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Abstract: In this paper, we propose a Dickey-Fuller difference statistic to sequentially detect the
change-point that shift from an unit root process to a long-memory process. The limiting distribution
of monitoring statistic under the unit root process null hypothesis as well as its consistency under the
alternative hypothesis are proved. Simulations indicate that the new method can control the empirical
size well even for the heavy-tailed unit root process when using the sieve bootstrap method computing
its critical values. In particular, it performs significantly better than the available method in the
literature under the alternative hypothesis. Finally, we illustrate the new monitoring procedure by a
set of foreign exchange rate data.
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1. Introduction

Since the seminal work of [15], detecting change-point that shifts between the short memory (I(0))
process and the unit root (I(1)) process becomes a popular topic in economics and statistics. A number
of testing procedures have been studied to distinguish this classical framework. For surveys, we refer
the reader to [1,3,10,14,18,20] among many others. Because the I(0) and I(1) process can be regarded
as a special case of the more flexible long-memory (I(d), 0 ≤ d < 3/2) process, detecting change-
point in the I(d) process has also received considerable attention in the past decades. Hassler and
Scheithauer [11] applied the ratio tests and the LBI tests of [1] to detect the change-point that shifts
from I(0) to I(d) process. Sibbertsen and Kruse [21], Hassler and Meller [12], Caporin and Gupta [2]
studied the change in persistence in I(d) process. Lavancier et al. [17] and Iacone and Lazarová [13]
studied the long-memory parameter change-point detection problem.
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All of the works above are offline tests, i.e., detecting the change-point in a fixed historical sample.
As many economic and financial data arrive steadily and cheaply, it is desirable to know whether a
newly arrived data can be described by the current model or indicate that a change in the stochastic
structure has taken place. This leads to the development of online tests, which is also an important
issue in change-point analysis. We refer the reader to [6, 8, 9, 16, 19, 23] for the most recent works
about this topic. However, the online monitoring study about the change-point in the I(d) process are
very limited. Chen et al. [4] applied a variance ratio statistic to monitor change-point that shifts from
I(0) to I(d) process. Chen et al. [5] extended the variance ratio statistic to persistent change-point
monitoring problem in the I(d) process. Chen et al. [7] proposed a two stage moving ratio statistic to
monitor long-memory parameter change-points.

In this paper, we propose a DF difference statistic to monitor I(1) to I(d) process change-point.
Although this type of change-point can be regarded as a special case of the long-memory parameter
change-point of [6], studying this problem has its own interesting for the unit root process plays an
important role in economics. We will show that the DF difference statistic has significantly higher
empirical power and shorter average run length (ARL) than the two stage moving ratio statistic in this
special case. Moreover, the new proposed monitoring procedure still work for change-point that shifts
from heavy-tailed unit root process to heavy-tailed long-memory process, while [7] only considered
light tail case. Detecting change-point in a heavy-tailed long-memory process also is an important
issue for many economic and finical data are heavy-tail.

The rest of the paper is organized as follows. Section 2 shows the model and the proposed new
monitoring statistic. The limiting results and their proofs are gathered in Section 3. In Section 4, we
check the finite sample performances of new monitoring procedure via simulation. Section 5 concludes
the paper.

2. Model and monitoring statistic

We consider the following time series model:

Yt = µt + εt, t = 1, 2, . . . , (2.1)

where µt = E(Yt) is a deterministic component, and the random component εt is a long-memory process
written as εt ∼ I(d), in which d ∈ (0, 0.5) ∪ (0.5, 1.5) is unknown long-memory parameter. More
specifically, εt are stationary and nonstationary long-memory process respectively, if 0 < d < 0.5
and 0.5 < d < 1.5 respectively, and it becomes an unit root process if d = 1. We do not give any
assumption about the structure of εt but assume its innovation process {ut} has zero mean and finite
moment of order q > 2.

Suppose we have observed the first m samples Y1,Y2, . . . ,Ym that follows the model (2.1) with d = 1,
namely, they are unit root process. From the (m+1)th new observations Ym+1,Ym+2, · · · ,we sequentially
detect whether the new observed samples still follows an unit root process or there occurs an unit root
to long-memory process change-point. The test hypotheses are

H0 : Yt ∼ I(1), t = m + 1, . . . ,T,

vs.

H1 : Yt ∼ I(1), t = m + 1, . . . , k∗,
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Yt ∼ I(d), t = k∗ + 1, . . . ,T,with 0 < d < 1, d , 0.5,

where k∗ > m denotes the unknown change-point, m denotes the training sample size, and T denotes
the prespecified largest monitoring sample size.

According to [20], we realize that the DF ratio statistic is a powerful statistic to test I(1) to I(0)
change-point. A nature idea is whether the DF ratio statistic can be extended to monitor this type of
change-point? Unfortunately, a lot of unreported simulations indicate that this does not work. Luckily,
we find the following statistic:

Gm(n) = T |ρ̂m(m) − ρ̃m(n)| , m < n ≤ T, (2.2)

where n denotes the sample size of currently available full observations, and

ρ̂m(m) =

m∑
t=1
ε̂t−1ε̂t

m∑
t=1
ε̂2

t−1

,

ρ̃m(n) =

n∑
t=n−m+1

ε̃t−1ε̃t

n∑
t=n−m+1

ε̃2
t−1

,

in which ε̂t = Yt − µ̂t with µ̂t denotes the OLS estimator of µt in the model (2.1) based on the historical
samples Y1, . . . ,Ym, and ε̃t = Yt − µ̃t with µ̃t denotes the OLS estimator of µt in the model (2.1) based
on the newest m samples Yn−m+1, . . . ,Yn. Because the statistic Gm(n) can be considered as a difference
of two DF statistics, we call it DF difference statistic.

3. Main results

In this section we derive the limiting distribution of monitoring statistic Gm(n). To save space, we
only consider the deterministic component µt = β0 + β1t case in the model (2.1), that is, the observed
time series Yt is an I(d) process with time trend. This together with the constant mean (β1 ≡ 0) case are
the most popular studied deterministic components in the I(d) process. Here, β0 and β1 are unknown
parameters.

Theorem 3.1. Let m = [Tτ], n = [T s], 0 < τ ≤ s < 1, and Yt was produced by model (2.1) with
µt = β0 + β1t, then under the null hypothesis H0, as m→ ∞, we have

Gm(n)⇒
1
2

∣∣∣∣∣∣∣ ξ(τ, τ)2 + τ∫ τ

0
ξ(r, τ)2dr

−
ξ(s, τ)2 − ξ(s − τ, τ)2 + τ∫ s

s−τ
ξ(r, τ)2dr

∣∣∣∣∣∣∣ ,
where⇒ denotes the weak convergence, and ξ(s, τ) = W(s) − sD(s, τ) with W(s) denotes the standard
Wiener process, and

D(s, τ) = 12τ−4
{

s2 + (s − τ)2

2

∫ s

s−τ
W(r)dr − s

∫ s

s−τ

∫ r

s−τ
W(ν)dνdr

}
.
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Proof. In order to easily prove the consistency of statistic Gm(n), which will be showed in Theorem 3.2,
we derive the null distribution of statistic Gm(n) under the case of 0.5 < d < 1.5. According to the OLS
estimation, if µt = β0 + β1t, we have

ε̃t = Yt − β̃0 − β̃1t, t = n − m + 1, . . . , n,

where

β̃0 = M−1


 n∑

t=n−m+1

t2

  n∑
t=n−m+1

Yt

 −  n∑
t=n−m+1

tYt

  n∑
t=n−m+1

t


 ,

β̃1 = M−1

m
n∑

t=n−m+1

tYt −

 n∑
t=n−m+1

t

  n∑
t=n−m+1

Yt)


 ,

= β1 + M−1

m
n∑

t=n−m+1

tεt −

 n∑
t=n−m+1

t

  n∑
t=n−m+1

εt




M = m
n∑

t=n−m+1

t2 −

 n∑
t=n−m+1

t

2

.

Let et = εt − εt−1. If εt ∼ I(d), 0.5 < d < 1.5, then et ∼ I(d − 1) is a stationary long-memory process.
Since m → ∞ implies T → ∞, according to the ergodic theory of stationary process and [22], as
m→ ∞, we have

T
1
2−dε[Tτ] = T

1
2−d

[Tτ]∑
t=1

et ⇒ ωWd−1(τ),

1
T

m∑
t=1

e2
t =

[Tτ]
T

1
[Tτ]

[Tτ]∑
t=1

e2
t

p
−→ τE(e2

t ) = τω2.

T−3
n∑

t=n−m+1

t2 −→
s3 − (s − τ)3

3
,

T−2
n∑

t=n−m+1

t −→
s2 − (s − τ)2

2
,

where ω2 denotes the long-run variance of {et}, Wd−1(τ) denotes the type I fractional Brownian motion
with long-memory parameter d − 1, and W0(τ) ≡ W(τ) becomes a standard Wiener process.

T−
1
2−d

n∑
t=n−m+1

εt = T−1
[T s]∑

t=[T s]−[Tτ]+1

T
1
2−d0

t∑
i=1

ei ⇒ ω

∫ s

s−τ
Wd−1(r)dr,

T−
3
2−d

n∑
t=n−m+1

tεt =
[T s] + 1

T
3
2 +d

[T s]∑
t=[T s]−[Tτ]+1

εt − T−
3
2−d

[T s]∑
t=[T s]−[Tτ]+1

t∑
j=[T s]−[Tτ]+1

ε j
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⇒ ω

{
s
∫ s

s−τ
Wd−1(r)dr −

∫ s

s−τ

∫ r

s−τ
Wd−1(ν)dνdr

}
.

Thus,

T
3
2−d

(
β̃1 − β1

)
= (T−4M)−1

 m

T
5
2 +d

n∑
t=n−m+1

tεt − (T−2
n∑

t=n−m+1

t)T−
1
2−d

n∑
t=n−m+1

εt


⇒ 12ωτ−4

{
s2 + (s − τ)2

2

∫ s

s−τ
Wd−1(r)dr − s

∫ s

s−τ

∫ r

s−τ
Wd−1(ν)dνdr

}
:= ωDd−1(s, τ),

with

Dd−1(s, τ) = 12τ−4
{

s2 + (s − τ)2

2

∫ s

s−τ
Wd−1(r)dr − s

∫ s

s−τ

∫ r

s−τ
Wd−1(ν)dνdr

}
.

Let

zt = ε̃t − ε̃t−1

= Yt − β̃0 − β̃1t − Yt−1 + β̃0 + β̃1(t − 1)
= et + (β̃1 − β1)

then,

T
1
2−d

[T s]∑
t=1

zt ⇒ ωWd−1(s) − ωsDd−1(s, τ).

From ε̃2
t = (ε̃t−1 + zt)2 = ε̃2

t−1 + 2ε̃t−1zt + z2
t , we have

n∑
t=n−m+1

ε̃t−1zt =
1
2
ε̃2

n −
1
2
ε̃2

n−m −
1
2

n∑
t=n−m+1

z2
t .

Hence,

T (ρ̃m(n) − 1)

=

T 1−2d
n∑

t=n−m+1
ε̃t−1zt

T−2d
n∑

t=n−m+1
ε̃2

t−1

=

(
T

1
2−d

n∑
j=1

z j

)2

−

(
T

1
2−d

n−m∑
j=1

z j

)2

− T 1−2d
n∑

t=n−m+1
z2

t

2T−1
n∑

t=n−m+1

(
T

1
2−d ∑t−1

j=1 z j

)2

⇒
(Wd−1(s) − sDd−1(s, τ))2

− (Wd−1(s − τ) − (s − τ)Dd−1(s, τ))2 + τÕp(T 2−2d)

2
∫ s

s−τ
Wd−1(r) − rDd−1(s, τ)2dr

,
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(3.1)

where Õp(T 2−2d) denotes lim
T→∞

P(Õp(T 2−2d)/T 2−2d = 1) = 1.
Similar argument gives that

T (ρ̂m(m) − 1) ⇒
(Wd−1(τ) − τDd−1(τ, τ))2 + τÕp(T 2−2d)

2
∫ τ

0
Wd−1(r) − rDd−1(τ, τ)2dr

. (3.2)

Combining (3.1), (3.2) and d = 1, we complete the proof of Theorem 3.1.

Theorem 3.2. If the time series {Yt} in the model (2.1) occurs a change-point that shifts from an unit
root process to a long-memory process at k∗,m < k∗ < n , then as m→ ∞, we have

Gm(n) =

{
Op(1), i f 1 ≤ d < 1.5,
Op(T 2−2d), i f d < 1.

.

Proof. We continue use the notations in the proof of Theorem 3.1. Since k∗ > m, the time series
Y1, . . . ,Ym are unit root process. This implies that the result (3.2) in the proof of Theorem 3.1 is still
hold, that is T (ρ̂m − 1) = Op(1). According to the ergodic theory of stationary process, we have

T−1
n∑

t=n−m+1

z2
t

p
−→ τω2,

this together with (3.1) give that

T (ρ̃m(n) − 1) =

{
Op(1), i f 1 ≤ d < 1.5,
Op(T 2−2d), i f d < 1.

This completes the proof of Theorem 3.2.
Theorem 3.2 indicates that the DF difference statistic Gm(n) will diverge to infinity under the

alternative hypothesis H1 when n > k∗. Thus, for a given critical value c at the nominal level α, we
can say that there occurs a change-point that shifts from I(1) to I(d), d < 1 process if Gm(n) > c. In
addition, since the two stage moving ratio statistic ΞT (n) of [7] will diverge to infinity only when
n > m + k∗, we guess that the statistic Gm(n) has shorter delay time than the statistic ΞT (n). However,
we can see that this statistic is not consistent for those change-points that shift from I(1) to
I(d), 1 < d < 1.5 process. In order to monitor this type of change-point, we can make first order
difference on the observed data. In the differenced data, the original change-point becomes a short- to
long-memory process. And then we can use the variance ratio statistic of [5] to monitor this
change-point.

Finally, we discuss how to determine the critical value of DF difference statistic Gm(n). No doubt,
its critical value will heavily depend on the historical sample size m and the largest monitoring sample
size T . The traditional way is to construct an approximate curve of critical values which are obtained
via direct simulation based on all of the necessary values of m and T . Obviously, it is hard work to
provide approximate curves for all possible m and T . To overcome this drawback, we recommend
using the sieve bootstrap method proposed by [7] to calculate the critical values of monitoring statistic
Gm(n) based on the historical samples Y1, · · · ,Ym. Simulations in the next section will show that the
sieve bootstrap method performs well even if the moment condition q > 2 of innovation process is not
satisfied. This is another reason why we recommend using the sieve bootstrap method to calculate the
critical value of statistic Gm(n).
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4. Monte Carlo simulation and empirical application

4.1. Monte Carlo simulation

In this section, we evaluate the finite sample performance of new proposed DF difference monitoring
statistic Gm(n), and compare it with the two stage moving ratio statistic ΞT (n) of [7]. Since many
economic and financial data are heavy-tailed, checking whether the statistic Gm(n) is still work in this
case is an interesting question. So, we use the following data-generating process (DGP) to generate the
simulation data.

yt =

{
r0 + r1t + ε1t, t = 1, . . . , k∗,
r0 + r1t + ε1[Tk∗] + ε2t, t = k∗ + 1, . . . ,T,

(4.1)

where ε1t follows a FARIMA(0,1,0) model, and ε2t follows a FARIMA(0,d,0) model with d varying
among {0, 0.2, 0.4, 0.6}. We assume the innovation process in these two FARIMA process follows
a stable distribution with tail index κ. We assume the change-point location k∗ = T under the null
hypothesis, and k∗ varying among {[0.25T ], [0.5T ], [0.75T ]} under the alternative hypothesis. We set
the tail index κ varying among {2, 1.8, 1.5, 1.2}, and the largest monitoring sample size T varying among
{200, 400, 1000}. Throughout this section, we fix the sieve bootstrap frequency B = 300, the training
sample size m = 0.25T , and all simulations are obtained by 1000 replications at α = 5% nominal level.

Table 1 reports the empirical sizes of two monitoring statistics. We can see that the empirical sizes
of statistic Gm(n) near to the test level in all cases. The effects of tail index κ and largest monitoring
sample size T on the empirical size have no significant regularity. The statistic ΞT (n) shows obvious
size distortion when T = 200, but it decreases quickly as T increases. Note that for DGP (4.1), the
limiting results derived in the Theorems 3.1 and 3.2 only hold if κ = 2, we can still obtain nice result
for κ < 2 cases mainly resort to the sieve bootstrap. Because it is a data deriving method. We say
that the sieve bootstrap method proposed by [7] is a feasible way to approximate the critical values
of two statistics even for heavy-tailed unit root process. In addition, we guess that the statistic Gm(n)
still converge to some unknown distribution even if the moment q of innovation ut in the model (2.1)
smaller than 2. However, this is still an open problem.

Table 1. Empirical sizes of monitoring statistics Gm(n) and ΞT (n) at 5% nominal level.

Gm(n) ΞT (n)
T\κ 2 1.8 1.5 1.2 2 1.8 1.5 1.2
200 0.059 0.046 0.035 0.022 0.129 0.096 0.084 0.080
400 0.050 0.069 0.075 0.071 0.078 0.068 0.053 0.061
1000 0.048 0.050 0.048 0.051 0.057 0.059 0.047 0.055

Tables 2 and 3 report the empirical powers and ARLs of two statistics, respectively. To save space,
we only show the results for T = 200, 400. Three conclusions can be conclude from these two tables.
First, the DF difference monitoring statistic Gm(n) has higher empirical power and shorter ARL than
the statistic ΞT (n) in the most cases. This indicates that the newly proposed statistic have a significant
advantage when monitoring unit root to long-memory process change-point. Second, the empirical
power increases as T , k∗ or change size increases. This verifies the consistency, which have been
proved in the Theorem 3.2, of statistic Gm(n). Third, a smaller tail index reflects a smaller empirical
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power and larger ARL, in general. This is a conceivable conclusion, since the change-point in a heavier
tailed data is less likely to be detected.

Table 2. Empirical powers of monitoring statistics Gm(n) and ΞT (n) at 5% nominal level.

Gm(n) ΞT (n)
T k∗ d\κ 2 1.8 1.5 1.2 2 1.8 1.5 1.2

200 0.25 0 0.997 0.989 0.920 0.623 0.522 0.357 0.211 0.137
0.2 0.991 0.930 0.699 0.274 0.415 0.275 0.161 0.107
0.4 0.919 0.692 0.351 0.115 0.294 0.191 0.116 0.087
0.6 0.680 0.296 0.192 0.076 0.206 0.135 0.092 0.076

0.5 0 0.996 0.970 0.886 0.480 0.702 0.567 0.386 0.257
0.2 0.968 0.869 0.555 0.174 0.601 0.470 0.298 0.204
0.4 0.872 0.553 0.241 0.071 0.461 0.340 0.225 0.160
0.6 0.552 0.212 0.141 0.056 0.347 0.231 0.151 0.119

0.75 0 0.969 0.881 0.652 0.214 0.664 0.553 0.367 0.245
0.2 0.893 0.627 0.247 0.068 0.554 0.433 0.281 0.207
0.4 0.644 0.258 0.092 0.042 0.421 0.315 0.215 0.159
0.6 0.307 0.086 0.053 0.031 0.290 0.211 0.144 0.126

400 0.25 0 1.000 1.000 0.985 0.949 0.846 0.708 0.442 0.281
0.2 1.000 0.997 0.889 0.414 0.667 0.545 0.292 0.198
0.4 1.000 0.956 0.315 0.156 0.446 0.341 0.189 0.140
0.6 0.968 0.459 0.144 0.103 0.238 0.169 0.117 0.090

0.5 0 1.000 1.000 0.982 0.921 0.944 0.848 0.610 0.445
0.2 1.000 0.996 0.781 0.308 0.815 0.694 0.458 0.317
0.4 0.997 0.897 0.244 0.133 0.624 0.515 0.313 0.225
0.6 0.917 0.344 0.125 0.096 0.386 0.292 0.191 0.139

0.75 0 1.000 0.999 0.927 0.748 0.893 0.785 0.556 0.373
0.2 1.000 0.978 0.456 0.177 0.761 0.623 0.408 0.273
0.4 0.982 0.648 0.152 0.104 0.560 0.440 0.264 0.189
0.6 0.705 0.157 0.102 0.091 0.313 0.255 0.156 0.126

4.2. Empirical application

In this section, we illustrate our proposed DF difference monitoring procedure by a set of foreign
exchange rate data between the RMB and the U.S. dollars from May 1 in 2009 to February 17 in 2010.
The data are download from the U.S. Federal Reserve Bank official website. Figure 1 shows the
raw data of a total of 200 exchanges rates. Under the same parametric assumptions as in the previous
simulation section, we find that the monitoring procedure stops at the 155th observation. This indicates
that there occurs an unit root to long-memory process change-point. This result is coincide with the
results of [20], who have studied this data set via the DF ratio offline test and found that it exits an unit
root to short memory process change-point. In fact, we can estimate an I(1) to I(0) change point at the
125th observation via the ratio estimator of [15].
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Figure 1. Foreign exchange rate data between the RMB and the U.S. dollars from May 1 in
2009 to February 17 in 2010.

Table 3. ARLs of monitoring statistics Gm(n) and ΞT (n) at 5% nominal level.

Gm(n) ΞT (n)
T k∗ d\κ 2 1.8 1.5 1.2 2 1.8 1.5 1.2
200 0.25 0 36.0 43.2 53.3 78.4 87.5 94.4 92.8 82.1

0.2 41.0 55.4 74.3 86.7 98.7 102 96.3 85.8
0.4 52.0 74.7 85.2 87.3 104 103 99.6 86.8
0.6 74.3 84.1 91.3 86.8 109 104 103 93.6

0.5 0 34.6 40.2 46.8 58.6 52.6 54.4 57.4 55.7
0.2 38.4 47.4 58.2 58.7 55.9 56.8 58.3 55.3
0.4 45.9 57.0 57.4 56.3 57.9 58.4 59.3 55.4
0.6 54.5 54.0 58.0 53.2 61.6 60.6 57.9 54.2

0.75 0 31.3 35.4 37.3 34.4 35.8 36.1 34.5 28.3
0.2 33.3 35.7 33.3 29.8 34.4 34.1 31.3 26.2
0.4 33.4 29.7 28.5 28.8 32.8 32.1 28.6 22.9
0.6 29.5 28.1 27.8 26.1 28.7 27.0 23.3 17.6

400 0.25 0 62.2 75.2 86.1 100 136 149 166 158
0.2 67.1 80.9 127 158 162 171 175 161
0.4 74.4 111 151 149 193 194 181 168
0.6 101 156 136 147 214 205 189 167

0.5 0 60.3 70.8 81.2 92.3 95.8 99.8 108 109
0.2 64.6 76.8 106 108 101 106 113 108
0.4 71.0 95.9 97.7 86.4 113 115 117 110
0.6 88.0 106 70.0 72.8 123 121 120 100

0.75 0 55.7 64.8 71.0 72.2 79.0 79.3 78.7 70.0
0.2 59.7 69.2 63.6 63.3 77.7 77.3 75.6 63.1
0.4 65.6 68.3 63.7 61.0 75.7 74.5 69.0 53.8
0.6 68.2 65.2 58.8 57.7 69.7 67.6 58.9 42.0
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5. Conclusions

It is more difficult to monitor a decreasing memory parameter change-point than monitor an
increasing memory parameter change-point in a long-memory process. In this paper, we have
proposed a DF difference statistic to sequentially detect unit root to long-memory process
change-point. We showed that for this special type of decreasing memory parameter change-point, the
new monitoring procedure can significantly improve the test power and shorten the delay time.
Furthermore, the derived null distribution only holds if the innovation of unit root process has finite
moment of order q > 2, but simulations indicate that the new monitoring procedure can also be used
to monitor changes from heavy-tailed unit root to long memory process. While detecting
change-point in heavy-tailed long-memory process also is an important issue for many economic and
financial time series are heavy-tail, the corresponding asymptotic properties need for further study.
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13. F. Iacone, Š. Lazarová, Semiparametric detection of changes in long range dependence, J. Time
Ser. Anal., 40 (2019), 693–706. https://doi.org/10.1111/jtsa.12448

14. M. Kejriwal, P. Perron, J. Zhou, Wald tests for detecting multiple structural changes in persistence,
Economet. Theor., 29 (2013), 289–323. https://doi.org/10.1017/S0266466612000357

15. J. Y. Kim, Detection of change in persistence of a linear time series, J. Econ., 95 (2000), 97–116.
https://doi.org/10.1016/S0304-4076(99)00031-7

16. C. Kirch, S. Weber, Modified sequential change point procedures based on estimating functions,
Electron. J. Stat., 12 (2018), 1579–1613. https://doi.org/10.1214/18-EJS1431

17. F. Lavancier, R. Leipus, A. Philippe, D. Surgailis, Detection of nonconstant long memory
parameter, Economet. Theor., 29 (2013), 1009–1056. https://doi.org/10.1017/S0266466613000303

18. S. Leybourne, R. Taylor, T. H. Kim, CUSUM of squares-based tests for a change in persistence, J.
Time Ser. Anal., 28 (2007), 408–433. https://doi.org/10.1111/j.1467-9892.2006.00517.x

19. F. X. Li, Z. S. Chen, Y. T. Xiao, Sequential change-point detection in a multinomial logistic
regression model, Open Math., 18 (2020), 807–819. https://doi.org/10.1515/math-2020-0037

20. R. B. Qin, Y. Liu, Block bootstrap testing for changes in persistence with
heavy-tailed innovations, Commun. Stat.-Theor. M., 47 (2018), 1104–1116.
https://doi.org/10.1080/03610926.2017.1316398

21. P. Sibbertsen, R. Kruse, Testing for a break in persistence under long-range dependences, J. Time
Ser. Anal., 30 (2009), 263–285. https://doi.org/10.1111/j.1467-9892.2009.00611.x

22. M. S. Taqqu, Weak convergence to fractional Brownian motion and to the
Rosenblatt process, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 31 (1975), 287–302.
https://doi.org/10.1007/BF00532868

23. W. Z. Zhao, Y. X. Xue, X. Liu, Monitoring parameter change in linear regression
model based on the efficient score vector, Physica A, 527 (2019), 121135.
https://doi.org/10.1016/j.physa.2019.121135

c© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 7, Issue 4, 6467–6477.

http://dx.doi.org/https://doi.org/10.1111/jtsa.12555
http://dx.doi.org/https://doi.org/10.1016/j.jeconom.2005.07.002
http://dx.doi.org/https://doi.org/10.1007/s00362-009-0292-y
http://dx.doi.org/https://doi.org/10.1007/s00181-013-0691-8
http://dx.doi.org/https://doi.org/10.1111/jtsa.12448
http://dx.doi.org/https://doi.org/10.1017/S0266466612000357
http://dx.doi.org/https://doi.org/10.1016/S0304-4076(99)00031-7
http://dx.doi.org/https://doi.org/10.1214/18-EJS1431
http://dx.doi.org/https://doi.org/10.1017/S0266466613000303
http://dx.doi.org/https://doi.org/10.1111/j.1467-9892.2006.00517.x
http://dx.doi.org/https://doi.org/10.1515/math-2020-0037
http://dx.doi.org/https://doi.org/10.1080/03610926.2017.1316398
http://dx.doi.org/https://doi.org/10.1111/j.1467-9892.2009.00611.x
http://dx.doi.org/https://doi.org/10.1007/BF00532868
http://dx.doi.org/https://doi.org/10.1016/j.physa.2019.121135
http://creativecommons.org/licenses/by/4.0

	Introduction
	Model and monitoring statistic 
	Main results
	Monte Carlo simulation and empirical application
	Monte Carlo simulation
	Empirical application

	Conclusions

