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1. Introduction

Metric fixed point theory is a relatively old but still a young area of research which occupies an
important place in nonlinear functional analysis. In fact, the strength of fixed point theory lies in it’s
wide range of applications. For recent works related to applications of metric fixed point theory,
readers are referred to [7, 18, 25, 28–31]. Indeed, the most popular result of metric fixed point theory
is the classical Banach contraction principle which is essentially due to S. Banach [9] (proved
in 1922). Several researchers generalized this classical result by enlarging the class of underlying
contraction condition, see [1, 17, 19, 20, 22] and references therein. There are few generalized
contractivity mappings, which are obtained employing certain test functions (auxiliary functions) on
contractivity conditions, such as:

• Nonlinear contraction or φ-contraction (Browder [13], Boyd and Wong [12])

d(T x,Ty) ≤ φ(d(x, y)).
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• Weak nonlinear contraction or weak ϕ-contraction (Krasnosel’skiǐ et al. [23], Alber and Guerre-
Delabriere [7])

d(T x,Ty)) ≤ d(x, y) − ϕ(d(x, y)).

• Generalized nonlinear contraction or (ϕ, ψ)-contraction (Dutta and Choudhury [15])

ϕ(d(T x,Ty)) ≤ ϕ(d(x, y)) − ψ(d(x, y)).

Order-theoretic aspects of metric fixed point theory were initiated by Turinici [34, 35]. Ran and
Reurings [29] and Nieto and Rodrı́guez-López [28] extended Banach contraction principle in the
setting of ordered metric spaces. In fact, the fixed point results of Ran and Reurings [29] and Nieto
and Rodrı́guez-López [28] are consequences of the results of Turinici [34, 35]. In 2015, Alam and
Imdad [3] further extended the fixed point theorem of Nieto and Rodrı́guez-López [28] using an
amorphous binary relation instead of the partial ordering. In the recent years, fixed point theorems in
the setting of ordered as well as relational metric spaces are being developed regularly,
see [2, 4, 5, 8, 14, 18, 21, 31] and references therein. Harjani and Sadarangani [18] proved some fixed
point theorems for generalized nonlinear contractions in context of ordered metric spaces. Very
recently, Alam et al. [6] enriched the class of generalized nonlinear contractions due to Dutta and
Choudhury [15] by introducing a new pair of test functions (ϕ, ψ) and utilized the same to extend the
classical Banach contraction principle.

The aim of this paper is to improve the results of Harjani and Sadarangani [18] in the following
respects:

(i) The underlying partial ordered relation can be replaced by a class of transitive binary relation
(called, locally finitely T -transitive binary relation).

(ii) The pair (ϕ, ψ) of altering distance functions utilized in [15, 18] must be replaced by more
generalized pair of auxiliary functions.

2. Relation-theoretic notions

In this section, we recall some relevant notions, which are required to prove our main results.
Throughout this paper, N stands for the set of natural numbers and we denote the set N ∪ {0} by N0.

Definition 2.1. [26] Let X be a nonempty set. A subset R of X2 is called a binary relation on X. When
(x, y) ∈ R, we say “x is related to y” or “x relates to y under R” for x, y ∈ X. The subsets, X2 and ∅ of
X2 are called the universal relation and empty relation respectively.

Definition 2.2. [3] Let R be a binary relation on a nonempty set X and x, y ∈ X. We say that x and y
are R-comparative if either (x, y) ∈ R or (y, x) ∈ R. We denote it by [x, y] ∈ R.

Definition 2.3. [16, 26, 27, 30, 32, 33] A binary relation R defined on a nonempty set X is called:

(i) Reflexive if (x, x) ∈ R for all x ∈ X,

(ii) Irreflexive if (x, x) < R for all x ∈ X,

(iii) Symmetric if (x, y) ∈ R implies (y, x) ∈ R,
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(iv) Anti-symmetric if (x, y) ∈ R and (y, x) ∈ R implies x = y,

(v) Transitive if (x, y) ∈ R and (y, z) ∈ R implies (x, z) ∈ R,

(vi) Complete (or connected or dichotomous) if [x, y] ∈ R for all x, y ∈ X,

(vii) A partial order if R is reflexive, anti-symmetric and transitive,

(viii) A total order (or linear order or chain) if R is a complete partial order.

Definition 2.4. [26] Let X be a nonempty set and R a binary relation on X.

(i) The inverse, transpose or dual relation of R, denoted by R−1 is defined by, R−1 = {(x, y) ∈ X2 :
(y, x) ∈ R}.

(ii) Symmetric closure of R, denoted by Rs, is defined to be the set R ∪ R−1(i.e., Rs = R ∪ R−1).

Remark 2.5. [3] For a binary relation R defined on a nonempty set X,

(x, y) ∈ Rs implies [x, y] ∈ R.

Definition 2.6. [3] Let X be a nonempty set together with a self-mapping T on X. A binary relation R
defined on X is called T -closed if for any

(x, y) ∈ R ⇒ (T x,Ty) ∈ R.

Definition 2.7. [3] Let X be a nonempty set and R be a binary relation on X. A sequence {xn} ⊂ X is
called R-preserving if

(xn, xn+1) ∈ R for all n ∈ N0.

Definition 2.8. [4] Let (X, d) be a metric space and R be a binary relation on X. We say that (X, d) is
R-complete if every R-preserving Cauchy sequence in X converges.

Remark 2.9. [4] Every complete metric space is R-complete with respect to a binary relation R.
Particularly, under the universal relation, the notion of R-completeness coincides with usual
completeness.

Definition 2.10. [4] Let (X, d) be a metric space, R be a binary relation on X and x ∈ X. A mappings

T : X → X is called R-continuous at x if for any R-preserving sequence {xn} such that xn
d
−→ x, we have

T xn
d
−→ T x. Moreover, T is called R-continuous if it is R-continuous at each point of X.

Remark 2.11. [4] Every continuous mapping is R-continuous for any binary relation R. Particularly,
under the universal relation, the notion of R-continuity coincides with usual continuity.

Definition 2.12. [3] Let (X, d) be a metric space. A binary relation R defined on X is called d-self-

closed if whenever {xn} is an R-preserving sequence and xn
d
−→ x, then there exists a subsequence {xnk}

of {xn} with [xnk , x] ∈ R for all k ∈ N0.

Definition 2.13. [30] Let X be a nonempty set and R be a binary relation on X. A subset E of X is
called R-directed if for each x, y ∈ E, there exists z ∈ X such that (x, z) ∈ R and (y, z) ∈ R.
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Definition 2.14. [24] Let X be a nonempty set and R be a binary relation on X. For x, y ∈ X, a path of
length k in R from x to y is a finite sequence {x0, x1, ..., xk} ⊂ X satisfying the following conditions:

(i) x0 = x and xk = y,

(ii) (xi, xi+1) ∈ R for each i (0 ≤ i ≤ k − 1).

Definition 2.15. [5] Let X be a nonempty set endowed with a binary relation R. A subset Y of X is
called R-connected if for each x, y ∈ Y , there exists a path in R from x to y.

Definition 2.16. [10] Given N ∈ N0, N ≥ 2, a binary relation R defined on a nonempty set X is called
N-transitive if for any x0, x1, ..., xN ∈ X such that

(xi−1, xi) ∈ R for each i (1 ≤ i ≤ N), we have (x0, xN) ∈ R.

Notice that the notion of 2-transitivity coincides with transitivity. Following Turinici [36], R is
called finitely transitive if it is N-transitive for some N ≥ 2.

Definition 2.17. [36] A binary relation R defined on a nonempty set X is called locally finitely
transitive if for each denumerable subset E of X, there exists N = N(E) ≥ 2, such that R|E is
N-transitive.

Definition 2.18. [2] Let X be a nonempty set and T a self-mapping on X. A binary relation R defined
on X is called locally finitely T -transitive if for each denumerable subset of E of T X, there exists
N = N(E) ≥ 2, such that R|E is N-transitive.

The relation-theoretic variant of Banach contraction principle proved by Alam and Imdad [3,4] can
be stated as follows.

Theorem 2.19. [3, 4] Let (X, d) be a metric space, R a binary relation on X and T a self-mapping on
X. Suppose that the following conditions hold:

(a) (X, d) is R-complete,

(b) R is T -closed,

(c) Either T is R-continuous or R is d-self-closed,

(d) There exists x0 ∈ X such that (x0,T x0) ∈ R,

(e) There exists α ∈ [0, 1) such that

d(T x,Ty) ≤ αd(x, y) for all x, y ∈ X with (x, y) ∈ R.

Then T has a fixed point. Moreover, if

(f) T X is Rs-connected,

then T has a unique fixed point.
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3. Test functions and auxiliary results

Let Φ be the family of test functions ϕ : [0,+∞)→ [0,+∞) satisfying the following conditions:

Φ1 : ϕ is right-continuous,

Φ2 : ϕ is monotonically increasing.

Also, let Ψ be the family of of test functions ψ : [0,+∞) → [0,+∞) satisfying the following
conditions:

Ψ1 : ψ(t) > 0 for all t > 0,

Ψ2 : lim inf
t→r

ψ(t) > 0 for all r > 0.

The above-mentioned families Φ and Ψ are introduced by Alam et al. [6].
Notice that if ϕ and ψ are altering distance functions then (ϕ, ψ) ∈ Φ ×Ψ so that these new families

define more generalized contractivity conditions as compared to those of Dutta and Choudhury [15].
Now, we indicate the following known results, which will be required in the proofs of our main results.

Proposition 3.1. [5] Let X be a nonempty set, R be a binary relation on X and T a self-mapping on
X. If R is T -closed, then, for all n ∈ N0, R is also T n-closed, where T n denotes nth iterate of T .

Proposition 3.2. [6] If there exists a pair of auxiliary functions ϕ, ψ : [0,∞) → [0,∞), wherein ϕ
satisfy axiom Φ2 while ψ satisfy axiom Ψ1, such that for all s ∈ [0,∞) and t ∈ (0,∞),

ϕ(s) ≤ ϕ(t) − ψ(t),

then
s < t.

Proposition 3.3. [2] Let X be a nonempty set, R a binary relation on X and T a self-mapping on X.
Then,

(i) R is T -transitive⇔ R|T X is transitive,

(ii) R is locally finitely T-transitive⇔ R|T X is locally finitely transitive,

(iii) R is transitive ⇒ R is finitely transitive ⇒ R is locally finitely transitive ⇒ R is locally finitely
T-transitive,

(iv) R is transitive⇒ R is T -transitive⇒ R is locally finitely T-transitive.

Lemma 3.4. [11] Let (X, d) be a metric space and {xn} be a sequence in X. If {xn} is not a Cauchy
sequence, then there exist ϵ > 0 and two subsequences {xnk} and {xmk} of {xn} such that

(i) k ≤ mk < nk for all k ∈ N,

(ii) d(xmk , xnk) ≥ ϵ,

(iii) d(xmk , xpk) < ϵ for all pk ∈ {mk + 1,mk + 2, ..., nk − 2, nk − 1}.

In addition to this, if {xn} also verifies lim
n→+∞

d(xn, xn+1) = 0, then
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lim
k→+∞

d(xmk , xnk+p) = ϵ for all p ∈ N0.

Lemma 3.5. [36] Let X be a nonempty set, R be a binary relation on X and {zn} is an R-preserving
sequence in X. If R is a N-transitive on Z = {zn : n ∈ N0} for some natural number N ≥ 2, then

(zn, zn+1+r(N−1)) ∈ R for all n, r ∈ N0.

4. Main results

Now, we are equipped to prove our main result regarding the existence of fixed points under (ϕ-ψ)-
contractions.

Theorem 4.1. Let (X, d) be a metric space, R a binary relation on X and T a self-mapping on X.
Suppose that the following conditions hold:

(a) (X, d) is R-complete,

(b) R is T -closed and locally finitely T-transitive,

(c) Either T is R-continuous or R is d-self-closed,

(d) There exists x0 ∈ X such that (x0,T x0) ∈ R,

(e) There exist ϕ ∈ Φ and ψ ∈ Ψ such that

ϕ(d(T x,Ty)) ≤ ϕ(d(x, y)) − ψ(d(x, y)) for all x, y ∈ X with (x, y) ∈ R,

then T has a fixed point.

Proof. By assumption (d), there exists x0 ∈ X such that (x0,T x0) ∈ R. Based at x0, we can construct
the sequence {xn} of Picard iteration, i.e.,

xn = T nx0 = T xn−1 for all n ∈ N. (4.1)

As (x0,T x0) ∈ R, by T -closedness of R and Proposition 3.1, we have

(T nx0,T n+1x0) ∈ R

which in lieu of (4.1) becomes

(xn, xn+1) ∈ R for all n ∈ N0. (4.2)

Thus the sequence {xn} is R-preserving. If there exists n0 ∈ N0 such that d(xn0 , xn0+1) = 0, then
applying (4.1), we conclude xn0 is a fixed point of T . Otherwise, we have

dn := d(xn, xn+1) > 0 ∀ n ∈ N0.

Using (4.1) and applying contractivity condition (e), we get

ϕ(d(xn+1, xn+2)) = ϕ(d(T xn,T xn+1)) ≤ ϕ(d(xn, xn+1)) − ψ(d(xn, xn+1)).
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Then,

ϕ(dn+1)) ≤ ϕ(dn) − ψ(dn). (4.3)

Using Proposition 3.2, we get

dn+1 < dn for all n ∈ N0,

which yields that the sequence {dn} ⊂ (0,+∞) is monotonically decreasing. As {dn} is also bounded
below by 0, there exists r ≥ 0 such that

lim
n→+∞

dn = r.

Now, we show that r = 0. On contrary, suppose that r > 0, then taking upper limit in (4.3), we get

lim sup
n→+∞

ϕ(dn+1) ≤ lim sup
n→+∞

ϕ(dn) + lim sup
n→+∞

[−ψ(dn)]

≤ lim sup
n→+∞

ϕ(dn) − lim inf
n→+∞

ψ(dn).

Using right-continuity of ϕ, we get

ϕ(r) ≤ ϕ(r) − lim inf
n→+∞

ψ(dn)

implying thereby

lim inf
dn→r>0

ψ(dn) = lim inf
n→+∞

ψ(dn) ≤ 0,

which contradicts axiom Ψ2 so that we have

lim
n→+∞

dn = lim
n→+∞

d(xn, xn+1) = 0. (4.4)

Now, we show that {xn} is a Cauchy sequence. On contrary, suppose that {xn} is not a Cauchy sequence.
Therefore, by Lemma 3.4, there exists ϵ > 0 and two subsequences {xnk} and {xmk} of {xn} such that
k ≤ mk < nk, d(xmk , xnk) ≥ ϵ and d(xmk , xpk) < ϵ where pk ∈ {mk + 1,mk + 2, ..., nk − 2, nk − 1}. Further
in view of (4.4), we have

lim
n→+∞

d(xmk , xnk+p) = ϵ for all p ∈ N0. (4.5)

Since {xn} ⊂ T X, the range E = {xn : n ∈ N0} is a denumerable subset of T X. Hence, by locally finitely
T -transitivity of R, there exists a natural number N = N(E) ≥ 2, such that R|E is N-transitive.

As mk < nk and N − 1 > 0, using Division Algorithm, we have

nk − mk = (N − 1)(µk − 1) + (N − ηk),
µk − 1 ≥ 0, 0 ≤ N − ηk < N − 1

⇐⇒

nk + ηk = mk + 1 + (N − 1)µk,

µk ≥ 1, 1 < ηk ≤ N.
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Here µk and ηk are suitable natural numbers such that ηk can be taken as a finite natural number
belonging in interval (1,N]. Hence, without loss of generality, we can choose subsequences {xnk} and
{xmk} of {xn} (satisfying (4.5)) such that ηk remains constant, say η, which is independent of k. Write

m′k = nk + η = mk + 1 + (N − 1)µk, (4.6)

where η (1 < η ≤ N) is constant.
Owing to (4.5) and (4.6), we obtain

lim
k→+∞

d(xmk , xm′k
) = lim

k→+∞
d(xmk , xnk+η) = ϵ. (4.7)

Using triangular inequality, we have

d(xmk+1, xm′k+1) ≤ d(xmk+1, xmk) + d(xmk , xm′k
) + d(xm′k

, xm′k+1) (4.8)

and
d(xmk , xm′k

) ≤ d(xmk , xmk+1) + d(xmk+1, xm′k+1) + d(xm′k+1, xm′k
)

or

d(xmk , xm′k
) − d(xmk , xmk+1) − d(xm′k+1, xm′k

) ≤ d(xmk+1, xm′k+1). (4.9)

Letting k → +∞ in (4.8) and (4.9) and using (4.4) and (4.7), we get

lim
k→+∞

d(xmk+1, xm′k+1) = ϵ. (4.10)

In view of (4.6) and Lemma 3.5, we have d(xmk , xm′k
) ∈ R. Now, using assumption (e), we get

ϕ(d(xmk+1, xm′k+1)) = ϕ(d(T xmk ,T xm′k
))

≤ ϕ(d(xmk , xm′k
)) − ψ(d(xmk , xm′k

)).

Taking upper limit in the above inequality, we get

lim sup
k→+∞

ϕ(d(xmk+1, xm′k+1)) ≤ lim sup
k→+∞

ϕ(d(xmk , xm′k
)) + lim sup

k→+∞
[−ψ(d(xmk , xm′k

))].

Using the right-continuity of ϕ and (4.7), we get

ϕ(ϵ) ≤ ϕ(ϵ) − lim inf
k→∞

ψ(d(xmk , xm′k
))

yielding thereby

lim inf
k→+∞

ψ(d(xmk , xm′k
)) ≤ 0,

which is a contradiction. It follows that {xn} is a Cauchy sequence. Since (X, d) is R-complete, there

exists x ∈ X such that xn
d
−→ x. By the R-continuity of T , we have T xn

d
−→ T x. Owing to (4.1), we

obtain T xn = xn+1
d
−→ x. Using uniqueness of limit, we get T x = x, i.e., x is a fixed point of T .
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Alternately, assume that R is d-self-closed. Since {xn} is R-preserving sequence such that xn
d
−→ x,

d-self-closedness of R guarantees the existence of a subsequence of {xnk} of {xn} such that [xnk , x] ∈ R
for all k ∈ N. Now, we claim that

lim
k→+∞

d(xnk+1,T x) = 0. (4.11)

To substantiate it, we firstly consider the case whenever xnk = x for some k ∈ N. Then, we have
xnk+1 = T xnk = T x yielding thereby

lim
k→+∞

d(xnk+1,T x) = 0.

Hence, in this case (4.11) holds directly. Otherwise, we have xnk , x so that d(xnk , x) > 0 for all k ∈ N.
Using assumption (e), we get

ψ(d(xnk+1,T x)) = ψ(d(T xnk ,T x))
≤ ψ(d(xnk , x)) − ϕ(d(xnk , x)).

Using Proposition 3.2, we obtain

d(xnk+1,T x) < d(xnk , x). (4.12)

Taking limit of (4.12) as k → ∞ and using xnk

d
−→ x, we obtain

lim
k→+∞

d(xnk+1,T x) = 0.

Hence, (4.11) holds. Now, owing to the uniqueness of limit and in view of (4.11), we obtain T x = x,
i.e., x is a fixed point of T . This completes the proof. □

Theorem 4.2. In addition to the hypotheses of Theorem 4.1, if we add the following condition

(f) T X is Rs-connected,

then T has a unique fixed point.

Proof. In lieu of Theorem 4.1, there exists at least one fixed point of T . If x and y are two fixed points
of T , then

T nx = x and T ny = y for all n ∈ N0.

Clearly x, y ∈ T X. By assumption ( f ), there exists a path {z0, z1, z2, ..., zk} of some finite length k in Rs

from x to y so that

z0 = x, zk = y and [zi, zi+1] ∈ R for each i (0 ≤ i ≤ k − 1). (4.13)

As R is T -closed, we have

[T nzi,T nzi+1] ∈ R for each i (0 ≤ i ≤ k − 1) and n ∈ N0. (4.14)
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Now, for each n ∈ N0 and for each i (0 ≤ i ≤ k − 1), define

ti
n = d(T nzi,T nzi+1).

We show that

lim
n→+∞

ti
n = 0. (4.15)

Fix i and distinguish two cases. Firstly, suppose that

ti
n0
= d(T n0zi,T n0zi+1) = 0 for some n0 ∈ N0,

which gives rise to T n0zi = T n0zi+1. Now applying (4.1), we have T n0+1zi = T n0+1zi+1. Hence, ti
n0+1 = 0.

Thus by induction, we get ti
n = 0 for all n ≥ n0, yielding thereby lim

n→+∞
ti
n = 0.

On the other hand, suppose that ti
n > 0 for all n ∈ N0. Using (4.14) along with assumption (e), we

obtain

ϕ(ti
n+1) = ϕ(d(T n+1zi,T n+1zi+1))

= ϕ(d(T (T nzi),T (T nzi+1)))
≤ ϕ(d(T nzi,T nzi+1)) − ψ(d(T nzi,T nzi+1))

so that

ϕ(ti
n+1) ≤ ϕ(ti

n) − ψ(ti
n). (4.16)

Using Proposition 3.2, we have

ti
n+1 < ti

n.

Therefore, {ti
n} is a decreasing sequence of nonegative real numbers. Therefore, there exists r ≥ 0 such

that

lim
n→+∞

ti
n = r.

We show that r = 0. Suppose on contrary that r > 0. Taking lower limit in inequality (4.16), we have

lim inf
n→+∞

ϕ(ti
n+1) ≤ lim inf

n→+∞
ϕ(ti

n) − lim inf
n→+∞

ψ(ti
n).

On using the right-continuity of ϕ, we get lim infn→+∞ ψ(ti
n) ≤ 0, which is a contradiction. Hence, we

have lim
n→+∞

ti
n = 0. Thus in both cases, (4.15) is proved for each i (0 ≤ i ≤ k − 1). Now, using triangle

inequality, we get

d(x, y) = d(T nz0,T nzk)
≤ t0

n + t1
n.... + tk−1

n

→ 0 as n→ +∞,

which gives rise to x = y. Hence, T has a unique fixed point. □
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Making use of Proposition 3.3, we have the following consequence of Theorem 4.1.

Corollary 4.3. Theorem 4.1 remains true if locally finitely T-transitivity condition is replaced by any
one of the following conditions:

(i) R is transitive,

(ii) R is T -transitive,

(iii) R is finitely transitive,

(iv) R is locally finitely transitive.

Corollary 4.4. Theorem 4.2 remains true if we replace condition (e) by one of the following conditions:
( f ′) T X is Rs-directed,
( f ′′) R|T X is complete.

Proof. Suppose condition ( f ′) holds. Then, for each x, y ∈ T X there exists z ∈ X such that [x, z] ∈ R
and [y, z] ∈ R, which amounts to say that {x, z, y} is a path of length 2 in Rs from x to y. Hence, T X is
Rs-connected and again by Theorem 4.2, we get the conclusion.

On the other hand, let the condition ( f ′′) holds. Then, for each x, y ∈ T X, [x, y] ∈ R, which yields
that {x, y} is a path of length 1 in Rs from x to y so that T X is Rs-connected and then by Theorem 4.2,
the conclusion is immediate. □

Remark 4.5. Under universal relation (i.e. R = X2), Theorems 4.1 and 4.2 reduce to the following
fixed point theorem of Alam et al. [6].

Theorem 4.6. [6] Let (X, d) be a complete metric space and T a self-mapping on X. If there exist
ϕ ∈ Φand ψ ∈ Ψ such that

ϕ(d(T x,Ty)) ≤ ϕ(d(x, y)) − ψ(d(x, y)) for all x, y ∈ X,

then T has a unique fixed point.

On setting R =⪯, the partial order in Theorem 4.1, we obtain the following result of Harjani and
Sadarangani [18].

Corollary 4.7. [18] Let (X, d) be a metric space endowed with a partial order ⪯ and T a self-mapping
on X. Suppose that the following conditions hold:

(a) (X, d) be complete metric space,

(b) T is increasing with respect to ⪯,

(c) T is continuous or (X, d,⪯) is regular,

(d) There exists x0 ∈ X such that x0 ⪯ T x0,

(e) There exist ϕ ∈ Φ and ψ ∈ Ψ such that

ϕ(d(T x,Ty)) ≤ ϕ(d(x, y)) − ψ(d(x, y)) for all x, y ∈ X with x ⪰ y,

then T has a fixed point.
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5. Illustrative examples

Now, we give some examples which show the validity and utility of Theorem 4.1.

Example 5.1. Consider X = (−1, 1] with the usual metric d. On X, define a binary relation R by

R = {(x, y) ∈ X2 : x > y ≥ 0},

then (X, d) is a R-complete metric space.
Define the auxiliary functions ϕ, ψ : [0,+∞)→ [0,+∞) as follows:

ϕ(t) =

t, if 0 ≤ t ≤ 1
t2, if t > 1

and ψ(t) =

 t2
2 , if 0 ≤ t ≤ 1,
4, if t > 1.

Clearly, ϕ ∈ Φ and ψ ∈ Ψ. Let T : X → X be a mapping defined by

T x =

x + 1, if − 1 < x < 0,
x − x2

2 , if 0 ≤ x ≤ 1.

Take x, y ∈ X with (x, y) ∈ R, then x > y ≥ 0. Thus, we have

ϕ(d(T x,Ty)) = (x −
1
2

x2) − (y −
1
2

y2)

= (x − y) −
1
2

(x − y)(x + y)

≤ (x − y) −
1
2

(x − y)2

= d(x, y) −
1
2
(
d(x, y)

)2
= ϕ(d(x, y)) − ψ(d(x, y)).

Therefore, T satisfies condition (e) of Theorem 4.1. Notice that here R is locally finitely T -transitive
and R is T -closed. It is very spontaneous that, rest of the conditions of Theorem 4.1 and Theorem 4.2
are satisfied and T has a unique fixed point, namely: x = 0.

Remark 5.2. Note that the above examples cannot be covered by existing results in the literature.
Indeed, ψ is not continuous here. Moreover, the contraction condtion does not hold on the whole space
(take x = −1

2 and y = 3
5 ), which substantiates the effectiveness of our results.

Example 5.3. Consider X = [0, 1] ∪ {2, 3, 4, ...} with the metric d defined by

d(x, y) =


| x − y |, if x, y ∈ [0, 1] and x , y,

x + y, if at least one of x or y does not belong to [0, 1] and x , y,

0, if x = y.

On X, define a binary relation R by

R = {(x, y) ∈ X2 : x > y and x ∈ {3, 4, 5, ..}, y , 2},
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then X is a R-complete metric space, see [12].
Define the auxiliary functions ϕ, ψ : [0,∞)→ [0,∞) as follows:

ϕ(t) =

t + 1, if 0 ≤ t < 1
t2, if t ≥ 1

and ψ(t) =

 t2
4 , if 0 ≤ t ≤ 1,
1
5 , if t > 1.

Clearly, ϕ ∈ Φ and ψ ∈ Ψ. Here ϕ and ψ both are not continuous and ϕ(0) = 1.
Let T : X → X be a mapping defined by

T (x) =

x − x3

4 , if 0 ≤ x ≤ 1,
x − 1, if x ∈ {2, 3, 4, ...}.

Notice that the (ϕ, ψ)-contractivity condition holds trivially when x = y.
When x ∈ {3, 4, ....}, then there are two possibilities of choosing y. Firstly, we take y ∈ [0, 1], then

we have

d(T x,Ty) = d
(
x − 1, y −

1
4

y3
)
= x − 1 + y −

y3

4
≤ x + y − 1.

Otherwise, if y ∈ {3, 4, ...}, then we have

d(T x,Ty) = d(x − 1, y − 1) = x + y − 2
< x + y − 1.

Therefore, in both the cases, we have

ϕ(d(T x,Ty)) = (d(T x,Ty))2 < (x + y − 1)2

< (x + y − 1)(x + y + 1) = (x + y)2 − 1

< (x + y)2 −
1
5

= ϕ(d(x, y)) − ψ(d(x, y)).

In view of all the possible cases, we conclude that all the conditions of Theorem 4.1 are satisfied.
Therefore, by Theorem 4.1, T has a fixed point (namely: x = 0).

Remark 5.4. Notice that T X is not Rs connected in the above example. But still T has a unique fixed
point, which attests the fact that condition ( f ) of Theorem 4.2 is only a necessary condition to have a
unique fixed point, not a sufficient condition. Moreover, the auxiliary functions are both not continuous
here, which proves the credibility of our newly proved results.

6. Conclusions

In this paper, we extended the concept of generalized nonlinear contraction mappings in a relation-
theoretic sense involving some newly introduced auxiliary functions in a metric space endowed with
a binary relation R which needs to satisfy a weak version of transitivity condition, i.e., locally finitely
T -transitivity condition. We have also put out some examples where the existing theorems cannot
be applied to investigate the existence of fixed points. Still, by utilizing our results, we can get the
existence and uniqueness of fixed points, which guarantees the novelty of our results.
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17. Z. Golubović, Z. Kadelburg, S. Radenović, Common fixed points of ordered g-quasicontractions
and weak contractions in ordered metric spaces, Fixed Point Theory Appl., 2012 (2012), 1–11.
https://doi.org/10.1186/1687-1812-2012-20

18. J. Harjani, K. Sadarangani, Generalized contractions in partially ordered metric spaces and
applications to ordinary differential equations, Nonlinear Anal.: Theory, Methods Appl., 72 (2010),
1188–1197. https://doi.org/10.1016/j.na.2009.08.003

19. E. Karapinar, K. Sadarangani, Fixed point theory for cyclic (ϕ-ψ)-contractions, Fixed Point Theory
Appl., 2011 (2011), 1–8. https://doi.org/10.1186/1687-1812-2011-69

20. E. Karapınar, Fixed point theory for cyclic weak ϕ-contraction, Appl. Math. Lett., 24 (2011),
822–825. https://doi.org/10.1016/j.aml.2010.12.016

21. Q. H. Khan, F. Sk, Fixed point results for comparable Kannan and Chatterjea mappings, J. Math.
Anal., 12 (2021), 36–47.

22. Q. H. Khan, F. Sk, Some coincidence point theorems for Prešić-Ćirić type contractions, Nonlinear
Funct. Anal. Appl., 26 (2021), 1091–1104.
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