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Abstract: This paper deals with a class of supercritical quasilinear Schrödinger equations

−∆u + V(x)u + κ∆(
√

1 + u2)
u

2
√

1 + u2
= λ f (u), x ∈ RN ,

where κ ≥ 2, N ≥ 3, λ > 0. We suppose that the nonlinearity f (t) : R → R is continuous and only
superlinear in a neighbourhood of t = 0. By using a change of variable and the variational methods,
we obtain the existence of positive solutions for the above problem.
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1. Introduction

It is well-known that the generalized quasilinear Schrödinger equations of the form

i∂tz = −∆z + W(x)z − λl(|z|2)z + κ[∆ρ(|z|2)]ρ′(|z|2)z, x ∈ RN , (1.1)

serves as models for several physical phenomena corresponding to various forms of the given potential
W(x) and the given nonlinearity ρ, where z : RN × R → C and W, l, ρ are real functions, κ, λ are real
constants. For example, the case ρ(s) = s was studied in [1] for the superfluid film equations in plasma
physics. The Eq (1.1) is also related to the condensed matter theory, see [2].

In this paper, we consider the case ρ(s) = (1 + s)
1
2 which could be used to describe the self-

channeling of a high-power ultrashort laser in matter, cf. e.g., [3, 4]. Let z(t, x) = exp(−iEt)u(x)

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2022366


6566

in (1.1), where E ∈ R and u is a real function. Then we know that z satisfies (1.1) if and only if the
function u solves the following equation

− ∆u + V(x)u + κ∆(
√

1 + u2)
u

2
√

1 + u2
= λ f (u), x ∈ RN , (1.2)

where V(x) = W(x) − E and f : R → R given by f (t) := l(|t|2)t is a new nonlinear term. We shall
give the precise hypotheses on V and f latter.

In recent years, the Eq (1.2) with κ < 0 has already been investigated extensively, for example, [5–7].
But the results for κ > 0 is rarely studied, see [8–11]. In [8], when κ = 2, N = 2, Colin studied the
existence of ground state solutions for the Eq (1.2) with V(x) = 2w, f (s) = s −

s
√

1 + s2
, where w is a

fixed positive parameter. In [9], with well defined V(x) and improved (AR) condition, Shen and Wang
got the better results which obtained the existence of solutions for (1.2) when κ < 2. In that paper, a
change of variable was used to reduce the quasilinear problem to a semilinear one and the mountain
pass theorem, the concentration compactness theorem were used to get the main existence results.

To sum up, in the past, researches of the (1.2) have mostly focused on κ < 2.Now, different from the
above mentioned results, a natural question for us to pose is how about the existence of solutions for
the case κ ≥ 2 and N ≥ 3. We would like to mention that the work [12] which obtained the existence
of positive solutions for the supercritical quasilinear Schrödinger equations. In [12], Huang and Jia
studied the following quasilinear Schrödinger equation

−∆u + V(x)u + ∆(u2)u = λ f (u), x ∈ RN ,

where N ≥ 3, f (t) : R→ R is continuous and only superlinear in a neighborhood of t = 0, by using the
truncation methods and modifying the functional. Meanwhile, in the literatures [12–14], the authors
have studied the asymptotically periodic quasilinear Schrödinger equations. So motivated by above
discussions, we study the Eq (1.2) for the periodic and asymptotically periodic potentials when κ ≥ 2,
λ > 0 and N ≥ 3.

Hereafter, we give the conditions of V(x) and f (t).

Hypothesis 1.1. Suppose that the potential V(x) satisfies assumptions (v0) and (v1)
(v0): V(x) ∈ C(RN ,R), V(x) ≥ V0 > 0 for all x ∈ RN;
(v1): V(x) = V(x + y), ∀x ∈ RN , y ∈ ZN .

Hypothesis 1.2. Suppose that the potential V(x) satisfies the following assumption
(v2): V(x) = V1(x) − m(x) ≥ m0 > 0, ∀x ∈ RN , where V1(x) satisfies Hypothesis 1.1 and m(x) ∈ F

with m(x) ≥ 0,
F := {b(x) : ∀ε > 0, lim

|y|→∞
meas{x ∈ B1(y) : |b(x)| ≥ ε} = 0}. (1.3)

Here, we assume the inequality m(x) > 0 is strict on a subset of positive measures in RN .

We call the V(x) is periodic if it satisfies Hypothesis 1.1 and is the asymptotically periodic at infinity
if it satisfies the Hypothesis 1.2. In particular, if m(x) = 0, the asymptotically periodic problem is
reduced to its corresponding periodic problem. Because the periodic potentials and the asymptotically
periodic potentials are both bounded, we set VM = max{V(x)}.
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Hypothesis 1.3. For the nonlinearity f , we suppose that it is continuous and satisfies the following
conditions which give its behavior only in a neighborhood of the origin:

( f1): f (t) = 0, for t ≤ 0 and there exists α ∈ (2, 2∗) such that

lim sup
t→0+

f (t)
tα−1 < +∞;

( f2):there exists β ∈ (2, 2∗) with β > α such that

lim inf
t→0+

F(t)
tβ

> 0;

( f3): for t > 0 small, there exists θ ∈ (2, 2∗) such that 0 < θF(t) ≤ t f (t),

where F(t) =

∫ t

0
f (s)ds.

Remark 1.1. An example of the nonlinearity satisfying Hypothesis 1.3 can be taken as

f (t) =

C0tα−1 + C1tq−1, if t > 0,
0, if t ≤ 0,

with 2 < α < 2∗ < q, 2∗ =
2N

N − 2
and C0, C1 are positive constants.

Obviously, (1.2) is the Euler-Lagrange equation associated with the natural energy functional

Hλ(u) =
1
2

∫
RN

(
1 −

κu2

2(1 + u2)

)
|∇u|2dx +

1
2

∫
RN

V(x)u2dx − λ
∫
RN

F(u)dx, (1.4)

which is not well defined in H1(RN). From the variational point of view, the first difficulty is to

guarantee the positiveness of the principal part, that is,
(
1 −

κu2

2(1 + u2)

)
> 0. And then, the change

of variable applied in [9] loses its meaning when κ ≥ 2. Besides these, since there are no conditions

imposed on f at infinity, the term
∫
RN

F(u)dx may not be well-defined in H1(RN). Due to these facts,

we can’t employ the usual variational methods directly. To overcome these difficulties, we use some
variational methods to solve (1.2).

We conclude the main features of this paper as follows.

• We study the Eq (1.2) for the periodic and asymptotically periodic potentials when κ ≥ 2, λ > 0
and N ≥ 3.
• We will first establish the existence of positive solutions for a modified quasilinear Schrödinger

equation which will be given more precisely in (2.3).
• Using Moser iteration we get an L∞-estimate for the weak solutions, which depends on the

parameter λ. And for λ large enough, the solutions obtained of the modified problem are solutions
of the original Eq (1.2).

Now, we turn to the statement of our results.

Theorem 1.1. Under Hypothesis 1.1 and Hypothesis 1.3, when κ ≥ 2 the problem (1.2) has at least
one positive solution u ∈ H1(RN) for λ sufficiently large.
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Theorem 1.2. Assume that κ ≥ 2, under Hypothesis 1.2 and Hypothesis 1.3, the problem (1.2) has at
least one positive solution u ∈ H1(RN) for λ sufficiently large.

The paper is organized as follows. In Section 2, we give a modified problem and the variational
setting of the problem. In Section 3, we complete the proof of Theorem 1.1. And the proof of
Theorem 1.2 is given in Section 4.
Notation

• B%(x0) denotes a ball centered at x0 with radius % > 0;
• on(1) denotes on(1)→ 0 as n→ ∞;
• the strong (respectively weak) convergence is denoted by→ (respectively⇀);
• C, C0, ..., denote suitable positive constants;
• The notation |u|p denotes the usual Lp(RN) norm of the function u;

• The working space is H1(RN) endowed with the norm ‖u‖ =

(∫
RN

(u2 + |∇u|2)dx
) 1

2

.

2. Variational setting and preliminaries results

First, we give some discussions on the nonlinearity f (t). Note that from ( f1) there exist two positive

constants δ ∈ (0,
1
2

), C2 such that

F(t) ≤ C2tα, for 0 < t < 2δ. (2.1)

For the fixed δ > 0 in the above, we consider a cut-off function a(t) ∈ C1(R,R) satisfying

a(t) =

1, if t ≤ δ,

0, if t ≥ 2δ,

|a′(t)| ≤
2
δ

and 0 ≤ a(t) ≤ 1 for t ∈ R. Define

F̃(t) = a(t)F(t) + (1 − a(t))F∞(t), f̃ (t) = F̃′(t), (2.2)

where

F∞(t) =

C2tα, if t > 0,
0, if t ≤ 0.

By Hypothesis 1.3 and the definition of a(t), it is easy to see that f̃ (t) has the following properties
(see [15]).

Lemma 2.1. Let f̃ (t) and F̃(t) be defined in (2.2). Assume that Hypothesis 1.3 hold, then we have
(1) f̃ (t) ∈ C(R,R), f̃ (t) = 0 for all t ≤ 0 and f̃ (t)→ 0 as t → 0+.

(2) lim
t→+∞

f̃ (t)
t

= +∞;

(3) there exists C > 0 such that f̃ (t) ≤ Ctα−1, for all t ≥ 0;
(4) 0 < θ∗F̃(t) ≤ t f̃ (t) for all t > 0, where θ∗ = min{α, θ}.

AIMS Mathematics Volume 7, Issue 4, 6565–6582.



6569

Inspired by [12], we first consider the following modified quasilinear Schrödinger equation

− div(g2(u)∇u) + g(u)g′(u)|∇u|2 + V(x)u = λ f̃ (u), x ∈ RN , (2.3)

instead of the Eq (1.2). Here g(t) : [0,+∞)→ R in (2.3) is given by

g(t) =



√
1 −

κt2

2(1 + t2)
, if 0 ≤ t <

√
1

κ − 1
,

√
κ − 1
√

2κt
+

1
√

2κ
, if t ≥

√
1

κ − 1
,

for κ ≥ 2. Setting g(t) = g(−t) for all t ≤ 0, we know that g ∈ C1(R, (
1
√

2κ
, 1]) and g is decreasing

in [0,∞).

Now, defining a function G(t) =

∫ t

0
g(s)ds, we get that G(t) is an odd function, the inverse function

G−1(t) exists and the following properties about G−1(t) hold.

Lemma 2.2. For κ ≥ 2, the function G−1(t) satisfies the following properties:

(1) lim
t→0+

G−1(t)
t

= 1;

(2) lim
t→+∞

G−1(t)
t

=
√

2κ;

(3) t ≤ G−1(t) ≤
√

2κt, for all t ≥ 0;

(4) −1 +
1
κ
≤

t
g(t)

g′(t) ≤ 0, for all t ≥ 0.

Proof. By the definition of g(t), we get

lim
t→0+

G−1(t)
t

= lim
t→0+

1
g(G−1(t))

= 1

and

lim
t→+∞

G−1(t)
t

= lim
t→+∞

1
g(G−1(t))

=
√

2κ,

which show (1) and (2).

Since g is decreasing in [0,∞), the inequality
1
√

2κ
t ≤ g(t)t ≤ G(t) ≤ t holds for all t ≥ 0.

Consequently, by replacing t with G−1(t) we gain the conclusion (3).
By a direct calculation, one obtains

t
g(t)

g′(t) =


−

κt2

2 + (4 − κ)t2 + (2 − κ)t4 , if 0 ≤ t <

√
1

κ − 1
,

−

√
κ − 1

√
κ − 1 + t

, if t ≥

√
1

κ − 1
.
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Since
t

g(t)
g′(t) reaches the minimum value −1 +

1
κ

at t =

√
1

κ − 1
and

t
g(t)

g′(t) ≤ 0, the conclusion (4)

holds. �

For κ ≥ 2, we observe that the Eq (2.3) is the Euler-Lagrange equation associated with the natural
energy functional

Iλ(u) =
1
2

∫
RN

g2(u)|∇u|2dx +
1
2

∫
RN

V(x)|u|2dx − λ
∫
RN

F̃(u)dx.

In what follows, taking the change of variable

v = G(u), (2.4)

we know that the functional Iλ(u) can be reformulated in the following way

Jλ(v) =
1
2

∫
RN
|∇v|2dx +

1
2

∫
RN

V(x)|G−1(v)|2dx − λ
∫
RN

F̃(G−1(v))dx. (2.5)

From Lemma 2.1 and Lemma 2.2, we obtain that the functional Jλ(v) is well-defined in H1(RN) and
Jλ(v) ∈ C1(H1(RN),R). Additionally, for all ϕ ∈ H1(RN) we have

〈J′λ(v), ϕ〉 =

∫
RN
∇v∇ϕdx +

∫
RN

V(x)
G−1(v)

g(G−1(v))
ϕdx − λ

∫
RN

f̃ (G−1(v))
g(G−1(v))

ϕdx. (2.6)

Lemma 2.3. If v ∈ H1(RN) is a critical point of Jλ(v), then u = G−1(v) ∈ H1(RN) and meanwhile u is
a critical point for Iλ(u).

Proof. Suppose that v is a critical point of Jλ. According to Lemma 2.1 and Lemma 2.2, we have
u = G−1(v) ∈ H1(RN) and∫

RN
∇v∇ϕdx +

∫
RN

V(x)
G−1(v)

g(G−1(v))
ϕdx − λ

∫
RN

f̃ (G−1(v))
g(G−1(v))

ϕdx = 0, ∀ϕ ∈ H1(RN).

Choosing ϕ = g(u)ψ with ψ ∈ C∞0 (RN), we obtain∫
RN
∇v∇ug′(u)ψdx +

∫
RN
∇v∇ψg(u)dx +

∫
RN

V(x)uψdx − λ
∫
RN

f̃ (u)ψdx = 0,

which can be rearranged as∫
RN

(
−div(g2(u)∇u) + g(u)g′(u)|∇u|2 + V(x)u − λ f̃ (u)

)
ψdx = 0.

Thus, we complete the proof. �
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3. Proof of Theorem 1.1

In this section, we will verify the mountain pass geometry of Jλ and the boundedness of its (PS)
sequences. Furthermore, we will give the proof of Theorem 1.1.

Lemma 3.1. If Hypothesis 1.1 and Hypothesis 1.3 hold, then for κ ≥ 2 there exist ρ, σ > 0 and
e ∈ H1(RN) \ {0} such that

(a) Jλ(v) > σ, for ‖v‖ = ρ,

(b) Jλ(e) < 0, for ‖e‖ > ρ.

Proof. Combining Lemma 2.1, Lemma 2.2 and the Sobolev embedding theorem, we find

Jλ(v) =
1
2

∫
RN
|∇v|2dx +

1
2

∫
RN

V(x)|G−1(v)|2dx − λ
∫
RN

F̃(G−1(v))dx

≥
1
2

∫
RN
|∇v|2dx +

1
2

∫
RN

V(x)|v|2dx −Cλ
∫
RN
|G−1(v)|αdx

≥ min{1,V0}
1
2

∫
RN

(|∇v|2 + |v|2)dx −Cλ
∫
RN
|v|αdx

≥ min{1,V0}
1
2
‖v‖2 −Cλ‖v‖α.

Thus, due to the fact 2 < α < 2∗, we conclude that there exists σ > 0 such that (a) holds for ρ = ‖v‖
sufficiently small .

In addition, Lemma 2.1 implies F̃(t) ≥ Ctθ
∗

for all t > ε0 > 0. For a fixed ω ∈ C∞0 (RN), we suppose
that supp ω = Ω and ω ≥ 1 in Ω

′

⊂ Ω with |Ω
′

| > 0. Then it turns out that

Jλ(tω) =
t2

2

∫
RN
|∇ω|2dx +

1
2

∫
RN

V(x)|G−1(tω)|2dx − λ
∫
RN

F̃(G−1(tω))dx

≤
t2

2

∫
RN
|∇ω|2dx + κ2t2

∫
RN

VM |ω|
2dx −Cλtθ

∗

∫
Ω
′

|ω|θ
∗

dx.

Since θ∗ > 2, it follows that Jλ(tω) −→ −∞ as t −→ ∞. Then we will prove the result (b) if we take
e = tω with t large enough. �

In consequence of Lemma 3.1, we can apply the mountain pass theorem without the (PS) condition
(see [16]) to get a (PS)dλ sequence {vn} of Jλ, where dλ is the mountain pass level associated with Jλ,
i.e.,

Jλ(vn)→ dλ, J′λ(vn)→ 0 as n→ ∞.

Lemma 3.2. Under the assumptions of Hypothesis 1.1 and Hypothesis 1.3, the (PS) sequence {vn} of
Jλ is bounded.

Proof. Let {vn} ⊂ H1(RN) be a (PS) sequence of the functional Jλ. By means of (2.5) and (2.6) we
know that

Jλ(vn) =
1
2

∫
RN
|∇vn|

2dx +
1
2

∫
RN

V(x)|G−1(vn)|2dx − λ
∫
RN

F̃(G−1(vn))dx = dλ + on(1) (3.1)
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6572

and for ϕn = G−1(vn)g(G−1(vn)) ∈ H1(RN), 〈J′λ(vn), ϕn〉 = on(1)‖ϕn‖, that is∫
RN
∇vn∇(G−1(vn)g(G−1(vn)))dx +

∫
RN

V(x)|G−1(vn)|2dx

− λ

∫
RN

f̃ (G−1(vn))G−1(vn)dx = on(1)‖G−1(vn)g(G−1(vn))‖.
(3.2)

From Lemma 2.2 we find that∣∣∣∇(G−1(vn)g(G−1(vn))
∣∣∣ ≤ ∣∣∣∣∣∣1 +

G−1(vn)
g(G−1(vn))

g′(G−1(vn))

∣∣∣∣∣∣ |∇vn| ≤ |∇vn| (3.3)

and
|G−1(vn)g(G−1(vn))| ≤

√
2κ|vn|. (3.4)

Hence, by (3.3) and (3.4), we get

‖G−1(vn)g(G−1(vn))‖ ≤
√

2κ‖vn‖.

Additionally, (3.3) and the fact 〈J′λ(vn), G−1(vn)g(G−1(vn))〉 = on(1)‖vn‖ imply

on(1)‖vn‖ =

∫
RN

(
1 +

G−1(vn)
g(G−1(vn))

g′(G−1(vn))
)
|∇vn|

2dx

+

∫
RN

V(x)|G−1(vn)|2dx − λ
∫
RN

f̃ (G−1(vn))G−1(vn)dx

≤

∫
RN
|∇vn|

2dx +

∫
RN

V(x)|G−1(vn)|2dx − λ
∫
RN

f̃ (G−1(vn))G−1(vn)dx.

(3.5)

Then, from (3.1), (3.2), (3.5) and Lemma 2.1 we derive

θ∗dλ + on(1) + on(1)‖vn‖ =θ∗Jλ(vn) − 〈J′λ(vn),G−1(vn)g(G−1(vn))〉

≥
θ∗ − 2

2

∫
RN
|∇vn|

2dx +
θ∗ − 2

2

∫
RN

V(x)|G−1(vn)|2dx

≥
θ∗ − 2

2
min{1,V0}‖vn‖

2,

(3.6)

which indicates ‖vn‖ < ∞. �

Remark 3.1. Indeed, in Lemma 3.1 and Lemma 3.2, for the potential V(x) we essentially just need it
to be bounded. And there holds m0 ≤ V(x) ≤ VM both in the periodic case and asymptotically periodic
case. So if we replace Hypothesis 1.1 with Hypothesis 1.2, the conclusions similar to Lemma 3.1 and
Lemma 3.2 still hold, which are about the asymptotically periodic case.

Lemma 3.3. Assume that Hypothesis 1.1 and Hypothesis 1.3 hold. Then Jλ has a positive critical
point.

Proof. With the help of Lemma 3.1 and Lemma 3.2, we get that Jλ possesses a bounded (PS) sequence
{vn} ⊂ H1(RN). Then, there exists v ∈ H1(RN) such that

vn ⇀ v in H1(RN),

AIMS Mathematics Volume 7, Issue 4, 6565–6582.
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vn → v in Lp
loc(R

N),

vn → v a.e. in RN ,

where p ∈ [2, 2∗).
We claim that v is a critical point of Jλ, that is, J′λ(v) = 0. To prove this claim, we only need to show

that 〈J′λ(v), ϕ〉 = 0 for all ϕ ∈ C∞0 (RN) owing to the fact that C∞0 (RN) is dense in H1(RN). Note that
from (2.6), one has

〈J′λ(vn) − J′λ(v), ϕ〉

=

∫
RN

(∇vn − ∇v)∇ϕdx +

∫
RN

V(x)
(

G−1(vn)
g(G−1(vn))

−
G−1(v)

g(G−1(v))

)
ϕdx

− λ

∫
RN

(
f̃ (G−1(vn))
g(G−1(vn))

−
f̃ (G−1(v))
g(G−1(v))

)
ϕdx.

(3.7)

We will argue that the right side of (3.7) converges to zero in the following as n→ ∞. Considering for
the (PS) sequence {vn}, we have

vn(x)→ v(x) a.e. in Kϕ := supp ϕ,

|vn(x)| ≤ |wp(x)| a.e. in Kϕ,

where wp ∈ Lp(Kϕ). Hence,

G−1(vn)
g(G−1(vn))

ϕ→
G−1(v)

g(G−1(v))
ϕ a.e. in RN ,

f̃ (G−1(vn))
g(G−1(vn))

ϕ→
f̃ (G−1(v))
g(G−1(v))

ϕ a.e. in RN .

From the condition (v1), we get∣∣∣∣∣∣V(x)
G−1(vn)

g(G−1(vn))
ϕ

∣∣∣∣∣∣ ≤ CVM |vn||ϕ| ≤ CVM |wp||ϕ|, x ∈ Kϕ.

Then the Lebesgue Dominated Convergence theorem gives the result

lim
n→∞

∫
RN

V(x)
G−1(vn)

g(G−1(vn))
ϕdx =

∫
RN

V(x)
G−1(v)

g(G−1(v))
ϕdx. (3.8)

Meanwhile, applying Lemma 2.1, we know that∣∣∣∣∣∣ f̃ (G−1(vn))
g(G−1(vn))

ϕ

∣∣∣∣∣∣ ≤ C|G−1(vn)|α−1|ϕ| ≤ C|vn|
α−1|ϕ| ≤ C|wp|

α−1|ϕ|.

Making use of the Lebesgue Dominated Convergence theorem again, we deduce that

lim
n→∞

∫
RN

f̃ (G−1(vn))
g(G−1(vn))

ϕdx =

∫
RN

f̃ (G−1(v))
g(G−1(v))

ϕdx. (3.9)
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Thus, (3.8), (3.9) and vn ⇀ v yield 〈(J′λ(vn) − J′λ(v)), ϕ〉 → 0 immediately. This limit together with
J′λ(vn)→ 0 shows that J′λ(v) = 0. Therefore, v is a critical point of Jλ.

If v , 0, we can get a nontrivial critical point of Jλ. For the case v = 0, similar as in [12], since {vn}

is bounded in H1(RN), we can use a standard argument due to Lions ( [16], Lemma 1.21) to prove that
there exist a sequence {yn} ⊂ R

N and r, σ > 0 such that |yn| → ∞ as n→ ∞ and

lim inf
n→∞

∫
Br(yn)
|vn|

2dx ≥ σ > 0. (3.10)

Without loss of generality, we can assume that {yn} ⊂ Z
N . Let us consider the translation v̄n(x) =

vn(x+yn), n ∈ N. In this sense, ‖v̄n(x)‖ = ‖vn(x)‖ and {v̄n} is still a bounded (PS) sequence of Jλ in view
of the assumption of (v1). Thus, taking a subsequence if necessary, we have a weak limit v̄ ∈ H1(RN)
satisfying

v̄n ⇀ v̄ in H1(RN),

v̄n → v̄ in L2
loc(R

N),

v̄n → v̄ a.e. in RN .

By using (3.10) we get the fact

0 < σ ≤
∫

Br(yn)
|vn|

2dx =

∫
Br(0)
|v̄n|

2dx→
∫

Br(0)
|v̄|2dx, (3.11)

i.e., v̄ , 0. Moreover, by the argument used above, we deduce a further conclusion J′λ(v̄)ϕ = 0 for
each ϕ ∈ H1(RN). Therefore, we have proved that the functional Jλ has a nontrivial critical point.

Now, assume that v is a nontrivial critical point of Jλ. Considering 〈J′λ(v), v−〉 = 0, we obtain∫
RN
|∇v−|2dx +

∫
RN

V(x)
G−1(v−)

g(G−1(v−))
v−dx = 0,

where v−=max{−v, 0}. By using (v0) and the definition of g(t) we get v− = 0, i.e., v ≥ 0, which implies
that v is positive through the strong maximum principle. Thus, Jλ has a positive critical point. �

Certainly, now we can’t conclude that the origin Eq (1.2) has a positive solution. However, we

note that the weak solution of (2.3) whose L∞-norm is not bigger than min{

√
1

κ − 1
, δ} is also a weak

solution of (1.2) for κ ≥ 2. So in the following we will show the L∞-estimates for the critical point v
of Jλ.

Lemma 3.4. If (v0), ( f1), ( f3) hold and v ∈ H1(RN) is a positive critical point of Jλ, then v ∈ L∞(RN).
Moreover,

|v|∞ ≤ Cλ
1

2∗−α ‖v‖
2∗−2
2∗−α , (3.12)

where C > 0 only depends on α, N.

Proof. Let v ∈ H1(RN) be a positive critical point of Jλ. From (2.6) there holds∫
RN
∇v∇ϕdx +

∫
RN

V(x)
G−1(v)

g(G−1(v))
ϕdx − λ

∫
RN

f̃ (G−1(v))
g(G−1(v))

ϕdx = 0, ∀ϕ ∈ H1(RN). (3.13)
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On the one hand, for T > 0, we define

vT =

v, if 0 ≤ v < T,

T, if v ≥ T.

Then there has 0 ≤ vT ≤ v. By taking ϕ = v2(γ−1)
T v with γ > 1 in (3.13), one obtains∫

RN
|∇v|2v2(γ−1)

T dx + 2(γ − 1)
∫
RN
|∇v|2vv2(γ−1)−1

T dx +

∫
RN

V(x)
G−1(v)

g(G−1(v))
v2(γ−1)

T vdx

= λ

∫
RN

f̃ (G−1(v))
g(G−1(v))

v2(γ−1)
T vdx.

Since the second and the third terms in the above equation are nonnegative, using Lemma 2.1 we can
achieve ∫

RN
|∇v|2v2(γ−1)

T dx ≤ λ
∫
RN

f̃ (G−1(v))
g(G−1(v))

v2(γ−1)
T vdx

≤ Cλ
∫
RN

|G−1(v)|α−1

g(G−1(v))
v2(γ−1)

T vdx

≤ Cλ
∫
RN

vαv2(γ−1)
T dx.

(3.14)

On the other hand, the Sobolev inequality implies(∫
RN

(vvγ−1
T )2∗dx

) 2
2∗

≤ C
∫
RN
|∇(vvγ−1

T )|2dx

≤ C
∫
RN
|∇v|2v2(γ−1)

T dx + C(γ − 1)2
∫
RN
|∇v|2v2(γ−1)

T dx

≤ Cγ2
∫
RN
|∇v|2v2(γ−1)

T dx.

Therefore, using the above inequality, (3.14), the Hölder inequality and Sobolev embedding theorem
we deduce (∫

RN
(vvγ−1

T )2∗dx
) 2

2∗

≤ Cλγ2
∫
RN

vα−2v2v2(γ−1)
T dx.

≤ Cλγ2
(∫
RN

v2∗dx
) α−2

2∗
(∫
RN

(vvγ−1
T )

22∗
2∗−α+2 dx

) 2∗−α+2
2∗

≤ Cλγ2‖v‖α−2
(∫
RN

v
γ22∗

2∗−α+2 dx
) 2∗−α+2

2∗

.

From the above inequality, setting ζ = 22∗
2∗−α+2 , we have(∫

RN
(vvγ−1

T )2∗dx
) 2

2∗

≤ Cλγ2‖v‖α−2|v|2γγζ .

Then, by the Fatou’s lemma, it follows that

|v|γ2∗ ≤ (Cλγ2‖v‖α−2)
1

2γ |v|γζ . (3.15)
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Define γn+1ζ = 2∗γn with n = 0, 1, 2, ..., and γ0 =
2∗ + 2 − α

2
. As a consequence of (3.15), we derive

the following result

|v|γ12∗ ≤ (Cλγ2
1‖v‖

α−2)
1

2γ1 |v|2∗γ0

≤ (Cλ‖v‖α−2)
1

2γ1
+ 1

2γ0 γ
1
γ0
0 γ

1
γ1
1 |v|2∗

≤ (Cλ‖v‖α−2)
1

2γ0
( γ0
γ1

+1)
γ

( 1
γ1

+ 1
γ0

)

0 (
γ1

γ0
)

1
γ1 |v|2∗

= (Cλ‖v‖α−2)
1

2γ0
( ζ

2∗ +1)
γ

1
γ0

( ζ
2∗ +1)

0 (
2∗

ζ
)

1
γ1 |v|2∗ .

Furthermore, by using the Moser iteration, we obtain

|v|γn2∗ ≤ (Cλ‖v‖α−2)
1

2γ0

∑n
i=0( ζ

2∗ )i

(γ0)
1
γ0

∑n
i=0( ζ

2∗ )i

(
2∗

ζ
)

1
γ0

∑n
i=0 i( ζ

2∗ )i

|v|2∗ .

Hence, from the facts that
∞∑

i=0

(
ζ

2∗
)i =

2∗ + 2 − α
2∗ − α

and
∞∑

i=0

i(
ζ

2∗
)i is convergent, we finally get

|v|∞ ≤ Cλ
1

2∗−α ‖v‖
2∗−2
2∗−α .

�

Lemma 3.5. Suppose that (v0), ( f1) and ( f3) hold. Let v be a positive critical point of Jλ with Jλ(v) =

dλ. Then there exists C > 0 independent of λ such that

‖v‖2 ≤ Cdλ.

Proof. By Lemma 2.2, the inequality (3.3), we get the following result

θ∗dλ =θ∗Jλ(v) − 〈J′λ(v),G−1(v)g(G−1(v))〉

=
θ∗

2

∫
RN
|∇v|2dx +

θ∗

2

∫
RN

V(x)|G−1(v)|2dx − λθ∗
∫
RN

F̃(G−1(v))dx

−

∫
RN
∇v∇

(
G−1(v)g(G−1(v))

)
dx −

∫
RN

V(x)|G−1(v)|2dx

+ λ

∫
RN

f̃ (G−1(v))G−1(v)dx

≥
θ∗ − 2

2

∫
RN
|∇v|2dx +

θ∗ − 2
2

∫
RN

V(x)|G−1(v)|2dx

≥
θ∗ − 2

2
min{1,V0}‖v‖2.

Thus, from the fact θ∗ = min{α, θ} > 2, we get ‖v‖2 ≤ Cdλ. �
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Proof of Theorem 1.1 By Lemma 3.3, there exists a positive critical point v of Jλ with Jλ(v) = dλ.
And it follows from Lemma 2.1, Lemma 2.2 and ( f2) that

dλ ≤ max
t∈[0,1]

Jλ(te)

≤ max
t∈[0,1]

(
t2

2

∫
RN

(|∇e|2 + 2κ2VM |e|2)dx − λ
∫
RN

F̃(G−1(te))dx
)

≤ max
t∈[0,1]

(
t2

2

∫
RN

(|∇e|2 + 2κ2VM |e|2)dx −Cλtθ
∗

∫
Ω

eθ
∗

dx
)

≤ Cλ
2

2−θ∗ ,

(3.16)

where e is fixed in Lemma 3.1 and G−1(te) > ε0 in Ω ⊂ RN . Then, by Lemma 3.4, Lemma 3.5
and (3.16) we have

|v|∞ ≤ Cλ
2∗−θ∗

(2∗−α)(2−θ∗) .

Since 2 < θ∗ ≤ α < 2∗, from Lemma 2.2 there exists λ0 > 0 such that for all λ > λ0,

|u|∞ = |G−1(v)|∞ ≤
√

2κ|v|∞ ≤ min{

√
1

κ − 1
, δ},

where δ is fixed in (2.1). This means that for λ > λ0 the original Eq (1.2) possesses a positive solution
u = G−1(v). �

4. Proof of Theorem 1.2

Different from the preceding section, for the case of asymptotically periodic potential we find that
the inequality (3.11) is not valid. In order to overcome this difficulty, in this section, we will achieve
the Lemma 4.2 which is a key point to complete the proof of Theorem 1.2. And for convenience, in this
section, we give a sign J̄λ(v) for the functional of the asymptotically periodic case, while we use Jλ(v)
to represent the functional of the corresponding periodic case. Then, there has

J̄λ(v) =
1
2

∫
RN
|∇v|2dx +

1
2

∫
RN

V(x)|G−1(v)|2dx − λ
∫
RN

F̃(G−1(v))dx

=
1
2

∫
RN
|∇v|2dx +

1
2

∫
RN

(V1(x) − m(x)) |G−1(v)|2dx − λ
∫
RN

F̃(G−1(v))dx

= Jλ(v) −
1
2

∫
RN

m(x)|G−1(v)|2dx.

(4.1)

Now, we first give the following two necessary lemmas.

Lemma 4.1. Assume that Hypothesis 1.2 and Hypothesis 1.3 hold. If {vn} is bounded and
vn ⇀ 0 in H1(RN), then ∫

RN
m(x)|G−1(vn)|2dx = on(1).

Proof. Firstly, we claim that for any ε > 0 there exists Rε > 0 such that∫
{m(x)≥ε}

|v|2dx ≤ C3

∫
BRε+1(0)

|v|2dx + C4ε
2
N ‖v‖2, ∀u ∈ H1(RN), (4.2)
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where C3, C4 are positive constants and independent on ε.
Clearly, by (1.3), for any ε > 0, there exists Rε > 0 such that

meas{x ∈ B1(y) : |m(x)| ≥ ε} < ε, ∀|y| ≥ Rε.

Now, coveringRN by balls B1(yi), i ∈ N, yi ∈ R
N , in such a way each point ofRN is contained in at most

N + 1 balls. Without loss of generality, we suppose that |yi| < Rε, for i = 1, 2, ..., nε and |yi| ≥ Rε, for
i = nε+1, nε+2, ...,+∞. Then we get that |Ωi| < ε, for all |yi| ≥ Rε,where Ωi = {x ∈ B1(yi) : |m(x)| ≥ ε}.
Observe that from the Hölder and Sobolev inequalities one has

∫
{m(x)≥ε}

|v|2dx ≤
+∞∑
i=1

∫
Ωi

|v|2dx

=

nε∑
i=1

∫
Ωi

|v|2dx +

+∞∑
i=nε+1

∫
Ωi

|v|2dx

≤ (N + 1)
∫

BRε+1(0)
|v|2dx +

+∞∑
i=nε+1

|Ωi|
2
N

(∫
Ωi

|v|2
∗

dx
) N−2

N

≤ C3

∫
BRε+1(0)

|v|2dx + C4ε
2
N ‖v‖2.

Therefore, our claim (4.2) is right.
Next, from Lemma 2.1, the boundedness of {vn} and vn → 0 in Lp

loc(R
N) for all p ∈ [2, 2∗), we arrive

at ∫
RN

m(x)|G−1(vn)|2dx ≤ C
∫
RN

m(x)|vn|
2dx

≤

∫
{m(x)≥ε}

m(x)|vn|
2dx +

∫
{m(x)<ε}

m(x)|vn|
2dx

≤ CVM

(
C3

∫
BRε+1(0)

|vn|
2dx + C4ε

2
N ‖vn‖

2
)

+ ε

∫
RN
|vn|

2dx

= on,ε(1) + C5ε
2
N + C6ε→ 0,

(4.3)

as ε→ 0 and n→ ∞. Thus, we complete our proof. �

Lemma 4.2. Assume that Hypothesis 1.2 and Hypothesis 1.3 all hold. Let {vn} be a bounded (PS)
sequence of J̄λ satisfying vn ⇀ 0 in H1(RN), as n → ∞. Then {vn} is also a (PS) sequence for its
corresponding periodic case Jλ.

Proof. Since the above Lemma 4.1 guarantees

|Jλ(vn) − J̄λ(vn)| =
1
2

∫
RN

m(x)|G−1(vn)|2dx→ 0,
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we have Jλ(vn)→ d̄λ. Taking ϕ ∈ H1(RN) with ‖ϕ‖ ≤ 1, by Hölder inequality and Lemma 4.1, we get∣∣∣∣〈(J′λ(vn) − J̄′λ(vn)
)
, ϕ〉

∣∣∣∣ =

∣∣∣∣∣∣
∫
RN

m(x)
G−1(vn)

g(G−1(vn))
ϕdx

∣∣∣∣∣∣
≤ C

(∫
RN

m(x)|G−1(vn)|2dx
) 1

2

= on(1),

which implies J′λ(vn) = on(1). Hence, we know that {vn} is also a (PS) sequence of Jλ. �

Proof of Theorem 1.2 Firstly, notice that from the Remark 3.1 we can verify the mountain pass
geometry of J̄λ and the boundedness of its (PS) sequence {vn} analogously as in Lemma 3.1 and
Lemma 3.2. Thus we can get a bounded (PS)d̄λ sequence {vn} of J̄λ, where d̄λ is the mountain pass
level of J̄λ, i.e.,

J̄λ(vn)→ d̄λ, J̄′λ(vn)→ 0 as n→ ∞.

We suppose that v ∈ H1(RN) is the weak limit for the (PS) sequence {vn}. Then, arguing exactly like
in Lemma 3.3, we could get that v is the critical point of J̄λ. However, in the case of asymptotically
periodic potential, we can’t ensure that v is nontrivial directly. So, the task now is to prove that v , 0.

We suppose, by contradiction, v ≡ 0. From Lemma 4.2 we know that the (PS) sequence {vn} of J̄λ is
also a (PS) sequence of Jλ, where Jλ is the corresponding periodic case of J̄λ. Then we can define the
translation v̄n(x) = vn(x + yn) for Jλ analogously in Lemma 3.2. Furthermore, there exists a v̄ , 0 such
that v̄n ⇀ v̄ in H1(RN) and J′λ(v̄) = 0.

Set Q(x, v,∇v) = −
G−1(v)g′(G−1(v))

g(G−1(v))
|∇v|2. Since g′(v) ≤ 0 for all v ≥ 0, it is easy to see

that Q(x, v,∇v) ≥ 0. Moreover, we have Q(x, v,∇v) is convex in ∇v and
∫
RN

Q(x, v,∇v)dx is lower

semi-continuous with respect to v by Theorem 1.6 in [17]. Then, from the lower semi-continuity

of
∫
RN

Q(x, v,∇v)dx, Lemma 2.1, Lemma 4.1 and Fatou’s Lemma we have

2d̄λ = lim
n→∞

[
2Jλ(v̄n) − 〈J′λ(v̄n),G−1(v̄n)g(G−1(v̄n))〉

]
= − lim

n→∞

∫
RN

G−1(v̄n)g′(G−1(v̄n))
g(G−1(v̄n))

|∇v̄n|
2dx

− lim
n→∞

λ

∫
RN

(
2F̃(G−1(v̄n)) − f̃ (G−1(v̄n))G−1(v̄n)

)
dx

≥ −

∫
RN

G−1(v̄)g′(G−1(v̄))
g(G−1(v̄))

|∇v̄|2dx

− λ

∫
RN

(
2F̃(G−1(v̄)) − f̃ (G−1(v̄))G−1(v̄)

)
dx

=2Jλ(v̄) − 〈J′λ(v̄),G−1(v̄)g(G−1(v̄))〉.

(4.4)

Consequently, v̄ , 0 is a critical point of Jλ satisfying Jλ(v̄) ≤ d̄λ. Setting

Γ := {γ ∈ C([0, 1],H1(RN)) : γ(0) = 0, Jλ(γ(1)) < 0, γ(1) , 0},
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Γ̄ := {γ ∈ C([0, 1],H1(RN)) : γ(0) = 0, J̄λ(γ(1)) ≤ 0, γ(1) , 0},

dλ := inf
γ∈Γ

max
t∈[0,1]

Jλ(γ(t)),

d̄λ = inf
γ∈Γ̄

max
t∈[0,1]

J̄λ(γ(t)),

and using the similar arguments in [18], we get a specific path γ : [0, 1]→ H1(RN) satisfying
γ(0) = 0, Jλ(γ(1)) < 0, v̄ ∈ γ([0, 1]),
γ(t)(x) > 0, ∀x ∈ RN , t ∈ (0, 1],
max
t∈[0,1]

Jλ(γ(t)) = Jλ(v̄).
(4.5)

Then for the path given by (4.5), there holds γ ∈ Γ ⊂ Γ̄. Since m(x) > 0 is strict on a subset of positive
measures in RN and G−1(t) is an odd function, we can arrive at

d̄λ ≤ max
t∈[0,1]

J̄λ(γ(t)) = J̄λ(γ(t̄)) < Jλ(γ(t̄)) ≤ max
t∈[0,1]

Jλ(γ(t)) = Jλ(v̄) ≤ d̄λ,

which is a contradiction. Therefore, the above arguments show that the critical point v of J̄λ is
nontrivial.

Furthermore, we repeat the same arguments used in Section 3 to verify the L∞-estimates of v. Then,
under the assumptions of Theorem 1.2 and the change of variable (2.4), we obtain a positive solution
of the original Eq (1.2) for λ sufficiently large. �

5. Conclusions

In this paper, we investigated a class of quasilinear Schrödinger equations with supercritical growth
on the nonlinearity f (t). The nonlinearity f (t) is continuous and only superlinear in a neighborhood
of t = 0. We supposed the potentials V(x) are periodic and asymptotically periodic. By using
variational methods, truncation techniques and Moser iteration, we have shown that the Eq (1.2) has at
least one positive solution for the periodic and asymptotically periodic potentials.
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