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Abstract: We are concerned with the following elliptic equations

K(|z|ps,A)(−∆)s
p,Az + V(x)|z|p−2z = a(x)|z|r−2z + λ f (x, |z|)z in RN ,

where (−∆)s
p,A is the fractional magnetic operator, K : R+

0 → R
+
0 is a Kirchhoff function, A : RN → RN

is a magnetic potential and V : RN → (0,∞) is continuous potential. The main purpose is to show the
existence of infinitely many large- or small- energy solutions to the problem above. The strategy of the
proof for these results is to approach the problem variationally by employing the variational methods,
namely, the fountain and the dual fountain theorem with Cerami condition.
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1. Introduction

This paper is devoted to the study of the existence of nontrivial solutions for the following
Schrödinger-Kirchhoff type problem involving the non-local fractional p-Laplacian with a magnetic
potential

K(|z|ps,A)(−∆)s
p,Az + V(x)|z|p−2z = a(x) |z|r−2 z + λ f (x, |z|)z in RN , (1.1)

where 0 < s < 1 < r < p < +∞

|z|ps,A =

∫
RN

∫
RN

|z(x) − ei(x−y)·A( x+y
2 )z(y)|p

|x − y|N+ps dxdy,

and the fractional magnetic operator (−∆)s
p,A is defined along all functions z ∈ C∞0 (RN ,C) as

(−∆)s
p,Az(x) = 2 lim

ε→0+

∫
RN\Bε(x)

|z(x) − ei(x−y)·A( x+y
2 )z(y)|p−2(z(x) − ei(x−y)·A( x+y

2 )z(y))
|x − y|N+ps dy
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for x ∈ RN .Henceforward, Bε(x) denotes a ball inRN centered at x ∈ RN and radius ε > 0, K : R+
0 → R

+
0

is a Kirchhoff function, A : RN → RN is a magnetic potential, V and a are suitable potential functions in
(0,∞) and f : RN × R+ → R satisfies a Carathéodory condition. The operator (−∆)s

A in the case p = 2,
is called a fractional magnetic operator. This nonlocal operator has been originally defined in [7] as a
fractional extension of the magnetic pseudo-relativistic operator introduced in [25]. The existence and
multiplicity of solutions to the fractional Schrödinger-Kirchhoff equation with an external magnetic
potential have been obtained by the paper [45]; see also [35] for equations of this type involving
the fractional p-Laplacian when A ≡ 0. The main aim of this paper is to obtain the multiplicity
of solutions for the fractional magnetic Schrödinger-Kirchhoff type problem with concave-convex
nonlinearities when f has a weaker condition than that of [45]. For further applications and more
details on fractional magnetic operators we infer to [1,2,4,7,15,17,39,45] and to the references [24,25]
for the physical background. If A ≡ 0, then (−∆)s

p,A is consistent with the ordinary notion of the
fractional p-Laplacian. Elliptic problems involving the standard fractional Laplacian or more general
integro-differential operators have been a classical topic for a long time because they are applied
in various research fields, such as social sciences, fractional quantum mechanics, materials science,
continuum mechanics, phase transition phenomena, image process, game theory, and Levy process,
see [8, 10, 14, 22, 38, 47] and the references therein.

In order to consider the changes in the length of the strings during the vibrations, Kirchhoff in [29]
initially provided a model given by the equation

ρ
∂2v
∂t2 −

(ρ0

h
+

E
2L

∫ L

0
|
∂v
∂x
|2 dx

)∂2v
∂x2 = 0,

which extends the classical D’Alembert’s wave equation. In this direction, the non-local problems of
Kirchhoff type have been studied in [12, 16, 19, 20, 28, 41, 44, 46, 48].

As mentioned before, this paper is concerned with the fractional magnetic equations by the case of
a combined effect of concave-convex nonlinearities. From a pure mathematical point of view, many
researchers have extensively studied about nonlinear elliptic equations involving the concave-convex
nonlinearities (see [9, 13, 27, 43, 48]) since the celebrated paper [5] of Ambrosetti, Brezis and Cerami.
In particular, the multiplicity result of solutions to the concave-convex-type elliptic problems driven by
a nonlocal integro-differential operator has been proposed in [13]; see also [9, 27, 48].

It is commonly well known that the condition of Ambrosetti-Rabinowitz type in [6], that is, there
exists a constant θ > p such that

0 < θF(x, τ) ≤ f (x, τ)τ2, for all τ ∈ R+ and x ∈ RN , where F(x, τ) =

∫ τ

0
f (x, t)t dt,

is crucial to secure the boundedness of the Palais-Smale sequence of an energy functional. However,
because this condition is quite restrictive and removes several nonlinearities, during the last few
decades there were extensive studies which has been attempted to drop it by many researchers; see
[3, 21, 23, 26, 30–32, 34]. In that sense, our main purpose is to discuss the existence of infinitely many
large- or small- energy solutions to our problem for the case of a combined effect of concave–convex
nonlinearities when the nonlinear growth f does not satisfy the condition of Ambrosetti-Rabinowitz
type. The strategy of the proof for these results is to approach the problem using the variational
methods, namely, the fountain theorem and the dual fountain theorem with Cerami condition. As
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far as we are aware, none have reported such multiplicity results for our problem with the external
magnetic field.

This paper is organized as follows. In Section 2, we present some basic results to deal with this
type equation with the fractional magnetic field and review well known facts for the fractional Sobolev
space. And under certain assumption on f , we establish the existence of infinitely many large- or
small- energy solutions by employing the variational methods.

2. Preliminaries and main results

In this section, we consider the existence of infinitely many solutions to problem (1,1). Firstly we
assume that V : RN → R+ satisfies

(V) V ∈ L1
loc(R

N), ess infx∈RN V(x) > 0 and lim|x|→∞ V(x) = +∞.

Let Lp
V(RN) denote the real valued Lebesgue space with V(x)|z|p ∈ L1(RN), equipped with the norm

||z||pp,V =

∫
RN

V(x)|z|p dx.

Then the fractional Sobolev spaceH s,p
V (RN) is defined as for s ∈ (0, 1) and p ∈ (1,+∞)

H
s,p
V (RN) =

{
z ∈ Lp

V(RN) :
∫
RN

∫
RN

|z(x) − z(y)|p

|x − y|N+ps dxdy < +∞

}
.

The spaceH s,p
V (RN) is endowed with the norm

||z||p
H

s,p
V (RN )

:=
(
||z||pp,V + [z]p

s

)
with [z]p

s :=
∫
RN

∫
RN

|z(x) − z(y)|p

|x − y|N+ps dxdy.

For further details on the fractional Sobolev spaces we refer the reader to [33] and the references
therein. We recall the embedding theorem; see e.g., [26, 36].

Lemma 2.1. Let (V) hold and let p∗s be the fractional critical Sobolev exponent, that is p∗s := N p
N−sp if

sp < N. Then, the embeddingH s,p
V (RN)→ Lγ(RN) is continuous for any γ ∈ [p, p∗s] and moreover, the

embeddingH s,p
V (RN) ↪→↪→ Lγ(RN) is compact for any γ ∈ [p, p∗s).

Let Lp
V(RN ,C) be the Lebesgue space of functions z : RN → C with V(x)|z|p ∈ L1(RN). Let us define

H
s,p
A,V(RN ,C) as the closure of C∞c (RN ,C) with respect to the norm

||z||ps,A = (||z||pp,V + |z|ps,A),

where the magnetic Gagliardo seminorm is given by

|z|ps,A =

∫
RN

∫
RN

|z(x) − ei(x−y)·A( x+y
2 )z(y)|p

|x − y|N+ps dxdy.

In fact, arguing as in [7, Proposition 2.1], we can easily show that H s,p
A,V(RN ,C) is a reflexive and

separable Banach space as the similar arguments in [35, 36, Appendix]. In the same ways as in the
proof of [45, Lemma 3.4 and 3.5], the following Lemmas 2.2 and 2.3 can be proved if we consider the
general exponent p instead of p = 2.
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Lemma 2.2. Let (V) hold. If r ∈ [p, p∗s], then the embedding

H
s,p
A,V(RN ,C) ↪→ Lr(RN ,C)

is continuous. Furthermore, for any compact subset S ⊂ RN and r ∈ [1, p∗s), the embedding

H
s,p
A,V(RN ,C) ↪→ H s,p

V (S ,C) ↪→↪→ Lr(S ,C)

is continuous and the latter is compact, whereH s,p
V (S ,C) is endowed with the following norm:

‖z‖p
s,V =

( ∫
S

V(x)|z|p dx +

∫
S

∫
S

|z(x) − z(y)|p

|x − y|N+ps dxdy
)
.

Lemma 2.3. Under the assumption (V), for all bounded sequence {zn} in H s,p
A,V(RN ,C) the sequence

{|zn|} admits a subsequence converging strongly to some z in Lr(RN) for all r ∈ [p, p∗s).

For our problem, we suppose that K : R+
0 → R

+
0 satisfies the following conditions:

(K1) K ∈ C(R+
0 ) satisfies infτ∈R+ K(τ) ≥ a > 0, where a > 0 is a constant.

(K2) There is a positive constant θ ∈ [1, N
N−ps ) such that θK(τ) = θ

∫ τ

0
K(η)dη ≥ K(τ)τ for any τ ≥ 0.

A typical example for K is given by K(τ) = b0 + b1τ
m with m > 0, b0 > 0, and b1 ≥ 0.

Let us denote F(x, τ) =
∫ τ

0
f (x, t)t dt for all x ∈ RN and τ ∈ R+. We assume that for 1 < r < p ≤

pθ < q < p∗s and p ∈ (1,+∞),

(A) 0 ≤ a ∈ L
p

p−r (RN) ∩ L∞(RN) with meas
{
x ∈ RN : a(x) , 0

}
> 0.

(F1) f : RN × R+ → R satisfies the Carathéodory condition.
(F2) f ∈ C(RN × R+,R), and there exists nonnegative function b ∈ L1(RN) ∩ L∞(RN) such that

| f (x, τ)| ≤ b(x)τq−2, for all (x, τ) ∈ RN × R+, q ∈ (pθ, p∗s).

(F3) There are ν > pθ and T > 0 such that

f (x, τ)τ2 − νF(x, τ) ≥ −%τp − β(x) for all x ∈ RN and τ ≥ T ,

where % ≥ 0 and β ∈ L1(RN) ∩ L∞(RN) with β(x) ≥ 0.

We give a simple example satisfying conditions (F3) that does not hold the condition of Ambrosetti-
Rabinowitz type.

Example 2.4. Put θ = 1. If the function f : RN × R→ R is defined by

f (x, τ) =

b(x)
(
|τ|p−2 + 2

pτ sin τ
)

if τ , 0,
2
pb(x) if τ = 0,

where b(x) ∈ L1(RN) ∩ L∞(RN) and 0 < infx∈RN b(x) ≤ supx∈RN b(x) < ∞, then

F(x, τ) = b(x)
(

1
p
|τ|p −

2
p

cos τ +
2
p

)
.
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If we set % := (ν − 1) supx∈RN b(x) and β(x) := 4ν
p b(x) with p < ν for all x ∈ RN , then

f (x, τ)τ2 − νF(x, τ) = b(x)
[
|τ|p +

2
p
τ sin τ −

ν

p
|τ|p +

2ν
p

cos τ −
2ν
p

]
≥ b(x)

[(
1 −

ν

p

)
|τ|p −

2
p
|τ| −

4ν
p

]
= b(x)

[
(1 − ν) |τ|p +

ν(p − 1)
p

|τ|p −
2
p
|τ|

]
−

4ν
p

b(x)

≥ b(x)(1 − ν) |τ|p −
4ν
p

b(x)

≥ −% |τ|p − β(x)

for all |τ| ≥ T , where T > 1 is chosen such that ν(p − 1)T p − 2T ≥ 0. Hence (F3) holds.

The Euler functionalJλ : H s,p
A,V(RN ,C)→ R associated with the problem (1.1) is defined as follows:

Jλ(z) =
1
p

(K(|z|ps,A) + ||z||pp,V) −
1
r

∫
RN

a(x) |z|r dx − λ
∫
RN

F(x, |z|) dx.

Then it is obvious that the functional Jλ is Fréchet differentiable onH s,p
A,V(RN ,C), and its derivative is

〈J ′λ(z), v〉 = R

(
K(|z|ps,A)

∫
RN

∫
RN

|z(x) − E(x, y)z(y)|p−2(z(x) − E(x, y)z(y)) · [v(x) − E(x, y)v(y)]
|x − y|N+ps dxdy

+

∫
RN

V(x) |z|p−2 zv̄ dx −
∫
RN

a(x) |z|r−2 zv̄ dx − λ
∫
RN

f (x, |z|)zv̄ dx
)

for any z, v ∈ H s,p
A,V(RN ,C), where E(x, y) := ei(x−y)·A( x+y

2 ) and v̄ denotes complex conjugation of v ∈ C.
Hereafter, 〈·, ·〉 denotes the duality pairing between (H s,p

A,V(RN ,C))′ and H s,p
A,V(RN ,C). From [45], we

observe that the critical points of Jλ are exactly the weak solutions of (1.1) and the functional Jλ is
weakly lower semi-continuous inH s,p

A,V(RN ,C).
To begin with we introduce the Cerami condition, which was initially provided by Cerami [11].

Definition 2.5. Let a functional Ψ be C1 and c ∈ R. If any sequence {zn} satisfying

Ψ(zn)→ c and (1 + ||zn||)||Ψ′(zn)|| → 0 as n→ ∞,

possesses a convergent subsequence, then we say that Ψ fulfils Cerami condition ((C)c-
condition in short) at the level c.

Definition 2.6. A function z ∈ H s,p
A,V(RN ,C) is called weak solution of problem (1.1) if z satisfies

R
(
K(|z|ps,A)

∫
RN

∫
RN

|z(x) − E(x, y)z(y)|p−2(z(x) − E(x, y)z(y)) · [φ(x) − E(x, y)φ(y)]
|x − y|N+ps dxdy

+

∫
RN

V(x) |z|p−2 zφ̄ dx
)

= R
( ∫
RN

a(x) |z|r−2 zφ̄ dx + λ

∫
RN

f (x, |z|)zφ̄ dx
)

for all φ ∈ H s,p
A,V(RN ,C).

AIMS Mathematics Volume 7, Issue 4, 6583–6599.
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The following lemma plays a key role in establishing the existence of a nontrivial weak solution for
the given problem.

Lemma 2.7. Let s ∈ (0, 1), p ∈ (1,+∞) and N > ps. Suppose that (V), (K1)–(K2), (F1)–(F3) hold.
Furthermore, assume that

(F4) lim|τ|→∞
F(x,τ)
|τ|pθ

= ∞ uniformly for almost all x ∈ RN , where the number θ is given in (K2).

Then the functional Jλ satisfies the (C)c-condition for any λ > 0.

Proof. For c ∈ R, let {zn} be a (C)c-sequence inH s,p
A,V(RN ,C), that is,

Jλ(zn)→ c and ||J ′λ(zn)||(H s,p
A,V (RN ,C))′(1 + ||zn||s,A)→ 0 as n→ ∞,

which means
c = Jλ(zn) + o(1) and

〈
J ′λ(zn), zn

〉
= o(1), (2.1)

where o(1) → 0 as n → ∞. If {zn} is bounded sequence in H s,p
A,V(RN ,C), then the analogous argument

as in the proof of Lemma 4.2 in [45] implies that {zn} converges strongly to z in H s,p
A,V(RN ,C). Hence,

it is enough to ensure that the sequence {zn} is bounded in H s,p
A,V(RN ,C). We argue by contradiction.

Suppose to the contrary that the sequence {zn} is unbounded in H s,p
A,V(RN ,C). So then we may assume

that
||zn||s,A → ∞, as n→ ∞.

Due to the condition (2.1), we have that

c = Jλ(zn) + o(1)

=
1
p

(K(|zn|
p
s,A) + ||zn||

p
p,V) −

1
r

∫
RN

a(x) |zn|
r dx − λ

∫
RN

F(x, |zn|) dx + o(1). (2.2)

By Lemma 2.2, there is a constant C1 > 0 such that ||v||Lγ(RN ) ≤ C1||v||s,A for any γ with p ≤ γ < p∗s and
for any v ∈ H s,p

A,V(RN ,C). Since ||zn||s,A → ∞ as n→ ∞, we assert by (2.2) that∫
RN

F(x, |zn|) dx ≥
1
pλ

(K(|zn|
p
s,A) + ||zn||

p
p,V) −

1
rλ
||a||

L
p

p−r (RN )
||zn||

r
Lp(RN ) −

c
λ

+
o(1)
λ

≥
1
pλ

min{1, aθ−1}||zn||
p
s,A −

C1

rλ
||a||

L
p

p−r (RN )
||zn||

r
s,A −

c
λ

+
o(1)
λ
→ ∞ (2.3)

as n → ∞. Define a sequence {ωn} by ωn = zn/||zn||s,A. Then it is immediate that {ωn} ⊂ H
s,p
A,V(RN ,C)

and ||ωn||s,A = 1. Hence, up to a subsequence, still denoted by {ωn}, we obtain ωn ⇀ ω in H s,p
A,V(RN ,C)

as n→ ∞, and according to Lemma 2.1

ωn → ω a.e. in RN and |ωn| → |ω| in L`(RN) as n→ ∞ (2.4)

for p ≤ ` < p∗s. Notice that V(x)→ +∞ as |x| → ∞, then( 1
pθ
−

1
ν

) ∫
RN

V(x) |zn|
p dx −C2

∫
|zn |≤T

(|zn|
p + b(x) |zn|

q) dx
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≥
1
2

( 1
pθ
−

1
ν

)
||zn||

p
p,V − T0,

where C2 and T0 are positive constants. Indeed we know that( 1
pθ
−

1
ν

) ∫
RN

V(x) |zn|
p dx −C2

∫
|zn |≤T

(|zn|
p + b(x) |zn|

q) dx

≥
1
2

( 1
pθ
−

1
ν

) ∫
RN

V(x) |zn|
p dx +

1
2

( 1
pθ
−

1
ν

) ∫
|zn |≤1

V(x) |zn|
p dx

−C2

∫
|zn |≤1

(|zn|
p + b(x) |zn|

q) dx −C2

∫
1<|zn |≤T

(|zn|
p + b(x) |zn|

q) dx

≥
1
2

( 1
pθ
−

1
ν

) ∫
RN

V(x) |zn|
p dx +

1
2

( 1
pθ
−

1
ν

) ∫
|zn |≤1

V(x) |zn|
p dx

−C2(1 + ||b||∞)
∫
|zn |≤1
|zn|

p dx − C̃2,

where C̃2 > 0 is a constant. Since |{x ∈ RN : |zn| > 1}| < ∞, we know {x ∈ RN : |zn| > 1} = A ∪ N
where A is bounded set and N is of measure zero. Without loss of generality, suppose that there exists
Bτ ⊆ R

N such that {x ∈ RN : |zn| > 1} ⊂ Bτ. Since V(x) → +∞ as |x| → ∞, there is τ0 > 0 such that
|x| ≥ τ0 > τ implies V(x) ≥ 2C2(1 + ||b||∞) pθν

ν−pθ . Hence one has( 1
pθ
−

1
ν

) ∫
RN

V(x) |zn|
p dx −C2

∫
|zn |≤T

(|zn|
p + b(x) |zn|

q) dx

≥
1
2

( 1
pθ
−

1
ν

) ∫
RN

V(x) |zn|
p dx +

1
2

( 1
pθ
−

1
ν

) ∫
{|zn |≤1}∩Bc

τ0

V(x) |zn|
p dx

+
1
2

( 1
pθ
−

1
ν

) ∫
{|zn |≤1}∩Bτ0

V(x) |zn|
p dx −C2(1 + ||b||∞)

∫
{|zn |≤1}∩Bc

τ0

|zn|
p dx

−C2(1 + ||b||∞)
∫
{|zn |≤1}∩Bτ0

|zn|
p dx − C̃2

≥
1
2

( 1
pθ
−

1
ν

) ∫
RN

V(x) |zn|
p dx +

1
2

( 1
pθ
−

1
ν

) ∫
{|zn |≤1}∩Bc

τ0

V(x) |zn|
p dx

−C2(1 + ||b||∞)
∫
{|zn |≤1}∩Bc

τ0

|zn|
p dx − T0

≥
1
2

( 1
pθ
−

1
ν

) ∫
RN

V(x) |zn|
p dx − T0,

as claimed. This together with (K1)–(K2) and (F2)–(F3) yields

c + 1 ≥ Jλ(zn) −
1
ν

〈
J ′λ(zn), zn

〉
≥

1
p
K(|zn|

p
s,A) −

1
ν

K(|zn|
p
s,A)|zn|

p
s,A +

(1
p
−

1
ν

) ∫
RN

V(x) |zn|
p dx

−

(
1
r
−

1
ν

) ∫
RN

a(x)|zn|
r dx + λ

∫
RN

(
1
ν

f (x, |zn|)|zn|
2 − F(x, |zn|)

)
dx
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≥

(
1
pθ
−

1
ν

)
K(|zn|

p
s,A)|zn|

p
s,A +

( 1
pθ
−

1
ν

) ∫
RN

V(x) |zn|
p dx −

(
1
r
−

1
ν

) ∫
RN

a(x)|zn|
r dx

+ λ

∫
|zn |>T

(
1
ν

f (x, |zn|)|zn|
2 − F(x, |zn|)

)
dx −C2

∫
|zn |≤T

(|zn|
p + b(x) |zn|

q) dx

≥
1
2

( 1
pθ
−

1
ν

)
min{1, a}||zn||

p
s,A −

(
1
r
−

1
ν

)
||a||

L
p

p−r (RN )
||zn||

r
Lp(RN )

−
λ

ν

∫
RN

(% |zn|
p + β(x)) dx − T0

≥
1
2

( 1
pθ
−

1
ν

)
min{1, a}||zn||

p
s,A −C1

(
1
r
−

1
ν

)
||a||

L
p

p−r (RN )
||zn||

r
s.A

−
λ%

ν
||zn||

p
Lp(RN ) −

λ

ν
||β||L1(RN ) − T0,

which implies

1 ≤
λ%

ν
2

(
1
pθ −

1
ν

)
min{1, a}

lim sup
n→∞

||ωn||
p
Lp(RN ) =

λ%

ν
2

(
1
pθ −

1
ν

)
min{1, a}

||ω||
p
Lp(RN ). (2.5)

Hence, it follows from (2.5) that ω , 0. Set Σ =
{
x ∈ RN : ω(x) , 0

}
. By (2.4), we deduce that

|zn(x)| = |wn(x)| ||zn||s,A → ∞ as n→ ∞

for almost all x ∈ Σ. Then it follows from (K2) and (F4) that for all x ∈ Σ,

lim
n→∞

F(x, |zn|)
K(|zn|

p
s,A) + ||zn||

p
p,V

≥ lim
n→∞

F(x, |zn|)

K(1)(1 + |zn|
pθ
s,A) + ||zn||

p
p,V

(2.6)

≥ lim
n→∞

F(x, |zn|)

2K(1)||zn||
pθ
s,A + ||zn||

pθ
p,V

≥ lim
n→∞

F(x, |zn|)

(2K(1) + 1) ||zn||
pθ
s,A

≥ lim
n→∞

F(x, |zn|)
(2K(1) + 1) |zn|

pθ |wn|
pθ

= ∞,

where the inequality K(ξ) ≤ K(1)(1 + ξθ) is used for all ξ ∈ R+ because if 0 ≤ ξ < 1, then K(ξ) =∫ ξ

0
K(s) ds ≤ K(1), and if ξ > 1, then K(ξ) ≤ K(1)ξθ. Thus we deduce that |Σ| = 0, where | · | is the

Lebesgue measure in RN . In fact, suppose that |Σ| , 0. By virtue of (F4) we can choose τ0 > 1 such
that F(x, τ) > |τ|pθ for all x ∈ RN and τ0 < |τ|. In accordance with (F1) and (F2), we derive that there
is M > 0 such that |F(x, τ)| ≤ M for all (x, τ) ∈ RN × [−τ0, τ0]. Hence we find a real number M0 such
that F(x, τ) ≥ M0 for all (x, τ) ∈ RN × R, and thus

F(x, |zn|) − M0

K(|zn|
p
p,A) + ||zn||

p
p,V

≥ 0, (2.7)
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for all x ∈ RN and for all n ∈ N. In addition,

Jλ(zn) =
1
p

(
K(|zn|

p
s,A) + ||zn||

p
p,V

)
−

1
r

∫
RN

a(x)|zn|
r dx − λ

∫
RN

F(x, |zn|) dx

≤
1
p

(
K(|zn|

p
s,A) + ||zn||

p
p,V

)
− λ

∫
RN

F(x, |zn|) dx.

Then one has
1
p

(
K(|zn|

p
s,A) + ||zn||

p
p,V

)
≥ λ

∫
RN

F(x, |zn|) dx + c − o(1). (2.8)

Since K(|zn|
p
s,A) + ||zn||

p
p,V → ∞ as n→ ∞, taking (2.3), (2.6)–(2.8) and Fatou’s lemma into account, we

obtain that

1
λ

= lim inf
n→∞

∫
RN F(x, |zn|) dx

λ
∫
RN F(x, |zn|) dx + c − o(1)

≥ lim inf
n→∞

∫
RN

pF(x, |zn|)
K(|zn|

p
s,A) + ||zn||

p
p,V

dx

= lim inf
n→∞

∫
Σ

pF(x, |zn|)
K(|zn|

p
s,A) + ||zn||

p
p,V

dx − lim sup
n→∞

∫
Σ

pM0

K(|zn|
p
s,A) + ||zn||

p
p,V

dx

= lim inf
n→∞

∫
Σ

p(F(x, |zn|) − M0)
K(|zn|

p
s,A) + ||zn||

p
p,V

dx

≥

∫
Σ

lim inf
n→∞

p(F(x, |zn|) − M0)
K(|zn|

p
s,A) + ||zn||

p
p,V

dx

=

∫
Σ

lim inf
n→∞

pF(x, |zn|)
K(|zn|

p
s,A) + ||zn||

p
p,V

dx −
∫

Σ

lim sup
n→∞

pM0

K(|zn|
p
s,A) + ||zn||

p
p,V

dx = ∞,

which is a contradiction. This yields ω(x) = 0 for almost all x ∈ RN . Thus, we can conclude a
contradiction. Therefore, {zn} is bounded inH s,p

A,V(RN ,C). This completes the proof. �

We are in a position to prove our main results. By making use of the fountain theorem in [42,
Theorem 3.6], we demonstrate infinitely many weak solutions for problem (1.1). Let E be a real
reflexive and separable Banach space, then it is known (see [18]) that there exist {en} ⊆ E and { f ∗n } ⊆ E∗

such that
E = span{en : n = 1, 2, · · · }, E∗ = span{ f ∗n : n = 1, 2, · · · },

and 〈
f ∗i , e j

〉
=

 1 if i = j

0 if i , j.

Let us denote En = span{en}, Yk =
⊕k

n=1 En, and Zk =
⊕∞

n=k En. In order to obtain the existence
result, we apply the following Fountain theorem.

Lemma 2.8. ( [37, 42]) Let E be a Banach space, I ∈ C1(E,R) satisfies the (C)c-condition for any
c > 0 and I is even. If for each sufficiently large k ∈ N, there exist %k, σk with %k > σk > 0 such that
the following conditions hold:
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(1) βk := inf{I(z) : z ∈ Zk, ||z||E = σk} → ∞ as k → ∞;
(2) αk := max{I(z) : z ∈ Yk, ||z||E = %k} ≤ 0.

Then the functional I has an unbounded sequence of critical values, i.e., there exists a sequence
{zn} ⊂ E such that I′(zn) = 0 and I(zn)→ +∞ as n→ +∞.

Theorem 2.9. Let s ∈ (0, 1), p ∈ (1,+∞) and N > ps. Assume that (V), (K1), (K2) and (F1)–(F4)
hold. Then for any λ > 0, problem (1.1) possesses an unbounded sequence of nontrivial weak solutions
{zn} inH s,p

A,V(RN ,C) such that Jλ(zn)→ ∞ as n→ ∞.

Proof. To apply Lemma 2.8, let us denote E := H s,p
A,V(RN ,C) and I := Jλ. Obviously, Jλ is an even

functional and ensures the (C)c-condition. It is enough to prove that there exist %k > σk > 0 with the
conditions (1) and (2) in Lemma 2.8. Firstly we prove the condition (1). Let us denote

ςk = sup
||u||s,A=1,z∈Zk

||z||Lq(RN ).

Then, it is immediate to verify that ςk → 0 as k → ∞. For any z ∈ Zk, suppose that ||z||s,A > 1. Invoking
(F2), one has

Jλ(z) =
1
p

(K(|z|ps,A) + ||z||pp,V) −
1
r

∫
RN

a(x) |z|r dx − λ
∫
RN

F(x, |z|)dx (2.9)

≥
min{1, aθ−1}

p
||z||ps,A −

1
r
||a||

L
p

p−r (RN )
||z||r

Lp(RN )
− λ

∫
RN

F(x, |z|)dx

≥
min{1, aθ−1}

p
||z||ps,A −

1
r
||a||

L
p

p−r (RN )
||z||r

Lp(RN )
−
λ||b||L∞(RN )

q
||z||qLq(RN )

≥
min{1, aθ−1}

p
||z||ps,A −

C1

r
||a||

L
p

p−r (RN )
||z||rs,A − λ||b||L∞(RN )ς

q
k ||z||

q
s,A

=
(min{1, aθ−1}

p
− λ||b||L∞(RN )ς

q
k ||z||

q−p
s,A

)
||z||ps,A −

C1

r
||a||

L
p

p−r (RN )
||z||rs,A,

where C1 was given in (2.3). Choose σk =

[
2pλ||b||L∞(RN )

min{1,aθ−1}
ς

q
k

] 1
p−q

. Since 1 < p < q and ςk → 0 as k → ∞,
we infer σk → ∞ as k → ∞. Hence, if z ∈ Zk and ||z||s,A = σk, then we deduce by (2.9) that

Jλ(z) ≥
min{1, aθ−1}

2p
σ

p
k −

C1

r
||a||

L
p

p−r (RN )
σr

k → ∞ as k → ∞,

which implies the condition (1).
Next we show condition (2). To do this, we claim thatJλ(z)→ −∞ as ||z||s,A → ∞ for all z ∈ Yk. Let

us assume that this dose not hold for some k. Then we can find a positive constant M and a sequence
{zn} inH s,p

A,V(RN ,C) such that

||zn||s,A → ∞ as n→ ∞ and Jλ(zn) ≥ −M.

Let ωn = zn/||zn||s,A. Then it is clear that ||ωn||s,A = 1. Since dimYk < ∞, there is ω ∈ Yk \ {0} such that
up to a subsequence,

||ωn − ω||s,A → 0 and ωn(x)→ ω(x)
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for almost all x ∈ RN as n→ ∞. Thus the similar argument as in relation (2.6) implies that

1
p

+
M

K(|zn|
p
s,A) + ||zn||

p
p,V

≥
1
p
−

Jλ(zn)
K(|zn|

p
s,A) + ||zn||

p
p,V

= λ

∫
RN

F(x, |zn|)
K(|zn|

p
s,A) + ||zn||

p
p,V

dx +

∫
RN

a(x)|zn|
r

r
(
K(|zn|

p
s,A) + ||zn||

p
p,V

) dx

≥ λ

∫
{ωn(x),0}

F(x, |zn|)

(2K(1) + 1) ||zn||
pθ
s,A

dx. (2.10)

By virtue of (2.7), (2.10), (F4) and Fatou’s lemma, one has

1
pλ
≥ lim inf

n→∞

∫
{ωn(x),0}

F(x, |zn|)

(2K(1) + 1) ||zn||
pθ
s,A

dx − lim sup
n→∞

∫
{ωn(x),0}

M0

(2K(1) + 1) ||zn||
pθ
s,A

dx

= lim inf
n→∞

∫
{ωn(x),0}

F(x, |zn|) − M0

(2K(1) + 1) ||zn||
pθ
s,A

dx ≥
∫
{ωn(x),0}

lim inf
n→∞

F(x, |zn|) − M0

(2K(1) + 1) ||zn||
pθ
s,A

dx

=

∫
{ωn(x),0}

lim inf
n→∞

F(x, |zn|)

(2K(1) + 1) ||zn||
pθ
s,A

dx −
∫
{ωn(x),0}

lim sup
n→∞

M0

(2K(1) + 1) ||zn||
pθ
s,A

dx

≥
1

2K(1) + 1

∫
{ωn(x),0}

lim inf
n→∞

(
F(x, |zn|)
|zn|

pθ |ωn|
pθ

)
dx = ∞,

where M0 was given in the proof of Lemma 2.7. This is impossible. Thus, Jλ(z) → −∞ as ||z||s,A → ∞
for all z ∈ Yk. Choose %k > σk > 0 large sufficiently and let ||z||s,A = %k, we conclude that

ak = max{Jλ(z) : z ∈ Yk, ||z||s,A = %k} ≤ 0,

and therefore the condition (2) are claimed. This completes the proof. �

Definition 2.10. Let E be a real reflexive and separable Banach space. We say that I satisfies the
(C)∗c-condition (with respect to Yn) if any sequence {zn}n∈N ⊂ E for which zn ∈ Yn, for any n ∈ N,

I(zn)→ c and ||(I|Yn)
′(zn)||E∗(1 + ||zn||E)→ 0 as n→ ∞,

contains a subsequence converging to a critical point of I.

Lemma 2.11. (Dual Fountain Theorem [23, Theorem 3.11]) Assume that E is a Banach space, I ∈
C1(E,R) is an even functional. If there is k0 > 0 so that, for each k ≥ k0, there are %k > σk > 0 such
that

(A1) inf{I(z) : z ∈ Zk, ||z||E = %k} ≥ 0;
(A2) βk := max{I(z) : z ∈ Yk, ||z||E = σk} < 0;
(A3) γk := inf{I(z) : z ∈ Zk, ||z||E ≤ %k} → 0 as k → ∞;
(A4) I satisfies the (C)∗c-condition for every c ∈ [dk0 , 0).

Then I has a sequence of negative critical values cn < 0 satisfying cn → 0 as n→ ∞.

Lemma 2.12. Let s ∈ (0, 1), p ∈ (1,+∞) and N > ps. Assume that (V), (K1), (K2) and (F1)–(F4)
hold. Then the functional Jλ satisfies the (C)∗c-condition.
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Proof. The proof is carried out by the analogous argument as in [40]. �

With the help of Lemmas 2.11 and 2.12 we are ready to demonstrate our second assertion.

Theorem 2.13. Assume that all conditions of Theorem 2.9 are satisfied. In addition we assume that

(F5) F(x, τ) = o(|τ|p) as τ→ 0 for x ∈ RN uniformly.

Then the problem (1.1) has a sequence of nontrivial weak solutions {zn} in H s,p
A,V(RN ,C) such that

Jλ(zn)→ 0 as n→ ∞ for any λ > 0.

Proof. Invoking Lemma 2.12 and the definition of Jλ, we know that Jλ is even and satisfies the (C)∗c-
condition for all c ∈ R. Now it remains to show that conditions (A1), (A2) and (A3) of Lemma 2.11
are satisfied.

(A1): Let us denote

θ1,k = sup
||z||s,A=1,z∈Zk

||z||Lp(RN ), θ2,k = sup
||z||s,A=1,z∈Zk

||z||Lq(RN ).

Then, it is clear to ensure that θ1,k → 0 and θ2,k → 0 as k → ∞. Set ϑk = max{θ1,k, θ2,k}. Then we have

Jλ(z) ≥
min{1, aθ−1}

p
||z||ps,A −

1
r
||a||

L
p

p−r (RN )
||z||r

Lp(RN )
−
λ||b||L∞(RN )

q
||z||qLq(RN )

≥
min{1, aθ−1}

p
||z||ps,A −

||a||
L

p
p−r (RN )

r
θr

1,k||z||
r
s,A −

λ||b||L∞(RN )

q
θ

q
2,k||z||

q
s,A

≥
min{1, aθ−1}

p
||z||ps,A −

 ||a||L p
p−r (RN )

r
+
λ||b||L∞(RN )

q

ϑr
k||z||

q
s,A

for k large enough and ||z||s,A ≥ 1. Choose

%k =

 2p
min{1, aθ−1}

 ||a||L p
p−r (RN )

r
+
λ||b||L∞(RN )

q

ϑr
k


1

p−2q

.

Let z ∈ Zk with ||z||s,A = %k > 1 for k large enough. Then, there exists k0 ∈ N such that

Jλ(z) ≥
min{1, aθ−1}

p
||z||ps,A −

 ||a||L p
p−r (RN )

r
+
λ||b||L∞(RN )

q

ϑr
k||z||

2q
s,A

=
min{1, aθ−1}

2p
%

p
k ≥ 0

for all k ∈ N with k ≥ k0, by being

lim
k→∞

min{1, aθ−1}

2p
%

p
k = ∞.

Consequently, we arrive that
inf{Jλ(z) : z ∈ Zk, ||z||s,A = %k} ≥ 0.
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(A2): Observe that || · ||Lp(RN ), || · ||Lpθ(RN ) and || · ||s,A are equivalent on Yk. Then there exist positive
constants ς1,k and ς2,k such that

||z||Lp(RN ) ≤ ς1,k||z||s,A and ||z||s,A ≤ ς2,k||z||Lpθ(RN )

for any z ∈ Yk. From (F2)–(F4), for anyM > 0 there are positive constants C3 and C4(M) such that

F(x, τ) ≥ Mς
pθ
2,kτ

pθ −C3τ
p −C4(M)b(x)

for almost all (x, τ) ∈ RN × R+. Since K(η) ≤ K(1)(1 + ηθ) for all η ∈ R+, it follows that

Jλ(z) =
1
p

(K(|z|ps,A) + ||z||pp,V)) −
1
r

∫
RN

a(x) |z|r dx − λ
∫
RN

F(x, |z|)dx

≤
1
p

(
K(1)(1 + |z|pθs,A) + ||z||pp,V

)
− λMς

pθ
2,k

∫
RN
|z|pθdx + λC3

∫
RN
|z|pdx + λC4(M)

∫
RN

b(x)dx

≤
1
p

(
2K(1)||z||pθs,A + ||z||pθs,A

)
− λMς

pθ
2,k

∫
RN
|z|pθdx + λC3

∫
RN
|z|pdx + C5

≤
1
p

(2K(1) + 1) ||z||pθs,A − λM||z||
pθ
s,A + λC3ς

p
1,k||z||

p
s,A + C5

for any z ∈ Yk with ||z||s,A ≥ 1 and some constant C5. Let h(τ) = 1
p (2K(1) + 1) τpθ − λMτpθ +

λC3ς
p
1,kτ

p + C5. If M is large thoroughly, then limτ→∞ h(τ) = −∞, and thus we look for τ0 ∈ (1,∞)
such that h(τ) < 0 for all τ ∈ [τ0,∞). HenceJλ(z) < 0 for all z ∈ Yk with ||z||s,A = τ0. Choosing σk = τ0

for all k ∈ N, one has
βk := max{Jλ(z) : z ∈ Yk, ||z||s,A = σk} < 0.

If necessary, we can change k0 to a large value, so that %k > σk > 0 for all k ≥ k0.
(A3): Because Yk ∩ Zk , φ and 0 < σk < %k, we have γk ≤ βk < 0 for all k ≥ k0. For any z ∈ Zk

with ||z||s,A = 1 and 0 < τ < %k, one has

Jλ(τz) ≥
min{1, aθ−1}

p
||τz||ps,A −

||a||
L

p
p−r (RN )

r
||τz||rLr(RN ) −

λ||b||L∞(RN )

q
||τz||qLq(RN )

≥ −

||a||
L

p
p−r (RN )

r
τr||z||rLr(RN ) −

λ||b||L∞(RN )

q
τq||z||qLq(RN )

≥ −

||a||
L

p
p−r (RN )

r
%r

kϑ
r
k −

λ||b||L∞(RN )

q
%

q
kϑ

q
k

for large enough k. Hence, it follows from the definition of %k that

γk ≥ −

||a||
L

p
p−r (RN )

r
%r

kϑ
r
k −

λ||b||L∞(RN )

q
%

q
kϑ

q
k

= −
||a||

L
p

p−r (RN )

r

 2p
min{1, aθ−1}

 ||a||L p
p−r (RN )

r
+
λ||b||L∞(RN )

q


r

p−2q

ϑ
r2+(p−2q)r

p−2q

k

−
λ||b||L∞(RN )

q

 2p
min{1, aθ−1}

 ||a||L p
p−r (RN )

r
+
λ||b||L∞(RN )

q


q

p−2q

ϑ
(r+p−2q)q

p−2q

k .
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Because r < p < q and ϑk → 0 as k → ∞, we derive that limk→∞ γk = 0.
Hence all conditions of Lemma 2.11 are required. Therefore, we conclude that problem (1.1) has

a sequence of nontrivial weak solutions {zn} in H s,p
A,V(RN ,C) such that Jλ(zn) → 0 as n → ∞ for any

λ > 0. �

3. Conclusions

In this paper, we employ the variational methods to ensure the existence of nontrivial solutions
to nonlocal Schrödinger–Kirchhoff equations of convex–concave type with the external magnetic
field. As far as we can see, in these circumstances the present paper is the first attempt to study
the multiplicity of nontrivial weak solutions to this non-local problems for the case of a combined
effect of concave–convex nonlinearities when the nonlinear growth f does not satisfy the condition of
Ambrosetti-Rabinowitz type. We point out that with an analogous analysis our main consequences still
hold when (−∆)s

p,Az in (1.1) is replaced with any non-local integro-differential operator LΦ defined as
follows:

LΦz(x) = 2
∫
RN
|z(x) − E(x, y)z(y)|p−2(z(x) − E(x, y)z(y))Φ(x − y)dy for all x ∈ RN .

where Φ : RN \ {0} → (0,+∞) is a kernel function satisfying properties that

(K1) mΦ ∈ L1(RN), where m(x) = min{|x|p, 1};
(K2) there exists µ > 0 such that Φ(x) ≥ µ|x|−(N+ps) for all x ∈ RN \ {0};
(K3) Φ(x) = Φ(−x) for all x ∈ RN \ {0}.
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