
http://www.aimspress.com/journal/Math

AIMS Mathematics, 7(4): 6516–6534.
DOI: 10.3934/math.2022363
Received: 29 October 2021
Revised: 06 January 2022
Accepted: 18 January 2022
Published: 20 January 2022

Research article

Ternary quantum codes constructed from extremal self-dual codes and
self-orthogonal codes

Chaofeng Guan, Ruihu Li, Hao Song, Liangdong Lu∗ and Husheng Li

Fundamentals Department, Air Force Engineering University, Xi’an, Shaanxi 710051 China

* Correspondence: Email: kelinglv@163.com.
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1. Introduction

Quantum error-correcting plays a vital role in both quantum computing and quantum
communication. Errors caused by noises are inevitable in the processing of quantum information.
Fortunately, it has been found that quantum information can be protected under some reasonable
physical assumptions by encoding it into quantum error-correcting codes (QECCs). Since the
pioneering work of Shor [1] and Steane [2], QECCs has been developed rapidly in the past decades.
In 1996, Calderbank et al. [2, 3] proposed the first systematic method for constructing binary QECCs,
the CS S construction. Afterwards, Steane et al. [4] improved the CS S construction by using two
self-orthogonal codes with inclusion relations and proposed the Steane construction. Whereafter,
CS S construction [5, 6] and Steane construction [7, 8] were generalized to the non-binary cases.

Lemma 1. [7, 8] (Steane construction) Let C1 and C2 be [n, k1, d1]q and [n, k2, d2]q linear codes,
respectively. If C⊥1 ⊂ C1 ⊂ C2, and k1 + 2 ≤ k2, then there exists an

[[
n, k1 + k2 − n,min

{
d1,

⌈
q+1

q d2

⌉}]]
q

pure QECC.

As a special kind of linear codes, self-dual codes has attracted many scholars to study it deeply
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because of its unique properties. In [9], Rains et al. reviewed the achievements of self-dual codes
before 1998. In [10], Grassl et al. constructed a large number of self-dual codes with Euclidean or
Hermitian inner products over small finite fields. Therewith, Harada et al. [11] improved the
construction methods to obtain a large number of ternary self-dual codes, and established a database
of self-dual codes of short lengths in [12].

According to the theory of classical groups, any self-orthogonal code is a subcode of a self-dual
code or a maximal self-orthogonal code. Therefore, it is a feasible way to construct self-orthogonal
codes by searching for subcodes of self-dual codes and self-orthogonal codes. Li et al. [13] introduced
the concept of S -chain over F2, and obtained a batch of binary QECCs by searching S -chains of
binary self-dual codes. In [14], Freibert et al. constructed many optimal self-orthogonal codes by
searching for some binary self-dual codes. In [15, 16], Fan et al. constructed many record-breaking
binary QECCs by searching for subcode pairs of self-orthogonal codes or self-dual codes. However,
due to constraints in practical situations, these studies are less concerned with the algebraic structure
of subcodes. In this work, we reveal the relationship between the dual distance of linear code and its
subcodes, and design a computer-supported S -chain search method. Here we give the definition of
S -chain over Fq as follows.

Definition 1. Let Cki,n be [n, ki, di] (i = 1, 2, . . . , t) linear codes over Fq. If C⊥ki,n
⊂ Cki,n ⊂ Cki+1,n, then

Ck1,n ⊂ Ck2,n · · · ⊂ Ckt ,n is called an S -chain.

Obviously, for linear codes, one can construct S -chains by searching for subcode chains.
Consequently, the construction of QECCs using S -chains can be decomposed into two subproblems.

1). Which kind of codes have potential subcodes with large dual distance?
2). For a linear code C, how to find a subcode chain with large dual distances?
In the study, we find that for a linear code C, if the covering radius of its dual code is larger, then

the probability of searching for subcodes with a large dual distance is higher, so the first question is
answered. However, if C is an [n, k] code Fq, then the number of subcode chains [17] is

∏k
t=2 Q[t, t −

1] =
∏k

t=2
qt−1
q−1 , where Q[t, r] is q − ary Gaussian binomial coefficient

∏r−1
j=0

qt− j−1
qr− j−1 . Hence, it will be

tough for large dimension to determine S -chains of C by a brute-force search. Thus, we transform
the problem of constructing S -chains into an optimization problem by virtue of covering radius, and
design a feasible algorithm, so that the second problem is partially solved.

Just like classical case, one of the central tasks of quantum error-correcting is to construct QECCs
with good parameters. When the length n and dimension k are fixed, we want to obtain a large minimum
distance d. Conversely, when the minimum distance d is equal, we want the rate k

n to be larger. There
are some bounds that are helpful to judge the performance of QECCs, among which the quantum
Gilbert-Vashamov (GV) bounds [18] are widely used.

Lemma 2. [18] (quantum GV bound) Suppose that n > kGV ≥ 2, and n ≡ kGV (mod 2), d ≥ 2. Then,
there exists an [[n, kGV , d]]q pure QECC if the inequality is satisfied.

qn−kGV +2 − 1
q2 − 1

>

d−1∑
i=1

(
q2 − 1

)i−1
(

n
i

)
. (1.1)

With reference to [18], if an [[n, k, d]]q QECC beats this bound, i.e., k ≥ kGV , then it has excellent
parameters.
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The organizational structure of this paper is as follows. In Section 2, basic knowledge of linear
codes are introduced. In Section 3, the relation between linear codes and the dual distances of its
subcodes is deduced, and a new S -chain search method is proposed. In Section 4, we construct 11
self-orthogonal codes by shortening 5 known extremal self-dual codes, and 18 S -chains are obtained
through our method. The related QECCs are obtained from our S -chains by Steane construction and a
comparison of the QECCs is shown. Conclusion is given in Section 5.

2. Preliminaries

Firstly, we give some basic knowledge on linear codes. For more details, we refer the readers to
standard textbook [19].

Let F3 = {0, 1, 2} be the Galois field with three elements, and let Fn
3 be the n-dimensional vector

space over F3. An [n, k]3 linear code is a k-dimensional linear subspace of Fn
3 . The Hamming weight

wt(v) of a vector v = (v1, v2, . . . , vn) is the number of non-zero coordinates in it. The minimum
Hamming distance of a linear code is d(C) = min {wt(u − v) | u, v ∈ C,u , v}. An [n, k] linear code
with minimum distance d over F3 is expressed as an [n, k, d]3 code, k

n is called information rate of C.
If a linear code C is generated by G, we can denote as C = 〈G〉. A subspace Ĉ of code C is a subcode
of C, which can be denoted as Ĉ ⊂ C.

For x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Fn
3 , the Euclidean inner product of vectors x, y is

defined as (x, y) = xyT = x1y1 + x2y2 + · · ·+ xnyn. If (x, y) = 0, then x and y are orthogonal. For a linear
code C ⊂ Fn

3 , the Euclidean dual code of C is C⊥ = {x ∈ Fn
3 |(x, c) = 0, c ∈ C}. If C ⊂ C⊥, then C is a

self-orthogonal code, if C = C⊥, then C is a self-dual code. The lengths of all ternary self-dual codes
satisfy n ≡ 0 (mod 4), and their minimum distance d is bounded by d ≤ 3[n/12]+3, if d = 3[n/12]+3,
then the code is called extremal. For any ternary self-orthogonal codes over F3, its minimum distance
d is a multiple of 3.

Let r = (r0, r1, . . . , rn−1) be a vector of length n. If A is generated by r, then it can be denoted as:
A = gcirc(r, η), where

A =


r0 r1 · · · rn−1

ηrn−1 r0 · · · rn−2
...

...
. . .

...

ηr1 ηr2 · · · r0

 . (2.1)

If η = 1 then A is a circulant matrix generated by r, if η = −1 then A is called nega-circulant, both
of which can be employed to construct self-dual codes. And circulant matrices that used in this paper
are all nega-circulant.

Two construction methods of self-dual codes are applied in this paper. The first one is called pure
double circulant, which is used in [10], and generator matrix of this method is G = (In | A), where A is
an n × n circulant matrix.

The second is called two-block circulant, in which two circulant matrices are used to construct a
generator matrix, and many optimal self-dual codes over F3 are constructed in [11] by this method.
The generator matrix is

G =

(
I2n

∣∣∣∣∣ A B
−BT AT

)
, (2.2)
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where A and B are circulant matrices of order n satisfying AAT + BBT = −In.
In this paper, some extremal self-dual codes in [10, 11] are involved and we give them in Table 1.

And a generator matrix G2
20 of self-dual code C2

20 in [12] is also given below.

Table 1. Self-dual codes from [10] and [11].

Codes Parameters Construction vector ra Construction vector rb

C16 [16, 8, 6]3 (22112000) -
C1

20 [20, 10, 6]3 (2212221020) -
C24 [24, 12, 9]3 (0010110) (012121)
C28 [28, 14, 9]3 (0010122) (1112121)
C1

32 [32, 16, 9]3 (00011012) (01122112)
C2

32 [32, 16, 9]3 (01010111) (01012112)
C36 [36, 18, 12]3 (111112211) (112121220)

G2
20 =



1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0
1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0
1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 0 0
0 0 0 0 1 1 0 0 1 2 1 2 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 1 2 0 0 0 0 0 0 0 0 1 1
0 0 0 0 1 0 0 1 0 0 1 2 0 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0 1 0 1 0 2 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0 1 0 1 0 0 2 1 0 0 0 1 0


. (2.3)

3. New method of searching for S -chains

This section presents a method for determining upper bound on the dual distance of subcodes, which
allows us to evaluate the search potential of linear codes. Then, a feasible S -chain search algorithm is
designed accordingly.

3.1. The upper bound on the dual distance of subcodes

Let C be an [n, k, d] linear code over Fq. The dual code of C is denoted as C⊥. In [19], covering
radius of C is defined as following lemma.

Lemma 3. [19] Let C be an [n, k, d] code over Fq. The covering radius of C, ρ(C) is the smallest
integer s such that Fn

q is the union of the spheres of radius s centered at the codewords of C.
Equivalently,

ρ(C) = max
x∈Fn

q

min
c∈C

d(x, c). (3.1)

According to Lemma 3, it is easy to deduce that the following lemma holds.

Lemma 4. For two linear codes C1, C2, if C1 ⊂ C2, then ρ(C2) ≤ ρ(C1).
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In addition, we find that there is a bounded relationship between ρ(C⊥) and d(Ĉ⊥), as shown in
Theorem 1.

Theorem 1. Let C be an [n, k, d] linear code over Fq, then for any subcode Ĉ of C, the following hold:
(1) d(Ĉ⊥) ≤ ρ(C⊥);
(2) ρ(Ĉ⊥) ≤ ρ(C⊥);

Proof : According to Lemma 3,
ρ(C⊥) = max

x∈Fn
q

min
c∈C⊥

d(x, c),

there is,
∀x ∈ Fn

q ,min
c∈C⊥

d(x, c) ≤ ρ(C⊥).

Furthermore,
∀α ∈ Ĉ⊥/C⊥,min

c∈C⊥
d(α, c) ≤ ρ(C⊥).

So d(Ĉ⊥) ≤ ρ(C⊥).
Similarly, by Lemma 4, ρ(Ĉ⊥) ≤ ρ(C⊥). �
By Theorem 1, it is easy to conclude that covering radius of dual code C⊥ is the upper bound on the

dual distance of subcode Ĉ. In addition, we find that if d(C⊥) ≥ ρ(C⊥), then the subcodes that reach
the upper bound on the dual distance can always be obtained by our searching method. Thus, for linear
code C, the larger d(C⊥) and ρ(C⊥), the more likely to search for subcodes with large dual distances,
i.e., C has greater search potential. It is easy to determine that extremal self-dual codes have good
search potential in accordance with this criterion. Therefore, this paper chooses extremal self-dual
codes as the object of study and constructs self-orthogonal codes by shortening them. Next, we refer
to linear code with lager d(C⊥) and ρ(C⊥) as code have good search potential. The following S -chain
search algorithm is designed accordingly.

3.2. Algorithm for searching S -chain

Let Gk,n be a generator matrix for an [n, k] linear code Ck,n over F3. And denote Dk−1,k = (Ik−1 | αk−1),
where αk−1 is a column vector of length k − 1. We will refer to α as dimension reduction vector.
According to the theory of classical groups, subcodes of linear code Ck,n can be constructed in the
following way,

Gk−1,n = Dk−1,kGk,n = (Ik−1 | αk−1) Gk,n. (3.2)

An [n, k − 1] subcode Ck−1,n of Ck,n can be generated by Gk−1,n. Thus, by searching αk−1, we can
find subcodes Ck−1,n with large dual distance. Inspired by [14–17], we design the following subcodes
search optimization model. Ck−1,n =

〈
Dk−1,kGk,n

〉
,

Tmax = max{T | T = w1d(C⊥k−1,n) + w2ρ(C⊥k−1,n)},
(3.3)

where w1, w2 are weight factors, and w1,w2 ∈ (0, 1). For a linear code Ck,n, d(C⊥k−1,n) and ρ(C⊥k−1,n)
sometimes cannot be maximized simultaneously, so their priorities need to be set. Therefore, we
determine the priority of d(C⊥k−1,n) and ρ(C⊥k−1,n) by using w1 and w2 to decide which subcode to be
selected as the search target for the next round.
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The priority of d(C⊥k−1,n) and ρ(C⊥k−1,n) can be determined by setting w1 ≥ w2 + 0.5 or w1 + 0.5 ≤ w2,
which corresponds to two search strategies, dual distance priority(DDP) and covering radius
priority(CRP), both of which are used in this paper. In most cases, DDP strategy performs well and
can be complemented by CRP strategy when its results are not good. Thus, DDP strategy is often
used as the primary search strategy, while CRP strategy is used as an alternative. Sometimes a
combination of these two strategies can achieve better results than either single strategy. Here we give
our S -chain search algorithm based on these two strategies.
Algorithm for searching S -chain: An algorithm to construct S -chain by searching for subcode chain
with optimal or near optimal dual distance distance.
(i) Input: Begin with a self-dual code or a self-orthogonal code Ck,n with parameters [n, k, d].
(ii) Output: Produce a related S -chain, S = {Ci,n|Cn−k,n ⊂ Cn−k+1,n ⊂ · · · ⊂ Cn−1,n}.

(a) Let i = k, and initialize the set B={Ci,n}.
(b) Build a set Bi−1 of all subcodes Ci−1,n of dimension 1 lower of Ci,n ∈ B by

Ci−1,n =
〈
(Ii−1 | αi−1) ·Gi,n

〉
, where αi−1 ∈ F i−1

3 .
(c) Add Ci−1,n to B by selecting from Bi−1 according to DDP strategy or CRP strategy, then repeat

step(b) by i minus one.
(d) Stop once i = 1, and let S be the dual chain of B, S = {C⊥ | C⊥ ∈ B} = {Ci,n | Cn−k,n ⊂ Cn−k+1,n ⊂

· · · ⊂ Cn−1,n}.
For self-dual codes or self-orthogonal codes of short length n ≤ 28, we can traverse αi−1 from F i−1

3
in step (b), which performs well and running time is also acceptable. However, as the search space
increases with length and dimension, the running time will increase exponentially. Therefore, as a
simplification, a random algorithm can be obtained by replacing the generation method of αi−1 in step
(b) with a random selection from F i−1

3 . In our study, the random algorithm also performs well for
self-dual codes or self-orthogonal codes of length 28 ≤ n ≤ 36.

4. Construction of S -chains and related QECCs

This section focuses on constructing QECCs by searching for S -chains with large distances. Firstly,
we construct 11 self-orthogonal codes by shortening 5 known extremal self-dual codes in Section 2,
and 18 S -chains are obtained by our searching method. Further, many good quantum codes are derived
via Steane construction, some of which improve existing results.

4.1. Construction of self-orthogonal codes

In Section 3, we give criterion to evaluate the search potential of linear code. By applying our
criterion to codes in [10–12], eight extremal self-dual codes with search potential are selected, which
have been given in Section 2, in which C1

32 and C1
20 are used only to construct self-orthogonal codes

by shortening. In Table 2, covering radius of the codes in Section 2 is given. According to [9], there
is only one non-equivalent extremal self-dual code C36. Unfortunately, we are unable to calculate
covering radius of C36 directly due to insufficient computational effort, so our estimates is given.

Furthermore, by shortening extremal self-dual codes in Section 2, we construct 11 self-orthogonal
codes with good search potential, which are given in Table 3. Similar to C36, covering radius of C⊥35 is
also estimated value.
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Table 2. Covering radius of self-dual codes.

Codes C16 C1
20 C2

20 C24 C28 C1
32 C2

32 C36

Covering radius 4 4 5 6 7 7 8 ≥ 8

Table 3. Construction of self-orthogonal codes.

C C⊥ ρ(C⊥) Shortened codes Sets of coordinates
C18 [18, 10, 5]3 4 C1

20 {1, 2}
C21 [21, 12, 6]3 4 C24 {1, 2, 3}
C22 [22, 12, 7]3 5 C24 {1, 2}
C23 [23, 12, 8]3 5 C24 {1}
C25 [25, 14, 6]3 6 C28 {1, 2, 4}
C29 [29, 16, 7]3 6 C1

32 {1, 4, 10}
C30 [30, 16, 7]3 7 C1

32 {1, 4}
C31 [31, 16, 8]3 7 C1

32 {1}
C33 [33, 18, 9]3 7 C36 {1, 2, 3}
C34 [34, 18, 10]3 7 C36 {1, 2}
C35 [35, 18, 11]3 ≥8 C36 {1}

4.2. Construction of S -chains and related QECCs

Next, 18 S -chains with large distances are obtained from extremal self-dual codes or self-orthogonal
codes through our method. In particular, two of resulting S -chains are of length 20, and they are
obtained by two different strategies, so that some parameters of these two chains are complementary.
All S -chains are summarized in Theorem 2. For details please see “Appendix”. It is easy to check that
many codes in our S -chains are optimal by comparing them with linear codes in [20]. The symbol * in
Theorem 2 means that those codes are optimal linear codes.

Theorem 2. For n ∈ {16, 18, 20, 21, . . . , 36} \ {26, 27}, there exists the following S -chains:
(1) S C16: [16, 8, 6]∗3 ⊂ [16, 9, 4]3 ⊂ [16, 10, 4]∗3 ⊂ [16, 11, 3]3 ⊂ [16, 12, 3]∗3 ⊂ [16, 13, 2]∗3 ⊂

[16, 14, 2]∗3 ⊂ [16, 15, 1]3;
(2) S C18: [18, 10, 5]3 ⊂ [18, 11, 4]3 ⊂ [18, 12, 4]∗3 ⊂ [18, 13, 3]3 ⊂ [18, 14, 3]∗3 ⊂ [18, 15, 2]∗3 ⊂

[18, 16, 2]∗3 ⊂ [18, 17, 2]∗3;
(3) S 1

C2
20

: [20, 10, 6]3 ⊂ [20, 11, 5]3 ⊂ [20, 12, 5]3 ⊂ [20, 13, 4]3 ⊂ [20, 14, 4]∗3 ⊂ [20, 15, 4]∗3 ⊂
[20, 16, 2]3 ⊂ [20, 17, 2]∗3 ⊂ [20, 18, 2]∗3 ⊂ [20, 19, 1]3;

(4) S 2
C2

20
: [20, 10, 6]3 ⊂ [20, 11, 5]3 ⊂ [20, 12, 5]3 ⊂ [20, 13, 4]3 ⊂ [20, 14, 4]∗3 ⊂ [20, 15, 3]3 ⊂

[20, 16, 3]∗3 ⊂ [20, 17, 2]∗3 ⊂ [20, 18, 2]∗3 ⊂ [20, 19, 1]3;
(5) S C21: [21, 12, 6]∗3 ⊂ [21, 13, 4]3 ⊂ [21, 14, 4]3 ⊂ [21, 15, 4]∗3 ⊂ [21, 16, 3]∗3 ⊂ [21, 17, 3]∗3 ⊂

[21, 18, 2]∗3 ⊂ [21, 19, 2]∗3 ⊂ [21, 20, 1]3;
(6) S C22: [22, 12, 7]∗3 ⊂ [22, 13, 5]3 ⊂ [22, 14, 5]3 ⊂ [22, 15, 4]3 ⊂ [22, 16, 4]∗3 ⊂ [22, 17, 3]∗3 ⊂

[22, 18, 3]∗3 ⊂ [22, 19, 2]∗3 ⊂ [22, 20, 2]∗3 ⊂ [22, 21, 1]3;
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(7) S C23: [23, 12, 8]∗3 ⊂ [23, 13, 5]3 ⊂ [23, 14, 5]3 ⊂ [23, 15, 5]3 ⊂ [23, 16, 4]3 ⊂ [23, 17, 4]∗3 ⊂
[23, 18, 3]∗3 ⊂ [23, 19, 3]∗3 ⊂ [23, 20, 2]∗3 ⊂ [23, 21, 2]∗3 ⊂ [23, 22, 1]3;

(8)S C24: [24, 12, 9]∗3 ⊂ [24, 13, 6]3 ⊂ [24, 14, 6]∗3 ⊂ [24, 15, 5]3 ⊂ [24, 16, 5]3 ⊂ [24, 17, 4]3 ⊂

[24, 18, 4]∗3 ⊂ [24, 19, 3]∗3 ⊂ [24, 20, 3]∗3 ⊂ [24, 21, 2]∗3 ⊂ [24, 22, 2]∗3 ⊂ [24, 23, 1]3;
(9) S C25: [25, 14, 6]3 ⊂ [25, 15, 6]∗3 ⊂ [25, 16, 5]3 ⊂ [25, 17, 4]3 ⊂ [25, 18, 4]3 ⊂ [25, 19, 4]∗3 ⊂

[25, 20, 3]∗3 ⊂ [25, 21, 3]∗3 ⊂ [25, 22, 2]∗3 ⊂ [25, 23, 1]3 ⊂ [25, 24, 1]3;
(10) S C28: [28, 14, 9]∗3 ⊂ [28, 15, 7]3 ⊂ [28, 16, 7]∗3 ⊂ [28, 17, 6]∗3 ⊂ [28, 18, 6]∗3 ⊂ [28, 19, 5]3 ⊂

[28, 20, 5]3 ⊂ [28, 21, 4]∗3 ⊂ [28, 22, 3]3 ⊂ [28, 23, 3]∗3 ⊂ [28, 24, 2]3 ⊂ [28, 25, 2]∗3 ⊂ [28, 26, 2]∗3 ⊂
[28, 27, 1]3;

(11) S C29: [29, 16, 7]3 ⊂ [29, 17, 6]3 ⊂ [29, 18, 6]∗3 ⊂ [29, 19, 5]3 ⊂ [29, 20, 5]3 ⊂ [29, 21, 4]3 ⊂

[29, 22, 4]∗3 ⊂ [29, 23, 3]3 ⊂ [29, 24, 3]∗3 ⊂ [29, 25, 2]3 ⊂ [29, 26, 2]∗3 ⊂ [29, 27, 2]∗3 ⊂ [29, 28, 1]3;
(12) S C30: [30, 16, 7]3 ⊂ [30, 17, 7]∗3 ⊂ [30, 18, 6]3 ⊂ [30, 19, 6]∗3 ⊂ [30, 20, 5]3 ⊂ [30, 21, 5]3 ⊂

[30, 22, 4]3 ⊂ [30, 23, 4]∗3 ⊂ [30, 24, 3]3 ⊂ [30, 25, 3]∗3 ⊂ [30, 26, 2]3 ⊂ [30, 27, 2]∗3 ⊂ [30, 28, 2]∗3 ⊂
[30, 29, 1]3;

(13) S C31: [31, 16, 8]3 ⊂ [31, 17, 7]3 ⊂ [31, 18, 7]3 ⊂ [31, 19, 6]3 ⊂ [31, 20, 6]∗3 ⊂ [31, 21, 5]3 ⊂

[31, 22, 5]∗3 ⊂ [31, 23, 4]3 ⊂ [31, 24, 4]∗3 ⊂ [31, 25, 3]3 ⊂ [31, 26, 3]∗3 ⊂ [31, 27, 2]3 ⊂ [31, 28, 2]∗3 ⊂
[31, 29, 2]∗3 ⊂ [31, 30, 1]3;

(14) S C2
32

: [32, 16, 9]∗3 ⊂ [32, 17, 8]3 ⊂ [32, 18, 7]3 ⊂ [32, 19, 7]∗3 ⊂ [32, 20, 6]3 ⊂ [32, 21, 6]∗3 ⊂
[32, 22, 5]3 ⊂ [32, 23, 5]∗3 ⊂ [32, 24, 4]3 ⊂ [32, 25, 4]∗3 ⊂ [32, 26, 3]3 ⊂ [32, 27, 3]∗3 ⊂ [32, 28, 2]3 ⊂

[32, 29, 2]∗3 ⊂ [32, 30, 2]∗3 ⊂ [32, 31, 1]3;
(15) S C33: [33, 18, 9]∗3 ⊂ [33, 19, 7]3 ⊂ [33, 20, 6]3 ⊂ [33, 21, 6]3 ⊂ [33, 22, 6]∗3 ⊂ [33, 23, 5]3 ⊂

[33, 24, 5]∗3 ⊂ [33, 25, 4]3 ⊂ [33, 26, 4]∗3 ⊂ [33, 27, 3]3 ⊂ [33, 28, 3]∗3 ⊂ [33, 29, 2]3 ⊂ [33, 30, 2]∗3 ⊂
[33, 31, 2]∗3 ⊂ [33, 32, 1]3;

(16) S C34: [34, 18, 10]∗3 ⊂ [34, 19, 7]3 ⊂ [34, 20, 7]3 ⊂ [34, 21, 6]3 ⊂ [34, 22, 6]3 ⊂ [34, 23, 5]3 ⊂

[34, 24, 5]3 ⊂ [34, 25, 4]3 ⊂ [34, 26, 4]3 ⊂ [34, 27, 4]∗3 ⊂ [34, 28, 3]3 ⊂ [34, 29, 3]∗3 ⊂ [34, 30, 2]3 ⊂

[34, 31, 2]∗3 ⊂ [34, 32, 2]∗3 ⊂ [34, 33, 1]3;
(17) S C35: [35, 18, 11]∗3 ⊂ [35, 19, 8]3 ⊂ [35, 20, 7]3 ⊂ [35, 21, 7]3 ⊂ [35, 22, 6]3 ⊂ [35, 23, 6]∗3 ⊂

[35, 24, 5]3 ⊂ [35, 25, 5]3 ⊂ [35, 26, 4]3 ⊂ [35, 27, 4]3 ⊂ [35, 28, 4]∗3 ⊂ [35, 29, 3]3 ⊂ [35, 30, 3]∗3 ⊂
[35, 31, 2]3 ⊂ [35, 32, 2]∗3 ⊂ [35, 33, 2]∗3 ⊂ [35, 34, 1]3;

(18) S C36: [36, 18, 12]∗3 ⊂ [36, 19, 8]3 ⊂ [36, 20, 8]3 ⊂ [36, 21, 7]3 ⊂ [36, 22, 7]∗3 ⊂ [36, 23, 6]3 ⊂

[36, 24, 6]∗3 ⊂ [36, 25, 5]3 ⊂ [36, 26, 5]3 ⊂ [36, 27, 4]3 ⊂ [36, 28, 4]3 ⊂ [36, 29, 4]∗3 ⊂ [36, 30, 3]3 ⊂

[36, 31, 3]∗3 ⊂ [36, 32, 2]3 ⊂ [36, 33, 2]∗3 ⊂ [36, 34, 2]∗3 ⊂ [36, 35, 1]3.

Many QECCs can be obtained from these S -chains by Steane construction, and the part that beats
the quantum GV-bound is given in Corollary 1.

Corollary 1. Let n ∈ {16, 18, 20, 21, . . . , 36} \ {26, 27}, then the following QECCs over F3 exists.
(1) [[16, 2, 6]]3, [[16, 10, 3]]3; [[20, 5, 6]]3, [[20, 4, 6]]3, [[20, 7, 5]]3, [[20, 10, 4]]3, [[20, 14, 3]]3;

[[24, 2, 8]]3, [[24, 4, 7]]3, [[24, 8, 6]]3, [[24, 10, 5]]3, [[24, 14, 4]]3, [[24, 18, 3]]3; [[28, 2, 9]]3,
[[28, 4, 8]]3, [[28, 8, 7]]3, [[28, 7, 7]]3, [[28, 11, 6]]3, [[28, 21, 3]]3; [[32, 14, 6]]3, [[32, 25, 3]]3;
[[36, 2, 11]]3, [[36, 17, 6]]3, [[36, 29, 3]]3.

(2) [[18, 13, 3]]3; [[21, 6, 6]]3, [[21, 11, 4]]3, [[21, 15, 3]]3; [[22, 4, 7]]3, [[22, 6, 6]]3, [[22, 12, 4]]3,
[[22, 16, 3]]3; [[23, 4, 7]]3, [[23, 13, 4]]3, [[23, 17, 3]]3; [[25, 9, 6]]3, [[25, 8, 6]]3, [[25, 15, 4]]3;
[[29, 11, 6]]3, [[29, 22, 3]]3; [[30, 12, 6]]3, [[30, 23, 3]]3; [[31, 13, 6]]3, [[31, 18, 4]]3; [[33, 15, 6]]3,
[[33, 26, 3]]3; [[34, 4, 10]]3, [[34, 27, 3]]3; [[35, 4, 10]]3, [[35, 16, 6]]3, [[35, 28, 3]]3.
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In order to illustrate that our QECCs has good parameters, the following Table 4 is provided, in
which our QECCs are compared with those in [21, 22], respectively. It is obvious that our QECCs
improves the existing results.

Table 4. Comparison of QECCs.

No. Our QECCs Rate QECCs in [21] Rate QECCs in [22] Rate
1 [[18, 13, 3]]3 0.722 [[18, 12, 3]]3 0.666 - -
2 [[20, 5, 6]]3 0.25 [[21, 5, 6]]3 0.238 - -
3 [[20, 7, 5]]3 0.35 - - [[21, 7, 5]]3 0.333
4 [[21, 6, 6]]3 0.285 - - [[21, 3, 6]]3 0.142
5 [[21, 15, 3]]3 0.714 [[20, 14, 3]]3 0.7 - -
6 [[22, 6, 6]]3 0.272 − - [[21, 3, 6]]3 0.142
7 [[23, 17, 3]]3 0.739 - - [[23, 16, 3]]3 0.695
8 [[24, 8, 6]]3 0.333 - - [[24, 0, 6]]3 0
9 [[24, 10, 5]]3 0.416 - - [[23, 1, 5]]3 0.043
10 [[24, 18, 3]]3 0.75 - - [[23, 16, 3]]3 0.695
11 [[25, 8, 6]]3 0.32 - - [[24, 0, 6]]3 0
12 [[25, 9, 6]]3 0.36 - - [[24, 0, 6]]3 0
13 [[32, 14, 6]]3 0.437 [[31, 13, 6]]3 0.419 - -
14 [[33, 26, 3]]3 0.787 - - [[33, 23, 3]]3 0.696
15 [[36, 17, 6]]3 0.472 [[33, 15, 6]]3 0.454 - -

5. Conclusions

In this work, we construct many good quantum codes from S -chains of extremal self-dual codes
or self-orthogonal codes over F3. Firstly, with covering radius of linear codes, we determine the
relationship between linear codes and the dual distance of its subcodes. Then, we identify the criterion
to judge the search potential of linear codes and design a feasible algorithm. Finally, 18 S -chains
with good parameters are obtained by our algorithm, and many good QECCs are derived via Steane
construction, some of which improve existing results. In future studies, we will work to investigate the
construction of optimal self-orthogonal codes, dual-containing codes, or quantum codes by searching
for subcode chains of self-orthogonal codes with different inner products.
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Appendix

In Tables 5–22, Gi
n denotes the generator matrix of Ci

n, where Ci
n are given in Section II or IV. αi is

column vector, which are used for reducing dimension.
In particular, nested pairs that match the Steane construction condition can be used to construct

quantum codes. In this paper, they are code pairs with distances: (≥ 11, 8), (≥ 10, 7), (≥ 9, 7)(≥
8, 6), (≥ 7, 5), (≥ 6, 4), (≥ 5, 4), (≥ 4, 3), (≥ 3, 2), and the difference between the dimensions of them is
not less than 2.

For example, in Table 5, [[16, 2, 6]]3 is derived from [16, 8, 6]3⊂[16, 10, 4]3. [[16, 6, 4]]3 is derived
from [16, 10, 4]3 ⊂ [16, 12, 3]3. [[16, 10, 3]]3 is derived from [16, 12, 3]3 ⊂ [16, 14, 2]3. The quantum
codes in Table 6–22 are also obtained by a similar way.

The symbol * in tables means that these codes are optimal codes. And the symbol � means those
quantum codes beats the quantum GV bound.

Table 5. Details of S C16 and related quantum codes.

αi Ci C⊥i Quantum codes
G16 [16, 8, 6]∗3 [16, 8, 6]∗3 [[16, 2, 6]]�3
(2, 2, 2, 2, 2, 2, 2)T [16, 7, 6]∗3 [16, 9, 4]3 -
(0, 1, 0, 2, 1, 2)T [16, 6, 6]∗3 [16, 10, 4]∗3 [[16, 6, 4]]3

(1, 1, 0, 0, 0)T [16, 5, 6]3 [16, 11, 3]3 -
(0, 2, 0, 2)T [16, 4, 9]∗3 [16, 12, 3]∗3 [[16, 10, 3]]�3
(1, 0, 0)T [16, 3, 9]∗3 [16, 13, 2]∗3 -
(1, 2)T [16, 2, 12]∗3 [16, 14, 2]∗3 -
(0)T [16, 1, 12]3 [16, 15, 1]3 -
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Table 6. Details of S C18 and related quantum codes.

αi Ci C⊥i Quantum codes
G18 [18, 8, 6]∗3 [18, 10, 5]3 [[18, 4, 5]]3

(1, 0, 0, 2, 1, 0, 0)T [18, 7, 6]∗3 [18, 11, 4]3 -
(2, 1, 1, 1, 1, 2)T [18, 6, 9]∗3 [18, 12, 4]∗3 [[18, 8, 4]]3

(1, 1, 2, 1, 0)T [18, 5, 9]∗3 [18, 13, 3]∗3 -
(0, 2, 2, 1)T [18, 4, 9]∗3 [18, 14, 3]∗3 [[18, 13, 3]]�3
(0, 1, 0)T [18, 3, 9]3 [18, 15, 2]∗3 -
(1, 0)T [18, 2, 9]3 [18, 16, 2]∗3 -
(2)T [18, 1, 18]∗3 [18, 17, 2]∗3 -

Table 7. Details of S 1
C2

20
and related quantum codes.

αi Ci C⊥i Quantum codes
G2

20 [20, 10, 6]∗3 [20, 10, 6]∗3 [[20, 5, 6]]�3
(0, 2, 0, 2, 1, 1, 1, 1, 0)T [20, 9, 6]∗3 [20, 11, 5]3 -
(1, 1, 2, 2, 0, 0, 1, 2)T [20, 8, 9]∗3 [20, 12, 5]3 [[20, 7, 5]]�3
(0, 0, 2, 2, 2, 2, 2)T [20, 7, 9]∗3 [20, 13, 4]3 -
(2, 1, 0, 2, 2, 2)T [20, 6, 9]∗3 [20, 14, 4]∗3 -
(2, 0, 1, 1, 0)T [20, 5, 12]∗3 [20, 15, 4]∗3 [[20, 13, 3]]3

(1, 2, 2, 2)T [20, 4, 12]∗3 [20, 16, 2]3 -
(2, 2, 2)T [20, 3, 12]∗3 [20, 17, 2]∗3 -
(0, 2)T [20, 2, 12]3 [20, 18, 2]∗3 -
(2)T [20, 1, 18]∗3 [20, 19, 1]3 -

Table 8. Details of S 2
C2

20
and related quantum codes.

αi Ci C⊥i Quantum codes
G2

20 [20, 10, 6]∗3 [20, 10, 6]∗3 [[20, 4, 6]]�3
(1, 1, 2, 2, 2, 1, 1, 2, 2)T [20, 9, 6]∗3 [20, 11, 5]3 -
(1, 0, 2, 0, 1, 1, 2, 1)T [20, 8, 9]∗3 [20, 12, 5]3 [[20, 6, 5]]3

(2, 2, 2, 2, 2, 2, 2)T [20, 7, 9]∗3 [20, 13, 4]3 -
(1, 2, 0, 0, 1, 2)T [20, 6, 9]∗3 [20, 14, 4]∗3 [[20, 10, 4]]�3
(0, 0, 2, 2, 2)T [20, 5, 9]3 [20, 15, 3]3 -
(0, 1, 0, 2)T [20, 4, 12]∗3 [20, 16, 3]∗3 [[20, 14, 3]]�3
(2, 2, 2)T [20, 3, 12]∗3 [20, 17, 2]∗3 -
(0, 1)T [20, 2, 15]∗3 [20, 18, 2]∗3 -
(2)T [20, 1, 15]3 [20, 19, 1]3 -
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Table 9. Details of S C21 and related quantum codes.

αi Ci C⊥i Quantum codes
G21 [21, 9, 9]∗3 [21, 12, 6]∗3 [[21, 6, 6]]�3
(1, 0, 0, 0, 1, 2, 2, 2)T [21, 8, 9]∗3 [21, 13, 4]3 -
(0, 0, 0, 1, 2, 1, 0)T [21, 7, 9]∗3 [21, 14, 4]3 -
(0, 1, 1, 1, 2, 0)T [21, 6, 9]∗3 [21, 15, 4]∗3 [[21, 11, 4]]�3
(2, 1, 0, 1, 2)T [21, 5, 9]3 [21, 16, 3]∗3 -
(2, 2, 2, 2)T [21, 4, 12]∗3 [21, 17, 3]∗3 [[21, 15, 3]]�3
(0, 0, 1)T [21, 3, 12]∗3 [21, 18, 2]∗3 -
(1, 2)T [21, 2, 15]∗3 [21, 19, 2]∗3 -
(1)T [21, 1, 15]3 [21, 20, 1]3 -

Table 10. Details of S C22 and related quantum codes.

αi Ci C⊥i Quantum codes
G22 [22, 10, 9]∗3 [22, 12, 7]∗3 [[22, 4, 7]]�3, [[22, 6, 6]]�3
(1, 2, 0, 0, 1, 1, 0, 0, 1)T [22, 9, 9]∗3 [22, 13, 5]3 -
(2, 0, 1, 1, 2, 0, 0, 0)T [22, 8, 9]∗3 [22, 14, 5]3 [[22, 8, 5]]3

(2, 2, 0, 1, 0, 0, 0)T [22, 7, 9]∗3 [22, 15, 4]3 -
(1, 0, 0, 1, 0, 1)T [22, 6, 9]3 [22, 16, 4]∗3 [[22, 12, 4]]�3
(1, 1, 2, 0, 2)T [22, 5, 12]∗3 [22, 17, 3]∗3 -
(2, 1, 1, 0)T [22, 4, 12]∗3 [22, 18, 3]∗3 [[22, 16, 3]]�3
(1, 0, 0)T [22, 3, 12]3 [22, 19, 2]∗3 -
(0, 1)T [22, 2, 15]∗3 [22, 20, 2]∗3 -
(1)T [22, 1, 15]3 [22, 21, 1]3 -

Table 11. Details of S C23 and related quantum codes.

αi Ci C⊥i Quantum codes
G23 [23, 11, 9]∗3 [23, 12, 8]∗3 [[23, 4, 7]]�3
(1, 2, 0, 0, 2, 0, 2, 0, 2, 2)T [23, 10, 9]∗3 [23, 13, 5]3 -
(2, 1, 0, 2, 2, 1, 0, 0, 1)T [23, 9, 9]∗3 [23, 14, 5]3 -
(2, 2, 2, 2, 1, 0, 0, 0)T [23, 8, 9]∗3 [23, 15, 5]3 [[23, 9, 5]]3

(2, 2, 1, 2, 0, 0, 2)T [23, 7, 9]3 [23, 16, 4]3 -
(2, 1, 2, 1, 1, 0)T [23, 6, 12]∗3 [23, 17, 4]∗3 [[23, 13, 4]]�3
(1, 1, 0, 1, 2)T [23, 5, 12]∗3 [23, 18, 3]∗3 -
(2, 2, 1, 1)T [23, 4, 12]∗3 [23, 19, 3]∗3 [[23, 17, 3]]�3
(0, 1, 1)T [23, 3, 15]∗3 [23, 20, 2]∗3 -
(1, 1)T [23, 2, 15]∗3 [23, 21, 2]∗3 -
(0)T [23, 1, 15]3 [23, 22, 1]3 -
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Table 12. Details of S C24 and related quantum codes.

αi Ci C⊥i Quantum codes
G24 [24, 12, 9]∗3 [24, 12, 9]∗3 [[24, 2, 8]]�3, [[24, 4, 7]]�3
(2, 2, 1, 0, 2, 0, 0, 0, 1, 0, 0)T [24, 11, 9]∗3 [24, 13, 6]3 -
(0, 2, 2, 1, 2, 2, 0, 2, 2, 2)T [24, 10, 9]∗3 [24, 14, 6]∗3 [[24, 8, 6]]�3
(1, 1, 2, 0, 0, 1, 0, 0, 0)T [24, 9, 9]∗3 [24, 15, 5]3 -
(0, 2, 1, 0, 1, 1, 2, 2)T [24, 8, 9]∗3 [24, 16, 5]3 [[24, 10, 5]]�3
(0, 0, 1, 1, 1, 0, 0)T [24, 7, 9]3 [24, 17, 4]3 -
(2, 0, 1, 0, 1, 2)T [24, 6, 12]∗3 [24, 18, 4]∗3 [[24, 14, 4]]�3
(1, 0, 1, 0, 0)T [24, 5, 12]∗3 [24, 19, 3]∗3 -
(2, 1, 1, 2)T [24, 4, 15]∗3 [24, 20, 3]∗3 [[24, 18, 3]]�3
(1, 0, 0)T [24, 3, 15]∗3 [24, 21, 2]∗3 -
(1, 1)T [24, 2, 18]∗3 [24, 22, 2]∗3 -
(0)T [24, 1, 18]3 [24, 23, 1]3 -

Table 13. Details of S C25 and related quantum codes.

αi Ci C⊥i Quantum codes
G25 [25, 11, 9]∗3 [25, 14, 6]3 [[25, 8, 6]]�3
(2, 0, 2, 0, 0, 1, 1, 0, 2, 0)T [25, 10, 9]∗3 [25, 15, 6]∗3 [[25, 9, 6]]�3
(0, 0, 1, 1, 2, 2, 2, 2, 0)T [25, 9, 9]∗3 [25, 16, 5]3 [[25, 10, 5]]3

(0, 2, 2, 2, 2, 2, 2, 2)T [25, 8, 9]3 [25, 17, 4]3 -
(2, 0, 2, 0, 1, 2, 0)T [25, 7, 9]3 [25, 18, 4]3 -
(1, 1, 1, 2, 2, 0)T [25, 6, 12]∗3 [25, 19, 4]∗3 [[25, 15, 4]]�3
(2, 0, 0, 2, 0)T [25, 5, 12]3 [25, 20, 3]∗3 [[25, 17, 3]]3

(2, 1, 1, 1)T [25, 4, 15]∗3 [25, 21, 3]∗3-
(0, 2, 2)T [25, 3, 15]∗3 [25, 22, 2]∗3 -
(0, 0)T [25, 2, 15]3 [25, 23, 1]3 -
(0)T [25, 1, 18]3 [25, 24, 1]3 -
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Table 14. Details of S C28 and related quantum codes.

αi Ci C⊥i Quantum codes
G28 [28, 14, 9]∗3 [28, 14, 9]∗3 [[28, 2, 9]]�3, [[28, 4, 8]]�3
(0, 2, 0, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2)T [28, 13, 9]∗3 [28, 15, 7]3 [[28, 7, 7]]�3
(1, 2, 1, 0, 0, 0, 2, 0, 0, 2, 1, 1)T [28, 12, 9]∗3 [28, 16, 7]∗3 [[28, 8, 7]]�3
(2, 0, 1, 0, 0, 0, 2, 0, 2, 2, 2)T [28, 11, 9]∗3 [28, 17, 6]∗3 -
(2, 2, 2, 1, 0, 2, 1, 1, 0, 1)T [28, 10, 9]3 [28, 18, 6]∗3 [[28, 11, 6]]�3
(1, 1, 2, 2, 1, 1, 1, 0, 0)T [28, 9, 9]3 [28, 19, 5]3 -
(0, 1, 0, 0, 2, 0, 2, 2)T [28, 8, 12]3 [28, 20, 5]3 [[28, 12, 5]]3

(1, 1, 1, 0, 1, 2, 2)T [28, 7, 12]3 [28, 21, 4]∗3 [[28, 15, 4]]3

(2, 1, 0, 0, 0, 0)T [28, 6, 12]3 [28, 22, 3]3 -
(1, 2, 2, 1, 2)T [28, 5, 12]3 [28, 23, 3]∗3 [[28, 21, 3]]�3
(1, 0, 0, 0)T [28, 4, 15]3 [28, 24, 2]3 -
(0, 2, 0)T [28, 3, 15]3 [28, 25, 2]∗3 -
(2, 1)T [28, 2, 21]∗3 [28, 26, 2]∗3 -
(0)T [28, 1, 21]3 [28, 27, 1]3 -

Table 15. Details of S C29 and related quantum codes.

αi Ci C⊥i Quantum codes
G29 [29, 13, 9]∗3 [29, 16, 7]3 [[29, 7, 7]]3

(0, 2, 0, 0, 2, 2, 0, 0, 2, 1, 1, 2)T [29, 12, 9]∗3 [29, 17, 6]3 -
(0, 0, 1, 0, 1, 0, 1, 0, 1, 2, 1)T [29, 11, 9]3 [29, 18, 6]∗3 [[29, 11, 6]]�3
(1, 2, 1, 2, 1, 2, 0, 0, 2, 1)T [29, 10, 9]3 [29, 19, 5]3 -
(1, 1, 0, 1, 0, 0, 0, 0, 1)T [29, 9, 12]∗3 [29, 20, 5]3 [[29, 13, 5]]3

(2, 0, 0, 0, 2, 1, 1, 1)T [29, 8, 12]3 [29, 21, 4]3 -
(1, 2, 0, 1, 0, 0, 1)T [29, 7, 12]3 [29, 22, 4]∗3 [[29, 17, 4]]3

(2, 1, 2, 0, 0, 2)T [29, 6, 15]∗3 [29, 23, 3]3 -
(2, 1, 0, 0, 1)T [29, 5, 15]3 [29, 24, 3]∗3 [[29, 22, 3]]�3
(2, 0, 2, 0)T [29, 4, 15]3 [29, 25, 2]3 -
(0, 2, 1)T [29, 3, 15]3 [29, 26, 2]∗3 -
(1, 0)T [29, 2, 21]∗3 [29, 27, 2]∗3 -
(0)T [29, 1, 21]3 [29, 28, 1]3 -
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Table 16. Details of S C30 and related quantum codes.

αi Ci C⊥i Quantum codes
G30 [30, 14, 7]∗3 [30, 16, 7]3 -
(0, 1, 0, 1, 2, 1, 2, 1, 1, 1, 1, 0, 0)T [30, 13, 9]∗3 [30, 17, 7]∗3 [[30, 7, 7]]3

(0, 0, 2, 2, 0, 2, 1, 0, 1, 0, 0, 0)T [30, 12, 9]3 [30, 18, 6]3 -
(1, 0, 0, 0, 1, 1, 2, 2, 2, 1, 0)T [30, 11, 9]3 [30, 19, 6]∗3 [[30, 12, 6]]�3
(0, 1, 1, 1, 0, 0, 1, 1, 1, 2)T [30, 10, 9]3 [30, 20, 5]3 [[30, 13, 5]]3

(2, 1, 1, 1, 0, 1, 2, 1, 0)T [30, 9, 12]∗3 [30, 21, 4]3 -
(0, 2, 1, 2, 2, 0, 1, 0)T [30, 8, 12]3 [30, 22, 4]3 -
(0, 0, 1, 1, 0, 0, 2)T [30, 7, 12]3 [30, 23, 4]∗3 [[30, 17, 4]]3

(2, 0, 0, 1, 0, 1)T [30, 6, 12]3 [30, 24, 3]3 -
(0, 2, 1, 1, 1)T [30, 5, 15]3 [30, 25, 3]∗3 [[30, 23, 3]]�3
(1, 2, 0, 2)T [30, 4, 15]3 [30, 26, 2]3 -
(2, 0, 2)T [30, 3, 18]∗3 [30, 27, 2]∗3 -
(1, 0)T [30, 2, 21]∗3 [30, 28, 2]∗3 -
(2)T [30, 1, 21]3 [30, 29, 1]3 -

Table 17. Details of S C31 and related quantum codes.

αi Ci C⊥i Quantum codes
G31 [31, 15, 9]∗3 [31, 16, 8]3 [[31, 5, 8]]3

(0, 1, 2, 0, 0, 0, 0, 2, 1, 1, 2, 0, 0, 2)T [31, 14, 9]∗3 [31, 17, 7]3 [[31, 9, 7]]3

(0, 0, 0, 2, 1, 0, 2, 1, 2, 2, 0, 0, 0)T [31, 13, 9]3 [31, 18, 6]3 -
(0, 0, 2, 1, 0, 1, 2, 2, 2, 2, 2, 2)T [31, 12, 9]3 [31, 19, 6]3 -
(2, 0, 2, 0, 2, 2, 0, 2, 1, 1, 0)T [31, 11, 9]3 [31, 20, 6]∗3 [[31, 13, 6]]�3
(2, 0, 1, 2, 1, 1, 2, 2, 2, 2)T [31, 10, 12]∗3 [31, 21, 5]3 -
(1, 1, 0, 1, 0, 2, 1, 2, 0)T [31, 9, 12]3 [31, 22, 5]∗3 [[31, 15, 5]]3

(1, 1, 0, 1, 2, 2, 2, 2)T [31, 8, 12]3 [31, 23, 4]3 -
(2, 2, 1, 2, 0, 0, 2)T [31, 7, 12]3 [31, 24, 4]∗3 [[31, 18, 4]]3

(1, 2, 2, 2, 2, 2)T [31, 6, 15]3 [31, 25, 3]3 -
(0, 0, 2, 2, 2)T [31, 5, 15]3 [31, 26, 3]∗3 [[31, 24, 3]]�3
(2, 2, 2, 2)T [31, 4, 18]∗3 [31, 27, 2]3 -
(1, 2, 2)T [31, 3, 18]3 [31, 28, 2]∗3 -
(0, 2)T [31, 2, 21]∗3 [31, 29, 2]∗3 -
(2)T [31, 1, 24]3 [31, 30, 1]3 -
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Table 18. Details of S C2
32

and related quantum codes.

αi Ci C⊥i Quantum codes
G2

32 [32, 16, 9]∗3 [32, 16, 9]∗3 [[32, 3, 9]]3

(1, 2, 0, 1, 2, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1)T [32, 15, 9]∗3 [32, 17, 8]3 [[32, 6, 8]]3

(1, 2, 2, 2, 1, 2, 0, 1, 0, 0, 0, 0, 0, 0)T [32, 14, 9]3 [32, 18, 7]3 -
(1, 0, 2, 2, 2, 0, 0, 0, 1, 0, 2, 0, 0)T [32, 13, 9]3 [32, 19, 7]∗3 [[32, 10, 7]]3

(1, 1, 0, 1, 1, 1, 2, 1, 2, 0, 0, 0)T [32, 12, 9]3 [32, 20, 6]3 -
(1, 0, 2, 0, 0, 1, 0, 2, 2, 2, 2)T [32, 11, 12]∗3 [32, 21, 6]∗3 [[32, 14, 6]]�3
(0, 0, 1, 1, 0, 1, 1, 0, 0, 0)T [32, 10, 12]3 [32, 22, 5]3 -
(2, 0, 2, 0, 2, 2, 2, 0, 2)T [32, 9, 12]3 [32, 23, 5]∗3 [[32, 16, 5]]3

(1, 1, 1, 0, 0, 0, 0, 0)T [32, 8, 12]3 [32, 24, 4]3 -
(2, 1, 1, 1, 1, 2, 2)T [32, 7, 15]∗3 [32, 25, 4]∗3 [[32, 20, 4]]3

(1, 2, 0, 0, 0, 0)T [32, 6, 15]3 [32, 26, 3]3 -
(2, 2, 2, 0, 2)T [32, 5, 18]∗3 [32, 27, 3]∗3 [[32, 25, 3]]�3
(1, 0, 0, 0)T [32, 4, 18]3 [32, 28, 2]3 -
(2, 2, 0)T [32, 3, 18]3 [32, 29, 2]∗3 -
(0, 1)T [32, 2, 21]3 [32, 30, 2]∗3 -
(0)T [32, 1, 24]3 [32, 31, 1]3 -

Table 19. Details of S C33 and related quantum codes.

αi Ci C⊥i Quantum codes
G33 [33, 15, 12]∗3 [33, 18, 9]∗3 [[33, 7, 8]]3

(1, 1, 0, 2, 0, 0, 1, 2, 2, 2, 2, 2, 2, 2)T [33, 14, 12]∗3 [33, 19, 7]3 [[33, 10, 7]]3

(2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)T [33, 13, 12]∗3 [33, 20, 6]3 -
(1, 1, 2, 0, 0, 2, 2, 2, 0, 2, 0, 0)T [33, 12, 12]∗3 [33, 21, 6]3 -
(2, 1, 2, 2, 0, 0, 2, 2, 1, 2, 2)T [33, 11, 12]∗3 [33, 22, 6]∗3 [[33, 15, 6]]�3
(1, 1, 1, 0, 1, 2, 0, 2, 0, 0)T [33, 10, 12]3 [33, 23, 5]3 -
(1, 0, 1, 0, 2, 2, 1, 2, 0)T [33, 9, 12]3 [33, 24, 5]∗3 [[33, 16, 5]]3

(1, 2, 2, 0, 0, 0, 0, 0)T [33, 8, 15]∗3 [33, 25, 4]3 -
(0, 1, 0, 1, 1, 1, 2)T [33, 7, 15]3 [33, 26, 4]∗3 [[33, 21, 4]]3

(2, 1, 0, 0, 0, 0)T [33, 6, 15]3 [33, 27, 3]3 -
(0, 2, 2, 0, 2)T [33, 5, 18]∗3 [33, 28, 3]∗3 [[33, 26, 3]]�3
(1, 0, 0, 0)T [33, 4, 18]3 [33, 29, 2]3 -
(1, 0, 0)T [33, 3, 18]3 [33, 30, 2]∗3 -
(1, 1)T [33, 2, 21]3 [33, 31, 2]∗3 -
(0)T [33, 1, 27]3 [33, 32, 1]3 -
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Table 20. Details of S C34 and related quantum codes.

αi Ci C⊥i Quantum codes
G34 [34, 16, 12]∗3 [34, 18, 10]∗3 [[34, 4, 10]]�3
(0, 1, 2, 0, 0, 1, 0, 2, 2, 2, 2, 1, 1, 0, 1)T [34, 15, 12]∗3 [34, 19, 7]3 -
(1, 0, 1, 2, 0, 1, 1, 0, 2, 2, 2, 2, 1, 0)T [34, 14, 12]∗3 [34, 20, 7]3 [[34, 10, 7]]3

(2, 1, 1, 2, 1, 0, 0, 0, 1, 1, 2, 0, 2)T [34, 13, 12]∗3 [34, 21, 6]3 -
(1, 0, 1, 0, 2, 0, 1, 2, 2, 2, 2, 2)T [34, 12, 12]∗3 [34, 22, 6]3 [[34, 15, 6]]3

(2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2)T [34, 11, 12]∗3 [34, 23, 5]3 -
(2, 2, 1, 0, 1, 1, 0, 2, 2, 2)T [34, 10, 12]3 [34, 24, 5]3 [[34, 17, 5]]3

(1, 2, 2, 2, 2, 2, 2, 2, 2)T [34, 9, 12]3 [34, 25, 4]3 -
(2, 1, 1, 0, 2, 2, 2, 2)T [34, 8, 12]3 [34, 26, 4]3 -
(0, 1, 1, 1, 1, 2, 1)T [34, 7, 15]3 [34, 27, 4]∗3 [[34, 22, 4]]3

(2, 1, 2, 2, 2, 2)T [34, 6, 15]3 [34, 28, 3]3 -
(1, 2, 2, 2, 0)T [34, 5, 15]3 [34, 29, 3]∗3 [[34, 27, 3]]�3
(2, 2, 2, 2)T [34, 4, 18]3 [34, 30, 2]3 -
(0, 0, 2)T [34, 3, 21]∗3 [34, 31, 2]∗3 -
(1, 1)T [34, 2, 24]∗3 [34, 32, 2]∗3 -
(2)T [34, 1, 24]3 [34, 33, 1]3 -

Table 21. Details of S C35 and related quantum codes.

αi Ci C⊥i Quantum codes
G35 [35, 17, 12]∗3 [35, 18, 11]∗3 [[35, 4, 10]]�3
(1, 1, 2, 1, 1, 0, 1, 2, 2, 0, 2, 1, 2, 2, 1, 0)T [35, 16, 12]∗3 [35, 19, 8]3 [[35, 7, 8]]3

(0, 1, 1, 0, 1, 1, 2, 1, 2, 2, 1, 1, 1, 0, 0)T [35, 15, 12]∗3 [35, 20, 7]3 -
(0, 0, 2, 0, 0, 1, 1, 1, 2, 2, 2, 1, 0, 2)T [35, 14, 12]∗3 [35, 21, 7]3 [[35, 11, 7]]3

(2, 2, 0, 0, 0, 0, 2, 2, 1, 2, 1, 2, 1)T [35, 13, 12]∗3 [35, 22, 6]3 -
(0, 1, 1, 1, 2, 1, 0, 2, 2, 2, 2, 2)T [35, 12, 12]∗3 [35, 23, 6]∗3 [[35, 16, 6]]�3
(0, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2)T [35, 11, 12]3 [35, 24, 5]3 -
(2, 1, 1, 0, 0, 1, 2, 2, 2, 2)T [35, 10, 12]3 [35, 25, 5]3 [[35, 18, 5]]3

(2, 1, 2, 2, 2, 2, 2, 2, 2)T [35, 9, 15]3 [35, 26, 4]3 -
(0, 0, 0, 2, 1, 1, 2, 2)T [35, 8, 15]3 [35, 27, 4]3 -
(2, 0, 0, 2, 0, 0, 2)T [35, 7, 18]∗3 [35, 28, 4]∗3 [[35, 23, 4]]3

(0, 2, 2, 2, 2, 2)T [35, 6, 18]∗3 [35, 29, 3]3 -
(2, 1, 2, 2, 2)T [35, 5, 18]3 [35, 30, 3]∗3 [[35, 28, 3]]�3
(2, 2, 2, 2)T [35, 4, 18]3 [35, 31, 2]3 -
(1, 0, 2)T [35, 3, 21]3 [35, 32, 2]∗3 -
(1, 1)T [35, 2, 24]∗3 [35, 33, 2]∗3 -
(2)T [35, 1, 27]3 [35, 34, 1]3 -
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Table 22. Details of S C36 and related quantum codes.

αi Ci C⊥i Quantum codes
G36 [36, 18, 12]∗3 [36, 18, 12]∗3 [[36, 2, 11]]�3
(0, 0, 1, 2, 1, 1, 2, 0, 0, 0, 0, 2, 1, 0, 0, 1, 0)T [36, 17, 12]∗3 [36, 19, 8]3 -
(0, 1, 1, 0, 2, 0, 2, 0, 2, 1, 1, 0, 0, 0, 1, 2)T [36, 16, 12]∗3 [36, 20, 8]3 [[36, 8, 8]]3

(0, 0, 2, 2, 1, 2, 2, 1, 2, 1, 1, 0, 0, 2, 1)T [36, 15, 12]∗3 [36, 21, 7]3 -
(0, 0, 2, 0, 2, 1, 1, 2, 2, 2, 0, 0, 1, 0)T [36, 14, 12]∗3 [36, 22, 7]∗3 [[36, 12, 7]]3

(0, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2)T [36, 13, 12]∗3 [36, 23, 6]3 -
(0, 1, 2, 1, 0, 0, 1, 0, 2, 2, 2, 2)T [36, 12, 12]3 [36, 24, 6]∗3 [[36, 17, 6]]�3
(2, 2, 1, 2, 0, 0, 0, 0, 0, 0, 0)T [36, 11, 12]3 [36, 25, 5]3 -
(2, 2, 0, 0, 1, 1, 2, 2, 2, 2)T [36, 10, 12]3 [36, 26, 5]3 [[36, 19, 5]]3

(1, 1, 1, 0, 0, 0, 0, 0, 0)T [36, 9, 12]3 [36, 27, 4]3 -
(1, 1, 2, 2, 1, 1, 1, 0)T [36, 8, 15]3 [36, 28, 4]3 -
(2, 2, 1, 2, 0, 2, 2)T [36, 7, 18]3 [36, 29, 4]∗3 [[36, 24, 4]]3

(1, 1, 0, 0, 0, 0)T [36, 6, 18]3 [36, 30, 3]3 -
(2, 0, 1, 0, 1)T [36, 5, 18]3 [36, 31, 3]∗3 [[36, 29, 3]]�3
(1, 0, 0, 0)T [36, 4, 21]3 [36, 32, 2]3 -
(2, 1, 0)T [36, 3, 21]3 [36, 33, 2]∗3 -
(1, 1)T [36, 2, 24]3 [36, 34, 2]∗3 -
(0)T [36, 1, 30]3 [36, 35, 1]3 -

c© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 7, Issue 4, 6516–6534.

http://creativecommons.org/licenses/by/4.0

	Introduction
	 Preliminaries 
	New method of searching for S-chains 
	The upper bound on the dual distance of subcodes
	Algorithm for searching S-chain

	Construction of S-chains and related QECCs
	Construction of self-orthogonal codes
	Construction of S-chains and related QECCs

	Conclusions

