)
Set

f (ei) =


1 i ≡ 1 (mod 3),
2 i ≡ 2 (mod 3),
3 i ≡ 0 (mod 3).
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Then

φ(xi) =


12 i = 1,
13 i ≡ 2 (mod 3),
14 i ≡ 1 (mod 3) and i , 1,
15 i ≡ 0 (mod 3),

or

φ(xi) =


13 i = 1,
14 i ≡ 2 (mod 3),
15 i ≡ 1 (mod 3) and i , 1,
16 i ≡ 0 (mod 3).

(3) m ≡ 2 (mod 3)

f (ei) =


1 i ≡ 1 (mod 3) and i , m − 1or i = m,
2 i ≡ 2 (mod 3 and i , m,
3 i ≡ 0 (mod 3) or i = m − 1,

φ(xi) =



12 i = 1,
13 i ≡ 2 (mod 3) and i , m,
14 i ≡ 1 (mod 3) and i , 1,m − 1,
15 i ≡ 0 (mod 3),
16 i = m − 1,

or

φ(xi) =



13 i = 1,
14 i ≡ 2 (mod 3) and i , m,
15 i ≡ 1 (mod 3) and i , 1,m − 1,
16 i ≡ 0 (mod 3),
17 i = m − 1.

The above two cases implies that using three colors can achieve an NFSD-total coloring for Halin
graphs where every vertex in V0 has degree at least four.

4. Conclusions and future works

Nowadays, a large number of papers have studied graph coloring. This paper is devoted to the study
of neighbor full sum distinguishing total coloring of Halin graphs. Meanwhile, we proved that the
neighbor full sum distinguishing total chromatic number of two types of Halin graphs are not more
than three: (i) 3-regular Halin graphs and (ii) every vertex in V0 of a Halin graph with degree at least 4.

However, combining with Theorems 2.1 and 3.1, to confirm Conjecture 1.3 for all Halin graphs, it
remains to deal with the case that vertices in V0 have degree 3. Then it yields a problem as follow:

Problem. Let H = T ∪ C be a Halin graph. If there is at least a vertex in V0 with degree 3, then
fgndi∑(H) ≤ 3.
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