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Abstract: The main object of this paper is to investigate the spectral collocation method for three new
models of space fractional Fisher equations based on the exponential decay kernel, for which properties
of Chebyshev polynomials are utilized to reduce these models to a set of differential equations. We
then numerically solve these differential equations using finite differences, with the resulting algebraic
equations solved using Newton ’s method. The accuracy of the numerical solution is verified by
computing the residual error function. Additionally, the numerical results are compared with other
results obtained using the power law kernel and the Mittag-Leffler kernel. The advantage of the present
work stems from the use of spectral methods, which have high accuracy and exponential convergence
for problems with smooth solutions. The numerical solutions based on Chebyshev polynomials are in
remarkably good agreement with numerical solutions obtained using the power law and the Mittag-
Leffler kernels. Mathematica was used to obtain the numerical solutions.
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1. Introduction

Recently, the importance of modeling using fractional differential equations has emerged because
there are many real world problems that need to be modeled using fractional equations. There are many
applications of modeling using fractional equations such as economics, biology, mechanics, geology,
heat transfer, chemistry, biology, physics, signal processing, and image theory [1, 2].

As a result of the fact that these fractional models often do not have an analytical solution, many
researchers have focused on developing many numerical methods to find approximate solutions [3–10].
These models incorporate several fractional differential operators like Riemann–Liouville, Liouville–
Caputo, Hilfer, Riesz fractional derivative etc. [11–15].
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For more clarifications and details, about the properties and definitions of the fractional
derivatives, the reader is referred to the following references [1, 2]. However, the previous operators
face many problems and limitations in the modeling of many real-world problems. Therefore, in a
more recent time, Caputo–Fabrizio has provided a remedy to address these problems and limitations.
This treatment is a fractional derivative with exponential decay and a non-singular kernel [16]. Using
this operator, many researchers have provided many fractional models, as well as numerical and
approximate solutions [17–29]. Before we introduce the basic definitions necessary , we describe the
abbreviations that used in this work in Table 1.

Table 1. The abbreviations that used in this work.

Description Abbreviation
EDK Exponential Decay Kernel
PLK Power Law Kernel
MLK Mittag–Leffler Kernel
LC Liouville–Caputo
CF Caputo–Fabrizio
DEs Differential Equations
FDM Finite Differences Method
NIM Newton Iteration Method
REF Residual Error Function

The basic definitions that we will need in this paper, we will present them as follows:

Definition 1.

The LC-fractional derivative of a function φ(ξ) is given by [1, 2]:

PLKDϑφ(ξ) =
1

Γ(1 − ϑ)

∫ ξ

0

φ
′

(τ)
(ξ − τ)ϑ

dτ, ξ > 0, 0 < ϑ < 1,

where φ(ξ) ∈ H1(0, b).

Definition 2.

The CF-fractional derivative of a function φ(ξ) is defined in the following form [16]:

EDKDϑφ(ξ) =
Ω(ϑ)
1 − ϑ

∫ ξ

a
e
−ϑ(ξ−τ)

1−ϑ φ
′

(τ)dτ, 0 < ϑ < 1,

where φ(ξ) ∈ H1(a, b), a ∈ (−∞, ξ) and Ω(ϑ) satisfies the condition Ω(0) = Ω(1) = 1. For any arbitrary
derivative, the general definition of the CF-fractional derivative can be defined as [16].

Definition 3.

The CF-fractional derivative of a function φ(ξ) is defined in the following form:

EDKDϑ
a+φ(ξ) = cfDκ

a+ (Dnφ(ξ)) =
Ω(κ)
1 − κ

∫ ξ

a
φ(n+1)(τ)e−λ(ξ−τ)dτ,

AIMS Mathematics Volume 7, Issue 4, 6535–6549.



6537

(λ =
ϑ

1 − ϑ
, n < ϑ < n + 1),

where φ(ξ) ∈ H1(a, b), a ∈ (−∞, ξ), n = bϑc=the floor(ϑ) (i.e. integer part) and κ = dϑe=the ceil(ϑ)
(i.e. the decimal part) and φ(k)(a) = 0, k = 1, 2, ..., n.
Now, we apply this definition on the function φ(ξ) = ξm, m > 1, as following:

EDKDϑ
0+ξ

m =
Ω(κ)Γ(m + 1)

1 − κ

[
(−1)m−ne−λ ξ

λm−n

+

m−n−1∑
i=0

(−1)i ξm−n−1−i

Γ(m − n − i)λi+1

]
, m ≥ dϑe. (1.1)

In Theorem 2.3 [21], we set a = 0 and then prove the theorem. In [21], definitions and its new
properties of CF-fractional derivatives and its application are given in details.

In our work, the focus was on finding approximate numerical solutions for different types of Fisher’s
equation, Space fractional generalized Fisher equation, Space fractional generalized Burger-Fisher
equation, and space fractional Fisher equation with variable coefficient. These models are presented,
after replacing the classical derivatives with respect to space, with the fractional derivative based on
the exponential decay kernel. In many previous works, many authors, have not verify the accuracy of
the approximate solutions in the case of the non-integer order, but suffice to verify this in the case of
the integer order, and this is in fact not sufficient. In our work, besides introducing algorithms for the
three new models, we verify the accuracy of the numerical solutions in the case of non integer orders,
by calculating the residual error function. More so, the absolute error of the results presented in our
work, together with previous results [27, 28], was compared.

The paper is set out as follows: In section two, the shifted Chebyshev polynomials and its
properties are presented, as well as the effect of the fractional derivative based on the expansion of
these polynomials. In the third section, the three models, space fractional generalized Fisher equation,
Space fractional generalized Burger-Fisher equation and space fractional Fisher equation with
variable coefficient will be presented with the sense of the CF–fractional derivative (i.e. with
exponential decay kernel), as well as constructing the algorithm for each model. In section Four, the
numerical results of the three models presented in this work will be discussed. The conclusion is
presented in the fifth section.

2. The Chebyshev polynomials and approximation formula due to the exponential decay kernel

The analytic form of the ζ̄s(ξ) of degree s is given by [30]:

ζ̄s(ξ) = s
s∑

k=0

(−1)s−k 22k (s + k − 1)!
(2k)! (s − k)!

ξk, ξ ∈ [0, 1], (2.1)

where ζ̄0(ξ) = 1, ζ̄1(ξ) = 2ξ − 1.
The relation between ζ̄s(ξ) and ζs is given by

ζ̄s(ξ) = ζs(2ξ − 1) = ζ2s(
√
ξ)

AIMS Mathematics Volume 7, Issue 4, 6535–6549.



6538

and the set {ζs(z)} where s = 0, 1, 2, ... forms a family of orthogonal Chebyshev polynomials on the
interval [−1, 1].

Now, we approximate the function Ξ(ξ) ∈ L2[0, 1], as

Ξ(ξ) ' Ξm(ξ) =

m∑
i=0

Λi ζ̄i(ξ), (2.2)

where the coefficients Λi are given by:

Λ0 =
1
π

∫ 1

0

Ξ(ξ) ζ̄0(ξ)√
ξ − ξ2

dξ, Λi =
2
π

∫ 1

0

Ξ(ξ) ζ̄i(ξ)√
ξ − ξ2

dξ, i = 1, 2, · · ·

Theorem 1. [20]

Suppose that the Ξ
′′

(ξ) ∈ L2[0, 1] and |Ξ
′′

(ξ)| ≤ β, β > 0 then the expansion (2.2) is uniformly
convergent and

|Λ`| < β/2`2, ` = 1, 2, 3, ... . (2.3)

Theorem 2. [20]

The absolute error Em = ‖Ξ(ξ) − Ξm(ξ)‖, Ξ(ξ) ∈ Cm[0, 1] can be bounded by:

‖Em‖ ≤
~∆m+1

(m + 1)!
, ~ = max

ξ∈[0,1]
Ξ(m+1)(ξ), ∆ = max[ξ0, ξ − ξ0]. (2.4)

We show and obtain in the following theorem, an approximate formula of cfDϑ
0+

Ξm(ξ).

Theorem 3.

From the approximation (2.2), the cfDϑ
0+

(Ξm(ξ)) can be defined as:

EDKDϑ
0+(Θm(ξ)) =

m∑
i=dϑe

i∑
j=dϑe

ΛiΠi, j,κΥ
κ
i, j(ξ) (2.5)

where

Πi, j,κ =
i 22 j (−1)i− j Γ( j + 1)(i + j − 1)!

(2 j)! (i − j)!
Ω(κ)
1 − κ

,

Υκ
i, j(ξ) =

(−1) j−ne−λ ξ

λ j−n +

j−n−1∑
p=0

(−1)p ξ j−n−1−p

λp+1Γ( j − n − p)
.

Proof. By affecting on (2.2) using CF–fractional differentiation and their linearity property, we obtain

EDKDϑ
0+(Ξm(ξ)) =

m∑
i=0

Λi
cfDϑ

0+(ζ̄i(ξ)). (2.6)

Back to the Eqs (1.1), (2.1) and (2.6) can be obtained the following:

EDKDϑ
0+(ζ̄i(ξ)) = 0, i = 0, 1, ..., dϑe − 1, (2.7)
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EDKDϑ
0+(ζ̄i(ξ)) =

i∑
j=dϑe

i 22 j (−1)i− j (i + j − 1)!Γ( j + 1)
(2 j)! (i − j)!

Ω(κ)
1 − κ

×

 (−1) j−ne−λ ξ

λ j−n +

j−n−1∑
p=0

(−1)p ξ j−n−1−p

Γ( j − n − p)λp+1

 , i = dϑe, ...,m. (2.8)

Now using the Eqs (2.6), (2.7) and (2.8) result can be reached, thus, we have completed the proof. �

3. Applications

In this section we will introduce the three fractional models with exponential decay kernel, as well
as the algorithm for finding numerical solutions.

Model 1: Space fractional generalized Fisher equation

In this model [31], we replace the classical derivative by the fractional derivative with exponential
decay kernel, we obtain

φt(ξ, η) = EDK
0 Dνφ(ξ, η) + φ(ξ, η)(1 − φ(ξ, η))(φ(ξ, η) − β), (3.1)

(0 < β < 1, 0 < ν ≤ 2).

The exact solution of Fisher’s equation in the classical case is given as follows [31]:

φ(ξ, η) =
1
2

(1 + β) +
1
2

(1 − β) tanh

√1
8
(
1 − β

)
ξ +

1
4
(
1 − β2)η ,

subject to the boundary and initial conditions as:

φ(0, η) = g1(η), φ(1, η) = g2(η), (3.2)

φ(ξ, 0) = ū(ξ). (3.3)

In this model we explain the algorithm in detail, and then it can be directly applied it to the second and
third examples without providing details. Therefore, we follow the following steps until we can reach
the numerical solutions.

1. First, we approximate the function ζ̄i(ξ) as:

φm(ξ, η) =

m∑
i=0

φi(η) ζ̄i(ξ). (3.4)

2. Substitute from the formulae (2.5) and (3.4) in Eq (3.1) to obtain:
m∑

i=0

d φi(η)
dη

ζ̄i(ξ) =

m∑
i=dνe

i∑
j=dνe

φi(η)Πi, j,κΥ
κ
i, j(ξ) +

m∑
i=0

φi(η) ζ̄i(ξ)

×

1 − m∑
i=0

φi(η) ζ̄i(ξ)

  m∑
i=0

φi(η) ζ̄i(ξ) − β

 . (3.5)
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3. Collocate the Eq (3.5) at (m + 1 − dνe) points ξr to obtain the following first order system of
ordinary differential equations:

m∑
i=0

d φi(η)
dη

ζ̄i(ξr) =

m∑
i=dνe

i∑
j=dνe

φi(η)Πi, j,κΥ
κ
i, j(ξr) +

m∑
i=0

φi(η) ζ̄i(ξr)

×

1 − m∑
i=0

φi(η) ζ̄i(ξr)

  m∑
i=0

φi(η) ζ̄i(ξr) − β

 . (3.6)

4. By substituting (3.4) into (3.2), we obtain the corresponding boundary conditions of this system

m∑
i=0

ζ̄i(0)φi(η) = g1(η),
m∑

i=0

ζ̄i(1)φi(η) = g2(η). (3.7)

Now, using the FDM, we can solve the set of ordinary differential Eqs (3.6), (3.7) with respect to
the unknowns ui(t), i = 0, 1, ...,m, and obtain the following nonlinear algebraic equations

m∑
i=0

(
φs

i − φ
s−1
i

τ

)
ζ̄i(ξr) =

 m∑
i=dνe

i∑
j=dνe

φi(η)Πi, j,κΥ
κ
i, j(ξr)


+

 m∑
i=0

φi(η) ζ̄i(ξr)

 1 − m∑
i=0

φi(η) ζ̄i(ξr)


×

 m∑
i=0

φi(η) ζ̄i(ξr) − β

 , (3.8)

m∑
i=0

ζ̄i(0)φs
i = gs

1, (3.9)

m∑
i=0

ζ̄i(1)φs
i = gs

2. (3.10)

5. In order to be more clarified, we will explain the method in the case of m = 4 and using the NIM.
The system (3.8)–(3.10) can be written as

φs+1 = φs − J−1(φs) F(φs), (3.11)

where φs = (φs
0, φ

s
1, φ

s
2, φ

s
3, φ

s
4)T , F(φs) is the vector which represents the nonlinear terms and

J−1(us) is the inverse of the Jacobian matrix. In order to get the initial solution u0, we set s = 0
and then we get the initial condition (3.3) as follows:

(a) Now, to get the

φ(ξ, 0) = φ̄(ξ) '
4∑

i=0

φi(0)ζ̄i(ξ), (3.12)

we substitute (3.4) into the initial condition (3.3).
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(b) Finally, to find the the components of the following initial solution φ0, we solve the equation
ζ̄5(x) and get the points xr,

4∑
i=0

φ0
i ζ̄i(ξr) = φ̄(ξr), r = 0, 1, 2, 3, 4. (3.13)

Model 2: Space fractional generalized Burger-Fisher equation

In this model, we also replace the classical derivative by the fractional derivative with exponential
decay kernel. Then in this case , the Space fractional generalized Burger-Fisher equation [31] is given
by

φη(ξ, η) = EDK
0 Dαφ(ξ, η) − νφ(ξ, η)δ EDK

0 Dβφ(ξ, η) + γφ(ξ, η)(1 − φ(ξ, η)δ), (3.14)

(0 < α ≤ 2, 0 < β ≤ 1),

and the exact solution when α = 2, β = 1 is given by,

φ(ξ, η) =
1
2

1 − tanh

 (δν)
(
ξ − η

(
γ(δ+1)
ν

+ ν
δ+1

))
2(δ + 1)


1
δ

 . (3.15)

The boundary and initial conditions can be derived from this exact solution by setting ξ = 0, ξ = 1 and
η = 0, we obtain the boundary and initial conditions respectively:

φ(0, η) = f1(η), φ(1, η) = f2(η), (3.16)

φ(ξ, 0) = φ̄(ξ). (3.17)

Following the same procedures as in the previous model 1 , we can solve this Model numerically using
the above proposed algorithm.

Model 3: Space fractional Fisher equation with variable coefficient

In this model, we consider the nonlinear Fisher equation with variable coefficient [31] via exponential
decay kernel by replacing the classical derivative with EDK

0 Dν as

φη(ξ, η) = −
a

6µ2 coth(
a
6
η + c) EDK

0 Dνφ(ξ, η) + aφ(ξ, η)(1 − φ(ξ, η)), (3.18)

(0 < ν ≤ 2).

The exact solution of (3.18) at the case ν = 2 is given by

u(x, t) =
1
4

coth
(at

6
+ c

)
sech2

(
1

12
(5a)t +

µx
2

)
+

1
2

tanh
(

1
12

(5a)t +
µx
2

)
+

1
2
. (3.19)

By following the same procedure as in model 1 , we can get the numerical solutions.
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4. Numerical results and discussion

In this section, we discuss the numerical results of the three previous new models. The fact that
the exact solutions for these models are only available in the classical state, so we define the residual
error function, through which we can verify the accuracy and efficiency of the algorithms that were
constructed in the third section. For the first model we define REF as

REF(ξ, η) = (um(ξ, η))η − EDKDα
0+(um(ξ, η)) − um(ξ, η) (1 − um(ξ, η))(um(ξ, η) − β). (4.1)

Figure 1(a) presents the residual error function of the first model for m = 4, α = 1.7, β = 0.125, τ =

0.001 and T = 1 based on the PLK, EDK and MLK, respectively. From this figure, we see that the
value of the residual error function is very small and of order 10−3. In all figures, including this figure,
we indicate in green line the results based on the PLK, as well as the red line for the results obtained
using the EDK, and in the blue line for those obtained using the MLK. Figure 1(b) shows the absolute
error between the approximate solution of the first model in the presence of the EDK and MLK. The
same parameters were taken as in Figure 1(a). From this figure, we can see that the error is very small
and is of the order of 10−5. Also in Figure 1(c), the absolute error of the first model between the
approximate solution based on EDK and the approximate solution based on PLK is represented. The
parameters are the same as in the Figure 1(a). Also, we observe from this figure that the value of the
error is small and of order 10−4.

Now for the second model, we define the residual error function as follows:

REF(ξ, η) = (um(ξ, η))η − EDKDα
0+(um(ξ, η)) − ν um(ξ, η)δ

×EDKDβ
0+

um(ξ, η) + γum(ξ, η)(1 − um(ξ, η)δ). (4.2)

The numerical results for the second model will be discussed just as they were for the first model. The

REF for the second model is represented by the Figure 2(a) for the parameters m = 4, α = 1.7, β =

0.7, δ = 2, ν = 0.01, γ = 0.01, τ = 0.001 and T = 1. In Figure 2(b), the absolute error is shown between
the approximate solution in the presence of the EDK and the approximate solution in the presence of
the MLK. Similarly, in Figure 2(c), but now in the presence of EDK and PLK. In all cases the errors
are very small and the range of the order is 10−3 − 10−4. In the third model the REF is given as follows:

REF(ξ, η) = (um(ξ, η))η +
a

6µ2 coth(
a
6
η + c) EDKDα

0+(um(ξ, η)) − aum(ξ, η)(1 − um(ξ, η)). (4.3)

In this model the numerical results are discussed as in the previous two models. Figure 3 shows the
numerical results for the parameters m = 5, α = 1.9, µ = 2, a = 1

5 , c = 1, τ = 0.001 and T = 1.
The REF of (3.18) based on the PLK, EDK, and MLK is illustrated in Figure 3 (a) while the absolute
error between the numerical solution based on MLK, PLK and EDK, are shown in Figure 3 (b)–(c),
respectively. Also for this model, the error is very small and the error ranges 10−3 − 10−4. All these
numerical results were summarized and presented clearly in the Tables 2–4. In the three proposed
models, we presented the CPU time needed for the computation. In the first model, the time taken to

AIMS Mathematics Volume 7, Issue 4, 6535–6549.



6543

complete the calculations was sixty seconds, while in the second model, the time taken to complete
the calculations was seventeen minutes, and finally in the third model, the time was two minutes.
Explanation of this in the case of the first model, we only had one fractional derivative, and then the
time to complete the calculations was fast, also in the third model, the time increased slightly due to
the coefficients being functions of the time variable. As for the second model, it took more time as a
result of the presence of two fractional derivatives at the same time.

Table 2. The REF and the absolute error of (3.1) based on the PLK, EDK, and MLK,
respectively for m = 4, α = 1.7, µ = 0.125, τ = 0.001 and T = 1.

ξ REFPLK(ξ, η) REFEDK(ξ, η) REFMLK(ξ, η) |MLK − EDK| |LC − EDK|

0.1 −1.9068 × 10−4 −8.31467 × 10−4 −7.43203 × 10−4 2.99439 × 10−5 4.97441 × 10−6

0.2 −3.63316 × 10−4 −0.2.02481 × 10−3 −1.71785 × 10−3 4.02244 × 10−5 6.02525 × 10−5

0.3 −2.95778 × 10−4 −1.86699 × 10−3 −1.53138 × 10−3 3.64307 × 10−5 1.29237 × 10−4

0.4 −1.51646 × 10−4 −1.02472 × 10−3 −8.20059 × 10−4 2.37457 × 10−5 1.85228 × 10−4

0.5 8.6528 × 10−15 −6.11317 × 10−15 6.94642 × 10−6 7.43203 × 10−4 2.1142 × 10−4

0.6 1.19699 × 10−4 8.44685 × 10−4 6.51343 × 10−4 9.59643 × 10−6 2.00906 × 10−4

0.7 1.81218 × 10−4 1.26653 × 10−3 9.6039 × 10−4 2.19181 × 10−5 1.56674 × 10−4

0.8 1.65483 × 10−4 1.12662 × 10−3 8.39342 × 10−4 2.64599 × 10−5 9.16084 × 10−5

0.9 5.78039 × 10−5 1.12662 × 10−3 2.75614 × 10−4 2.00694 × 10−5 2.84914 × 10−5

1 −1.53568 × 10−4 1.12662 × 10−3 −6.74819 × 10−4 4.81482 × 10−35 2.77556 × 10−17

Table 3. The REF and the absolute error of (3.14) based on the PLK, EDK, and MLK,
respectively for m = 4, α = 1.7, µ = 0.125, τ = 0.001 and T = 1.

ξ REFPLK(ξ, η) REFEDK(ξ, η) REFMLK(ξ, η) |MLK − EDK| |LC − EDK|

0.1 −1.95772 × 10−3 −3.876 × 10−4 −3.53468 × 10−4 1.03253 × 10−4 1.04916 × 10−4

0.2 −1.92376 × 10−3 −8.8975 × 10−4 −7.05082 × 10−4 1.21664 × 10−4 1.23354 × 10−4

0.3 −1.19599 × 10−3 −7.58258 × 10−4 −4.74322 × 10−4 1.03267 × 10−4 1.04363 × 10−4

0.4 −4.36256 × 10−4 −3.74158 × 10−4 −1.42939 × 10−4 8.19101 × 10−5 8.24988 × 10−5

0.5 −2.25313 × 10−5 2.54306 × 10−14 1.65293 × 10−14 7.726 × 10−5 7.78236 × 10−5

0.6 −1.0766 × 10−4 2.14128 × 10−4 −1.4195 × 10−4 9.47976 × 10−5 9.59079 × 10−5

0.7 −6.35463 × 10−4 2.25836 × 10−4 −4.72642 × 10−4 01.2582 × 10−4 1.27829 × 10−4

0.8 −1.34712 × 10−3 9.6654 × 10−5 −7.03348 × 10−4 1.47439 × 10−4 1.50173 × 10−4

0.9 −1.78426 × 10−3 −1.0951 × 10−5 −3.52772 × 10−4 01.22585 × 10−4 1.2503 × 10−4

1 −1.29068 × 10−3 1.64053 × 10−4 1.25294 × 10−3 0 0

AIMS Mathematics Volume 7, Issue 4, 6535–6549.



6544

Table 4. The REF and the absolute error of (3.18) based on the PLK, EDK, and MLK,
respectively for m = 4, α = 1.7, µ = 0.125, τ = 0.001 and T = 1.

ξ REFPLK(ξ, η) REFEDK(ξ, η) REFMLK(ξ, η) |MLK − EDK| |LC − EDK|

0.1 −2.17693 × 10−3 −0.00541478 × 10−3 −5.26676 × 10−3 5.89201 × 10−5 1.09422 × 10−3

0.2 −1.76375 × 10−3 −0.00469937 × 10−3 −4.4629 × 10−3 1.17245 × 10−4 6.91422 × 10−4

0.3 −1.22552 × 10−4 −0.000354133 × 10−4 −3.26613 × 10−4 1.80235 × 10−4 7.80636 × 10−5

0.4 8.13027 × 10−4 0.00265623 × 10−3 2.34947 × 10−3 2.23802 × 10−4 6.20275 × 10−4

0.5 7.18887 × 10−4 0.00295111 × 10−3 2.43607 × 10−3 2.14227 × 10−4 7.45003 × 10−4

0.6 1.83374 × 10−4 0.00142919 × 10−3 1.02415 × 10−3 1.27885 × 10−4 5.33155 × 10−4

0.7 1.42249 × 10−5 −0.0000880891 × 10−5 −3.90126 × 10−5 2.90368 × 10−5 2.04127 × 10−4
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Figure 1. The REF of (3.1) based on the PLK, EDK, and MLK in (a), the absolute error
between the numerical solution based on MLK and EDK in (b), and the absolute error
between the numerical solution based on PLK and EDK in (c) for m = 4, α = 1.7, µ =

0.125, τ = 0.001 and T = 1 ( Green line: PLK, Red line: EDL, Blue line: EDL).
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Figure 2. The REF of (3.1) based on the PLK, EDK, and MLK in (a), the absolute error
between the numerical solution based on MDK and EDK in (b), and the absolute error
between the numerical solution based on PLK and EDK in (c) for m = 4, α = 1.7, β =

0.7, δ = 2, ν = 0.01, γ = 0.01, τ = 0.001 and T = 1 ( Green line: PLK, Red line: EDL, Blue
line: EDL).
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Figure 3. The REF of (3.18) based on the PLK, EDK, and MLK in (a), the absolute error
between the numerical solution based on MLK and EDK in (b), and the absolute error
between the numerical solution based on PLK and EDK in (c) for m = 5, α = 1.9, µ =

2, a = 1
5 , c = 1, τ = 0.001 and T = 1 (Green line: PLK, Red line: EDL, Blue line: EDL).

5. Conclusions

In this paper, three new models, namely generalized Fisher equation, generalized Burger-Fisher
equation, and Fisher equation with variable coefficient are presented based on replacing the classical
derivative with respect to space with the fractional derivative based on the exponential decay kernel.
Then Schema was constructed for new models using spectral methods and properties of Chebyshev
polynomials, to obtain a set of differential equations and then employ the finite differences method
to convert the last system into a system of algebraic equations, which was solved using the Newton
iteration method. The results and the accuracy of the numerical solutions were verified, using the
calculation of the absolute error between the numerical solutions to the problems presented with the
previously published numerical solutions. Furthermore, the residual error function was calculated.
All of these results are presented graphically and in tables. The numerical solutions based on the
exponential decay kernel for the three new models resulted in good agreement with numerical solutions
based on power law and Mittag-Leffler kernels. In the future, we will develop the study presented in
this work for different fractal-fractional operators, with singular and non-singular kernel. Also, we can
extend the study of the models for the time-space fractional derivative.
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27. K. M. Saad, M. M. Khader, J. F. Gómez-Aguilar, D. Baleanu, Numerical solutions of the fractional
Fishers type equations with Atangana-Baleanu fractional derivative by using spectral collocation
methods, Chaos, 29 (2019), 023116. https://doi.org/10.1063/1.5086771

28. M. M. Khader, K. M. Saad, Z. Hammouch, D. Baleanu, A spectral collocation method for solving
fractional KdV and KdV-Burgers equations with non-singular kernel derivatives, Appl. Numer.
Math., 161 (2021), 137–146. https://doi.org/10.1016/j.apnum.2020.10.024

29. K. M. Saad, Comparative study on Fractional Isothermal Chemical Model, Alexandria Eng. J., 60
(2021), 3265–3274. https://doi.org/10.1016/j.aej.2021.01.037

30. M. A. Snyder, Chebyshev Methods in Numerical Approximation, Prentice-Hall, Inc. Englewood
Cliffs, 1966.

31. A. H. Bhrawy, M. A. Alghamdi, Approximate solutions of Fishers type equations with variable
coefficients, Abstr. Appl. Anal., 1 (2013), 1–16. https://doi.org/10.1155/2013/176730

32. C. Tadjeran, M. M. Meerschaert, A second-order accurate numerical method for the
two dimensional fractional diffusion equation, J. Comput. Phys., 220 (2007), 813–823.
https://doi.org/10.1016/j.jcp.2006.05.030

33. N. J. Zabusky, M. D. Kruskal, Interaction of solitons in a collisionless plasma and the recurrence
of initial states, Phys. Rev. Lett., 15 (1965), 240–243. https://doi.org/10.1103/PhysRevLett.15.240

© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 7, Issue 4, 6535–6549.

http://dx.doi.org/https://doi.org/10.1016/j.aej.2019.11.017
http://dx.doi.org/https://doi.org/10.1088/1402-4896/ac0bce
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2020.110174
http://dx.doi.org/https://doi.org/10.1063/1.5086771
http://dx.doi.org/https://doi.org/10.1016/j.apnum.2020.10.024
http://dx.doi.org/https://doi.org/10.1016/j.aej.2021.01.037
http://dx.doi.org/https://doi.org/10.1155/2013/176730
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2006.05.030
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.15.240
http://creativecommons.org/licenses/by/4.0

	Introduction
	The Chebyshev polynomials and approximation formula due to the exponential decay kernel
	Applications
	Numerical results and discussion
	Conclusions

