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1. Introduction

This article is devoted to the following nonlinear fractional differential equation with periodic
boundary condition {

cDα
0+ x(t) − λx(t) = f (t, x(t)), 0 < t ≤ ω,

x(0) = x(ω),
(1.1)

where λ ≤ 0, 0 < α ≤ 1 and cDα
0+ is Caputo fractional derivative

cDα
0+ x(t) =

1
Γ(1 − α)

∫ t

0
(t − s)−αx′(s)ds.

Differential equations of fractional order occur more frequently on different research areas and
engineering, such as physics, economics, chemistry, control theory, etc. In recent years, boundary
value problems for fractional differential equation have become a hot research topic, see [2–7,9–13,15–
21,24,25]. In [27], Zhang studied the boundary value problem for nonlinear fractional differential
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equation {
cDα

0+u(t) = f (t, u(t)), 0 < t < 1,
u(0) + u′(0) = 0, u(1) + u′(1) = 0,

(1.2)

where 1 < α ≤ 2, f : [0, 1]× [0,+∞)→ [0,+∞) is continuous and cDα
0+ is Caputo fractional derivative

cDα
0+u(t) =

1
Γ(2 − α)

∫ t

0
(t − s)1−αu′′(s)ds.

The author obtained the existence of the positive solutions by using the properties of the Green
function, Guo-Krasnosel’skill fixed point theorem and Leggett-Williams fixed point theorem.

Ahmad and Nieto [1] studied the anti-periodic boundary value problem of fractional differential
equation {

cDq
0+u(t) = f (t, u(t)), 0 ≤ t ≤ T, 1 < q ≤ 2,

u(0) = −u(T ), cDp
0+u(0) = −cDp

0+u(T ), 0 < p < 1,
(1.3)

where f : [0,T ]×R→ R is continuous. The authors obtained some existence and uniqueness results by
applying fixed point principles. The anti-periodic boundary value condition in this article corresponds
to the anti-periodic condition u(0) = −u(T ), u′(0) = −u′(T ) in ordinary differential equation.

In [26], Zhang studied the following fractional differential equation{
Dδ

0+u(t) = f (t, u), 0 < t ≤ T,
limt→0+ t1−αu(t) = u0,

(1.4)

where 0 < δ < 1, T > 0, u0 ∈ R and Dδ
0+ is Riemann-Liouville fractional derivative

Dδ
0+u(t) =

1
Γ(1 − δ)

d
dt

∫ t

0
(t − s)−δu(s)ds.

The author obtained the existence and uniqueness of the solutions by the method of upper and lower
solutions and monotone iterative method.

In [7], Belmekki, Nieto and Rodriguez-Lopez studied the following equation{
Dδ

0+u(t) − λu(t) = f (t, u(t)), 0 < t ≤ 1,
limt→0+ t1−δu(t) = u(1),

(1.5)

where 0 < δ < 1, λ ∈ R, f is continuous. The authors obtained the existence and uniqueness of the
solutions by using the fixed point theorem. Cabada and Kisela [8] studied the following equation{

Dδ
0+u(t) − λu(t) = f (t, t1−αu(t)), 0 < t ≤ 1,

limt→0+ t1−δu(t) = u(1),
(1.6)

where 0 < δ < 1, λ , 0(λ ∈ R), f is continuous. The authors studied the existence and uniqueness
of periodic solutions by using Krasnosel’skii fixed point theorem and monotone iterative method. In
[7, 8], the boundary condition limt→0+ t1−δu(t) = u(1) was called as periodic boundary value condition
of Riemann-Liouville fractional differential equation, which is different from the periodic condition for
ordinary differential equation. The boundary value condition u(0) = u(1) is not suitable for Riemann-
Liouville fractional differential equation.
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For the ordinary differential equation, the periodic boundary value problem is closely related to the
periodic solution. For the Caputo fractional differential equation, the periodic boundary value condition
u(0) = u(w) is meaningful. As far as we know, few work involves the periodic boundary value problem
for Caputo fractional. The aim of this paper is to show the existence of positive solutions of (1.1) by
using Krasnosel’skii fixed point theorem. Meanwhile, we also use the monotone iterative method to
study the extremal solutions problem{

cDα
0+u(t) = f (t, u(t)), 0 < t ≤ ω,

u(0) = u(ω).
(1.7)

The paper is organized as follows. In Section 2, we recall and derive some results on Mittag-Leffler
functions. In Section 3, we use the Laplace transform to obtain the solution of a linear problem and
discuss some properties of Green’s function. In Section 4, the existence of positive solution is studied
by using the Krasnosel’skii fixed point theorem. In Section 5, the existence of extremal solutions is
proved by utilizing the monotone iterative technique. Section 6 is conclusion of the paper.

2. Preliminaries

A key role in the theory of linear fractional differential equation is played by the well-known two-
parameter Mittag-Leffler function

Eα,β(z) = Σ∞k=0
zk

Γ(αk + β)
, z ∈ R, α, β > 0. (2.1)

We recall and derive some of their properties and relationships summarized in the following.

Proposition 2.1. Let α ∈ (0, 1], β > 0, λ ∈ R and ξ > 0. Then it holds

(C1) limt→0+ Eα,β(λtα) = 1
Γ(β) , limt→0+ Eα,1(λtα) = 1.

(C2) Eα,α+1(λtα) = λ−1t−α(Eα,1(λtα) − 1).
(C3) Eα,α(λtα) > 0, Eα,1(λtα) > 0 for all t ≥ 0.
(C4) Eα,α(λtα) is decreasing in t for λ < 0 and increasing for λ > 0 for all t > 0.
(C5) Eα,1(λtα) is decreasing in t for λ < 0 and increasing for λ > 0 for all t > 0.
(C6)

∫ ξ

0
tβ−1Eα,β(λtα)dt = ξβEα,β+1(λξα).

Proof. (C1) It is obtained by an immediate calculation from (2.1).
(C2) By (2.1), we get

Eα,1(λtα) = Σ∞k=0
(λtα)k

Γ(αk + 1)
= 1 +

λtα

Γ(α + 1)
+

(λtα)2

Γ(2α + 1)
+

(λtα)3

Γ(3α + 1)
+ · · · ,

Eα,α+1(λtα) = Σ∞k=0
(λtα)k

Γ(αk + α + 1)
=

1
Γ(α + 1)

+
λtα

Γ(2α + 1)
+

(λtα)2

Γ(3α + 1)
+ · · · .

Hence,
Eα,α+1(λtα) = λ−1t−α(Eα,1(λtα) − 1).

(C3) It follows from [23, Lemma 2.2].
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(C4) It follows from [8, Proposition 1].
(C5) By a direct calculation, we get

d
dt

Eα,1(λtα) = λtα−1Eα,α(λtα),

since α ∈ (0, 1], t > 0 and Eα,α(λtα) is positive by Proposition (C3), the assertion is proved.
(C6) It follows from (1.99) of [20].

3. Linear problem

In this section, we deal with the linear case that f (t, x) = f (t) is a continuous function by mean of
the Laplace transform for caputo fractional derivative

(LcDα
0+ x)(s) = sαX(s) − sα−1x(0), 0 < α ≤ 1, (3.1)

where L denotes the Laplace transform operator, X(s) denotes the Laplace transform of x(t).
From Lemma 3.2 of [14], we get

(LEα(λtα))(s) =
sα−1

sα − λ
,Re(s) > 0, λ ∈ C, |λs−α| < 1, (3.2)

and

(Ltβ−1Eα,β(λtα))(s) =
sα−β

sα − λ
,Re(s) > 0, λ ∈ C, |λs−α| < 1. (3.3)

We do Laplace transform to the equation

cDα
0+ x(t) − λx(t) = f (t), x(0) = x(ω). (3.4)

By (3.1), we obtain
sαX(s) − λX(s) = F(s) + x(0) · sα−1,

X(s) =
F(s)

sα − λ
+

sα−1

sα − λ
· x(0),

where F denotes the Laplace transform of f . By (3.2) and (3.3), we obtain that

x(t) =

∫ t

0
(t − s)α−1Eα,α(λ(t − s)α) f (s)ds + x(0) · Eα,1(λtα). (3.5)

Hence,

x(ω) = x(0)Eα,1(λwα) +

∫ ω

0
(ω − s)α−1Eα,α(λ(ω − s)α) f (s)ds = x(0),

which implies that

x(0) =

∫ ω

0
(ω − s)α−1Eα,α(λ(ω − s)α) f (s)ds

1 − Eα,1(λωα)
if Eα,1(λωα) , 1. Therefore, if Eα,1(λωα) , 1, the solution of the problem (3.4) is

x(t) =

∫ ω

0
(ω − s)α−1Eα,α(λ(ω − s)α) f (s)ds

1 − Eα,1(λωα)
· Eα,1(λtα) +

∫ t

0

Eα,α(λ(t − s)α)
(t − s)1−α f (s)ds
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=

∫ t

0

Eα,1(λtα)Eα,α(λ(ω − s)α)
(1 − Eα,1(λωα))(ω − s)1−α f (s)ds +

∫ t

0

Eα,α(λ(t − s)α)
(t − s)1−α f (s)ds

+

∫ ω

t

Eα,1(λtα)Eα,α(λ(ω − s)α)
(1 − Eα,1(λωα))(ω − s)1−α f (s)ds.

Theorem 3.1. Let Eα,1(λωα) , 1, the periodic boundary value problem (3.4) has a unique solution
given by

x(t) =

∫ ω

0
Gα,λ(t, s) f (s)ds,

where

Gα,λ(t, s) =


Eα,1(λtα)Eα,α(λ(ω−s)α)
(1−Eα,1(λωα))(ω−s)1−α +

Eα,α(λ(t−s)α)
(t−s)1−α , 0 ≤ s < t ≤ ω,

Eα,1(λtα)Eα,α(λ(ω−s)α)
(1−Eα,1(λωα))(ω−s)1−α , 0 ≤ t ≤ s < ω.

(3.6)

Remark 3.2. The unique solution x of (3.4) is continuous on [0, ω].

Lemma 3.3. Let 0 < α ≤ 1, λ , 0 and sign(η) denotes the signum function. Then

(F1) limt→0+ Gα,λ(t, s) =
Eα,α(λ(ω−s)α)

(1−Eα,1(λωα))(ω−s)1−α for any fixed s ∈ [0, ω),
(F2) lims→ω− Gα,λ(t, s) = sign(−λ) · ∞ for any fixed t ∈ [0, ω],
(F3) limt→s+ Gα,λ(t, s) = ∞ for any fixed s ∈ [0, ω),
(F4) Gα,λ(t, s) > 0 for λ < 0 and for all t ∈ [0, ω] and s ∈ [0, ω),
(F5) Gα,λ(t, s) changes its sign for λ > 0 for t ∈ [0, ω] and s ∈ [0, ω).

Proof. (F1) When 0 ≤ t ≤ s < ω, by Proposition 2.1 (C1) we can get (F1).
(F2) When 0 ≤ t ≤ s < ω, it follows by Proposition 2.1 (C5) that 1 − Eα,1(λωα) is positive for
λ < 0 and negative for λ > 0. The unboundedness is implied by continuity of Mittag-Leffler function,
Proposition 2.1 (C1) and the relation limt→0+ t−r = ∞ for r > 0.
(F3) When 0 ≤ s < t ≤ ω, the first term of (3.6) is finite due to the continuity of the involved functions.
And by a similar argument as in the previous point of this proof we have the second term tends to
infinity.
(F4) It is obtained by the positivity of all involved functions (Proposition 2.1 (C3)) and the inequation
1 − Eα,1(λωα) > 0 for λ < 0.
(F5) When 0 ≤ s < t ≤ ω, the second term of (3.6) is positive due to

lim
s→t−

(t − s)α−1Eα,α(λ(t − s)α) = +∞,

and by the positivity of all involved functions (Proposition 2.1 (C3)) we get the proof. When 0 ≤ t ≤
s < ω, it is obtained by 1 − Eα,1(λωα) < 0 for λ > 0 and the positivity of all involved functions
(Proposition 2.1 (C3)). �

Proposition 3.4. Let α ∈ (0, 1] and λ < 0. Then the Green’s function (3.6) satisfies

(K1) Gα,λ(t, s) ≥ m =: Eα,1(λωα)Eα,α(λωα)
|λ|ωEα,α+1(λωα) > 0,

(K2)
∫ ω

0
Gα,λ(t, s)ds = M =: 1

|λ|
for all t ∈ [0, ω].
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Proof. (K1) For 0 ≤ t ≤ s < ω, we deduce from Proposition 2.1 (C4), (C5) that Gα,λ has the minimum
on the line t = s. Hence,

Gα,λ(t, s) ≥ Gα,λ(t, t) =
Eα,1(λtα)Eα,α(λ(ω − t)α)

(1 − Eα,1(λωα))(ω − t)1−α

≥
Eα,1(λωα)Eα,α(λωα)
(1 − Eα,1(λωα))ω1−α

=
Eα,1(λωα)Eα,α(λωα)

[1 − (Eα,α+1(λωα)λωα + 1)]ω1−α

=
Eα,1(λωα)Eα,α(λωα)
|λ|ωEα,α+1(λωα)

.

For 0 ≤ s < t ≤ ω, we have

Gα,λ(t, s) ≥
Eα,1(λωα)Eα,α(λωα)
|λ|ωEα,α+1(λωα)

+
Eα,α(λωα)
ω1−α ≥

Eα,1(λωα)Eα,α(λωα)
|λ|ωEα,α+1(λωα)

.

(K2) Employing Proposition 2.1, we get∫ ω

0
Gα,λ(t, s)ds =

∫ ω

0

Eα,1(λtα)Eα,α(λ(ω − s)α)
(ω − s)1−α(1 − Eα,1(λωα))

ds +

∫ t

0

Eα,α(λ(t − s)α)
(t − s)1−α ds

=
Eα,1(λtα)

1 − Eα,1(λωα)

∫ ω

0
(ω − s)α−1Eα,α(λ(ω − s)α)ds

+

∫ t

0
(t − s)α−1Eα,α(λ(t − s)α)ds

=
Eα,1(λtα)

1 − Eα,1(λωα)
· ωαEα,α+1(λωα) + tαEα,α+1(λtα)

=
Eα,1(λtα)

1 − Eα,1(λωα)
· ωα · λ−1ω−α(Eα,1(λωα) − 1)

+ tα · λ−1t−α(Eα,1(λtα) − 1)

=
1
|λ|
,

which completes the proof.

4. Existence of positive solution

Let C[0, ω] be the space continuous function on [0, ω] with the norm ‖x‖ = sup{|x(t)| : t ∈ [0, ω]}.
In this section, we always assume that λ < 0. Clearly, x is a solution of (1.1) if and only if

x(t) =

∫ ω

0
Gα,λ(t, s) f (s, x(s))ds, (4.1)

where Gα,λ is Green’s function defined in Theorem 3.1.
The following famous Krasnosel’skii fixed point theorem, which is main tool of this section.
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Theorem 4.1. [22] Let B be a Banach space, and let P ⊂ B be a cone. Assume Ω1,Ω2 two open and
bounded subsets of B with 0 ∈ Ω1,Ω1 ⊂ Ω2 and let A : P ∩ (Ω2 \Ω1)→ P be a completely continuous
operator such that one of the following conditions is satisfied:

(L1) ‖Ax‖ ≤ ‖x‖, if x ∈ P ∩ ∂Ω1, and ‖Ax‖ ≥ ‖x‖, if x ∈ P ∩ ∂Ω2,
(L2) ‖Ax‖ ≥ ‖x‖, if x ∈ P ∩ ∂Ω1, and ‖Ax‖ ≤ ‖x‖, if x ∈ P ∩ ∂Ω2.

Then, A has at least one fixed point in P ∩ (Ω2 \Ω1).

Proposition 4.2. Assume that there exist 0 < r < R, 0 < c1 < c2 such that

f : [0, ω] ×
[
mc1ω

Mc2
r,R

]
→ R is continuous, (4.2)

c1 ≤ f (t, u) ≤ c2, ∀(t, u) ∈ [0, ω] ×
[
mc1ω

Mc2
r,R

]
. (4.3)

Let P ⊂ C[0, ω] be the cone

P =

{
x ∈ C[0, ω] : min

t∈[0,ω]
x(t) ≥

mc1ω

Mc2
‖x‖

}
.

Then the operator A : PR \ Pr → P given by

Ax(t) =

∫ ω

0
Gα,λ(t, s) f (s, x(s))ds (4.4)

is completely continuous, where Pl = {u ∈ P : ‖u‖ < l}.

Proof. Let x ∈ PR \ Pr, then

mc1ω

Mc2
r ≤ x(t) ≤ R f or all t ∈ [0, ω]. (4.5)

We first show that A is well-defined, i.e. that A : PR \ Pr → P. Note that

Ax(t) =

∫ ω

0
Gα,λ(t, s) f (s, x(s))ds

=

∫ ω

0

Eα,1(λtα)Eα,α(λ(ω − s)α)
(ω − s)1−α(1 − Eα,1(λωα))

f (s, x(s))ds

+

∫ t

0

Eα,α(λ(t − s)α)
(t − s)1−α f (s, x(s))ds

=kq(ω)Eα,1(λtα) + q(t), (4.6)

where k = 1
1−Eα,1(λωα) and

q(t) =


∫ t

0
Eα,α(λ(t−s)α)

(t−s)1−α f (s, x(s))ds, 0 < t ≤ ω,

0, t = 0.
(4.7)
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Clearly, for t ∈ (0, ω]

0 < q(t) ≤ c2

∫ t

0

Eα,α(λ(t − s)α)
(t − s)1−α ds ≤

c2

Γ(α)

∫ t

0
(t − s)α−1ds =

c2

Γ(α + 1)
tα, (4.8)

which implies that q is continuous at t = 0. On the other hand,

q(t) =
∑

k< 1
α−1

λk
∫ t

0

(t − s)αk+α−1

Γ(αk + α)
f (s, x(s))ds

+

∫ t

0

∑
k≥ 1

α−1

λk

Γ(αk + α)
(t − s)αk+α−1 f (s, x(s))ds

=
∑

k< 1
α−1

λk

Γ(αk + α)

∫ t

0
uαk+α−1 f (t − u, x(t − u))du

+

∫ t

0

∑
k≥ 1

α−1

λk

Γ(αk + α)
(t − s)αk+α−1 f (s, x(s))ds

=: H1(t) + H2(t),

where

H1(t) =
∑

k< 1
α−1

λk

Γ(αk + α)

∫ t

0
uαk+α−1 f (t − u, x(t − u))du,

H2(t) =

∫ t

0

∑
k≥ 1

α−1

λk

Γ(αk + α)
(t − s)αk+α−1 f (s, x(s))ds.

Since

|uαk+α−1 f (t − u, x(t − u))| ≤ c2uαk+α−1, u > 0, t ∈ (0, ω], x ∈ PR/Pr,∣∣∣∣∣∣λk(t − s)αk+α−1

Γ(αk + α)
f (s, x(s))

∣∣∣∣∣∣ ≤ λk

Γ(αk + α)
tαk+α−1c2, 0 ≤ s ≤ t, x ∈ PR/Pr,∫ t

0
uαk+α−1du < +∞, t ∈ (0, ω],∑

k≥ 1
α−1

λktαk+α−1

Γ(αk + α)
< +∞, t ∈ (0, ω],

we obtain that H1 ∈ C[0, ω] and

H2(t) =
∑

k≥ 1
α−1

λk

Γ(αk + α)

∫ t

0
(t − s)αk+α−1 f (s, x(s))ds =:

∑
k≥ 1

α−1

λk

Γ(αk + α)
uk(t).

Noting that uk ∈ C(0, ω]

|uk(t)| ≤ c2
ωαk+α

αk + α
, t ∈ (0, ω],

∑ λk

Γ(αk + α)
ωαk+α

αk + α
< +∞,
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we have H2 ∈ C(0, ω]. Hence, q ∈ C[0, ω].
Moreover,

mc1ω

Mc2
‖Ax‖ =

mc1ω

Mc2
sup

∫ ω

0
Gα,λ(t, s) f (s, x(s))ds

≤
mc1ω

M
sup

∫ ω

0
Gα,λ(t, s)ds = mc1ω

≤min
∫ ω

0
Gα,λ(t, s) f (s, x(s))ds = min

t∈[0,ω]
Ax(t), (4.9)

which means that A : PR \ Pr → P.
Next, we show that A is continuous on PR \ Pr. Let xn, x ∈ PR \ Pr and ‖xn − x‖ → 0. From (4.2),

we have ‖ f (t, xn(t)) − f (t, x(t))‖ → 0,

‖Axn − Ax‖ = sup
t∈[0,ω]

∣∣∣∣∣∫ ω

0
Gα,λ(t, s)( f (s, x(s)) − f (s, y(s)))ds

∣∣∣∣∣
≤ sup

t∈[0,ω]

∫ ω

0
Gα,λ(t, s)ds‖ f (t, xn(t)) − f (t, x(t))‖

≤ M‖ f (t, xn(t)) − f (t, x(t))‖ → 0,

which implies that A is continuous. From (4.6), we get that Ax(t) is uniformly bounded. Finally, we
show that {Ax|x ∈ PR/Pr} is an equicontinuity in C[0, ω]. By (4.6), we have

|Ax(t1) − Ax(t2)| =

∣∣∣∣∣∫ ω

0
(Gα,λ(t1, s) −Gα,λ(t2, s)) f (s, x(s))ds

∣∣∣∣∣
≤ kq(ω)|Eα,1(λtα1 ) − Eα,1(λtα2 )| + |q(t1) − q(t2)|.

Since Eα,1(λtα) ∈ C[0, ω], q(t) ∈ C[0, ω] are uniformly continuous, |Eα,1(λtα1 ) − Eα,1(λtα2 )| and |q(t1) −
q(t2)| tend to zero as |t1 − t2| → 0. Hence, {Ax(t)|x ∈ PR \ Pr} is equicontinuous in C[0, ω].

Finally, by Arzela-Ascoli theorem, we can obtain that A is compact. Hence, it is completely
continuous. �

Theorem 4.3. Assume that there exist 0 < r < R, 0 < c1 < c2 such that (4.2) and (4.3) hold. Further
suppose one of the following conditions is satisfied

(i) f (t, u) ≥ Mc2
m2ω2c1

u, ∀(t, u) ∈ [0, ω] ×
[

mc1ω
Mc2

r, r
]
,

f (t, u) ≤ |λ|u, ∀(t, u) ∈ [0, ω] ×
[

mc1ω
Mc2

R,R
]
,

(ii) f (t, u) ≤ |λ|u, ∀(t, u) ∈ [0, ω] ×
[

mc1ω
Mc2

r, r
]
,

f (t, u) ≥ Mc2
m2ω2c1

u, ∀(t, u) ∈ [0, ω] ×
[

mc1ω
Mc2

R,R
]
.

Then (1.1) has at least a positive solution x with r ≤ ‖x‖ ≤ R .

Proof. Here we only consider the case (i). By Proposition 4.2, A : PR \ Pr → P is completely
continuous. For x ∈ ∂Pr, we have

‖x‖ = r,
mc1ω

Mc2
r ≤ x(t) ≤ r, ∀t ∈ [0, ω]
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and
Ax(t) ≥ m

∫ ω

0
f (s, x(s))ds ≥

Mc2

mω2c1

∫ ω

0
x(s)ds ≥ r = ‖x‖.

Similarly, if x ∈ ∂PR,
mc1ω

Mc2
R ≤ x(t) ≤ R, t ∈ [0, ω],

0 ≤ Ax(t) ≤
∫ ω

0
Gα,λ(t, s)|λ|x(s)ds ≤ |λ|R

∫ ω

0
Gα,λ(t, s)ds = R = ‖x‖.

By Theorem 4.1, there exists x ∈ PR \ Pr such that Ax = x and x is a solution of (1.1). Moreover,

mc1ω

Mc2
r ≤ x(t) ≤ R.

Corollary 4.4. Let c1 < c2 be positive reals and f (t, x) satisfy the conditions

(i) c1 ≤ f (t, x) ≤ c2 for all x ≥ 0,
(ii) f : [0,w] × (0,+∞)→ R is a continuous function.

Then problem (1.1) has a positive solution.

Proof. Let 0 < r < c2
1m2ω2

Mc2
, R >

c2
2 M

|λ|m1c1ω
, then (4.2) and (4.3) are satisfied. Clearly, for (t, u) ∈ [0, ω] ×[

mc1ω
Mc2

r, r
]
,

f (t, u) ≥ c1 ≥
Mc2

m2ω2c1
r ≥

Mc2

m2ω2c1
u

and for (t, u) ∈ [0, ω] ×
[

mc1ω
Mc2

R,R
]
,

f (t, u) ≤ c2 ≤ |λ|
mc1ω

Mc2
R ≤ |λ|u.

Hence, by Theorem 4.3 (1.1) has at least a positive solution. �

Example 4.5. Consider the equation{
cDα

0+ x(t) − λx(t) = 1 + x
1
β (t), 0 < x ≤ ω,

x(0) = x(ω),
(4.10)

where 0 < α ≤ 1, β > 1 and

Λ = {λ < 0, |λ|Eα,1(λωα)Eα,α(λωα) ≥ 4Eα,α+1(λωα)} , ∅.

Choosing c1 = 1, c2 = 2, r = 1
10 min{1, m2ω2

2M },R = 1. It is easy to check that (4.2) and (4.3) hold. For
λ ∈ Λ,

f (t, u) = 1 + u
1
β ≥ 1 ≥

Mc2

m2ωc1
r ≥

Mc2

m2ωc1
u,∀(t, u) ∈ [0, ω] ×

[
mc1ω

Mc2
r, r

]
,

f (t, u) ≤ 2 ≤ |λ| ·
mc1ω

Mc2
= |λ| ·

mω
2M
≤ |λ|u,∀(t, u) ∈ [0, ω] ×

[
mc1ω

Mc2
R,R

]
.

Hence, (4.10) has at least one positive solution for λ ∈ Λ.
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5. Existence of solutions via monotone iterative techniques

In this section, by using the monotone iterative method, we discuss the existence of solutions when
λ = 0 in (1.1). Firstly, we give the definition of the upper and lower solutions and get monotone
iterative sequences with the help of the corresponding linear equation. Finally, we prove the limits of
the monotone iterative sequences are solutions of (1.7).

Definition 5.1. Let h, k ∈ C1[0, ω]. h and k are called lower solution and upper solution of
problem (1.7), respectively if h and k satisfy

cDα
0+h(t) ≤ f (t, h(t)), 0 < t ≤ ω, h(0) ≤ h(ω), (5.1)

cDα
0+k(t) ≥ f (t, k(t)), 0 < t ≤ ω, k(0) ≥ k(ω), (5.2)

Clearly, if g the lower solution or upper solution of (1.7), then cDα
0+g is continuous on [0, ω].

Lemma 5.2. Let δ ∈ C[0, ω] with δ ≥ 0 and p ∈ R with p ≤ 0. Then{
cDα

0+z(t) − λz(t) = δ(t), 0 < t ≤ ω,
z(ω) − z(0) = p,

(5.3)

has a unique solution z(t) ≥ 0 for t ∈ [0, ω], where 0 < α ≤ 1, λ < 0.

Proof. Let z1, z2 are two solutions of (5.3) and v = z1 − z2, then{
cDα

0+v(t) − λv(t) = 0, 0 < t ≤ ω,
v(ω) = v(0).

(5.4)

Using Theorem 3.1, (5.4) has trivial solution v = 0.
By (3.5), we can verify that problem (5.3) has a unique solution

z =

∫ ω

0
Gα,λ(t, s)δ(t)ds + p ·

Eα,1(λωα)
Eα,1(λωα) − 1

.

As consequence, by Proposition 2.1 (C3), (C5) and Lemma 3.3 (F4), we conclude that z(t) ≥ 0. This
completes the proof. �

Theorem 5.3. Assume that h, k are the lower and upper solutions of problem (1.7) and h ≤ k.
Moreover, suppose that f satisfies the following properties:

(M) there is λ < 0 such that for all fixed t ∈ [0, ω], f (t, x) − λx is nondecreasing in h(t) ≤ x ≤ k(t),
(J) f : [0, ω] × [h(t), k(t)]→ R is a continuous function.
Then there are two monotone sequences {hn} and {kn} are nonincreasing and nondecreasing,

respectively with h0 = h and k0 = k such that limn→∞ hn = h(t), limn→∞ kn = k(t) uniformly on [0, ω],
and h, k are the minimal and the maximal solutions of (1.7) respectively, such that

h0 ≤ h1 ≤ h2 ≤ ... ≤ hn ≤ h ≤ x ≤ k ≤ kn ≤ ... ≤ k2 ≤ k1 ≤ k0

on [0, ω], where x is any solution of (1.7) such that h(t) ≤ x(t) ≤ k(t) on [0, ω].
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Proof. Let [h, k] = {u ∈ C[0, ω] : h(t) ≤ u(t) ≤ k(t), t ∈ [0, ω]}. For any η ∈ [h, k], we consider the
equation {

cDα
0+ x(t) − λx(t) = f (t, η(t)) − λη(t), 0 < t ≤ ω,

x(0) = x(ω),

Theorem 3.1 implies the above problem has a unique solution

x(t) =

∫ ω

0
Gα,λ(t, s)( f (s, η(s)) − λη(s))ds. (5.5)

Define an operator B by x = Bη, we shall show that
(a) k ≥ Bk, Bh ≥ h,
(b) B is nondecreasing on [h, k].
To prove (a). Denote θ = k − Bk, we have

cDα
0+θ(t) − λθ(t) = cDα

0+k(t) − cDα
0+ Bk(t) − λ(k(t) − Bk(t))

≥ f (t, k(t)) − (( f (t, k(t)) − λk(t)) − λk(t)
= 0,

and θ(w) − θ(0) ≤ 0. Since k ∈ C1[0, ω],

cDα
0+k ∈ C[0, ω], cDα

0+ Bk ∈ C[0, ω].

By Lemma 5.2, θ ≥ 0, i.e. k ≤ Bk. In an analogous way, we can show that Bh ≥ h.
To prove (b). We show that Bη1 ≤ Bη2 if h ≤ η1 ≤ η2 ≤ k. Let z1 = Bη1, z2 = Bη2 and z = z2 − z1,

then by (M), we have

cDα
0+z(t) − λz(t) = cDα

0+z2(t) − cDα
0+z1(t) − λ(z2(t) − z1(t))

= f (t, η2(t)) − λη2(t) − ( f (t, η1(t)) − λη1(t))
≥ 0,

and v(ω) = v(0). By Lemma 5.2, z(t) ≥ 0, which implies Bη1 ≤ Bη2.
Define the sequence {hn}, {kn} with h0 = h, k0 = k such that hn+1 = Bhn, kn+1 = Bkn for n = 0, 1, 2, ....

From (a) and (b), we have

h0 ≤ h1 ≤ h2 ≤ ... ≤ hn ≤ kn ≤ ... ≤ k2 ≤ k1 ≤ k0

on t ∈ [0, ω], and

hn(t) =

∫ ω

0
Gα,λ(t, s)( f (s, hn−1(s)) − λhn−1(s))ds,

kn(t) =

∫ ω

0
Gα,λ(t, s)( f (s, kn−1(s)) − λkn−1(s))ds.

Therefore, there exist h, k such that limn→∞ hn = h, limn→∞ kn = k.
Similar to the proof of Proposition 4.2, we can show that B : [h, k] → [h, k] is a completely

continuous operator. Therefore, h, k are solutions of (1.7).
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Finally, we prove that if x ∈ [h0, k0] is one solution of (1.7), then h(t) ≤ x(t) ≤ k(t) on [0, ω]. To this
end, we assume, without loss of generality, that hn(t) ≤ x(t) ≤ kn(t) for some n. From property (b), we
can get that hn+1(t) ≤ x(t) ≤ kn+1(t), t ∈ [0, ω]. Since h0(t) ≤ x(t) ≤ k0(t), we can conclude that

hn(t) ≤ x(t) ≤ kn(t), for all n.

Passing the limit as n→ ∞, we obtain h(t) ≤ x(t) ≤ k(t), t ∈ [0, ω]. This completes the proof. �

Example 5.4. Consider the equation{
cDα

0+ x(t) = t + 1 − x2(t), 0 < x ≤ 1,
x(0) = x(1).

(5.6)

It easy to check that h = 1, k = 2 are the low solution and upper solution of (5.6), respectively. Let
λ = −10. For all t ∈ [0, ω],

f (t, u) − λu = t2 + 1 − u2 + 10u

is nondecreasing on u ∈ [1, 2] and
f (t, u) = t + 1 − u2

is continuous on [0, ω] × [1, 2].
Hence, there exist two monotone sequences {hn} and {kn}, nonincreasing and nondecreasing

respectively, that converge uniformly to the extremal solutions of (5.6) on [h, k].

6. Conclusions

This paper focuses on the existence of solutions for the Caputo fractional differential equation with
periodic boundary value condition. We use Green’s function to transform the problem into the
existence of the fixed points of some operator, and we prove the existence of positive solutions by
using the Krasnosel’skii fixed point theorem. On the other hand, the existence of the extremal
solutions for the special case of the problem is obtained from monotone iterative technique and lower
and upper solutions method. Since the fractional differential equation is nonlocal equation, the
process of verifying the compactness of operator is very tedious, and we will search for some better
conditions to prove the compactness of the operator A in the follow-up research. Meanwhile, since the
existence result for 0 < α ≤ 1 is obtained in present paper, we will discuss the existence of solutions
for the Caputo fractional differential equation when n − 1 < α ≤ n in follow-up research.
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