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Abstract: In this present investigation, the authors obtain Fekete-Szegö inequality for certain
normalized analytic function f (ζ) defined on the open unit disk for which

( f ′(ζ)ϑ
(
ζ f ′(ζ)

f (ζ)

)1−ϑ

≺ 1 + sin ζ; (0 ≤ ϑ ≤ 1)

lies in a region starlike with respect to 1 and symmetric with respect to the real axis. As a special case
of this result, the Fekete-Szegö inequality for a class of functions defined through Poisson distribution
series is obtained. Further, we discuss the second Hankel inequality for functions in this new class.
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1. Introduction and motivation

Let A denote the class of functions f which are analytic in the open unit disk D = {ζ : |ζ | < 1} of
the form

f (ζ) = ζ + a2ζ
2 + a3ζ

3 + · · · (ζ ∈ D) (1.1)

and let S denote the subclass ofA consisting of univalent functions.
Assume that f and g are two analytic functions in D. Then, we say that the function g is subordinate

to the function f , and we write
g(ζ) ≺ f (ζ) (ζ ∈ D),
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if there exists a Schwarz function ω(ζ) with ω(0) = 0 and |ω(ζ)| < 1, such that (see [1])

g(ζ) = f (ω(ζ)) (ζ ∈ D).

The familiar coefficient conjecture for the functions f ∈ S having the series form (1.1), was given
by Bieberbach in 1916 and it was later proved by de-Branges [2] in 1985. It was one of the most
celebrated conjectures in classical analysis, one that has stood as a challenge to mathematician for a
very long time. During this period, many mathematicians worked hard to prove this conjecture and as
result they established coefficient bounds for some sub-families of the class S of univalent functions.
Ma and Minda (see [3]) introduced two classes of analytic functions namely;

S∗(ψ) =
{

f ∈ A :
ζ f ′(ζ)

f (ζ)
≺ ψ(ζ) (ζ ∈ D)

}
and

C(ψ) =
{

f ∈ A : 1 +
ζ f ′′(ζ)

f ′(ζ)
≺ ψ(ζ) (ζ ∈ D)

}
,

where the function ψ is an analytic univalent function such thatℜ (ψ) > 0 in Dwith ψ(0) = 1, ψ′(0) >
0 and ψ maps D onto a region starlike with respect to 1 and symmetric with respect to the real axis and
the symbol ‘≺’ denote the subordination between two analytic functions. By varying the function ψ,
several familiar classes can be obtained as illustrated below:

(1) For ψ = 1+Aζ
1+Bζ (−1 ≤ B < A ≤ 1), we get the class S∗ (A, B), see [4].

(2) For different values of A and B, the class S∗ (α) = S∗ (1 − 2α,−1) is shown in [5].
(3) For ψ = 1 + 2

π2

(
log 1+

√
ζ

1−
√
ζ

)2
, the class was defined and studied in [6].

(4) For ψ =
√

1 + ζ, the class is denoted by S∗L, details can be seen in [7] and further studied in [8].
(5) For ψ = ζ +

√
1 + ζ2, the class is denoted by S∗l , see [9].

(6) If ψ = 1 + 4
3ζ +

2
3ζ

2, then such class denoted by S∗C was introduced in [10] and further studied
by [11].

(7) For ψ = eζ , the class S∗e was defined and studied in [12, 13].
(8) For ψ = cosh (ζ), the class is denoted by S∗cosh, see [14].
(9) For ψ = 1 + sin (ζ), the class is denoted by S∗sin, see [15] for details and further investigation,

see [16].

Recently in [17–22] by choosing some particular function for ψ as above, inequalities related with
coefficient bounds of some sub-classes of univalent functions have been discussed extensively .

The Fekete-Szegö inequality is one of the inequalities for the coefficients of univalent analytic
functions found by Fekete and Szegö (1933), related to the Bieberbach conjecture. Another
coefficient problem which is closely related with Fekete and Szegö is the Hankel determinant. Hankel
determinants are very useful in the investigations of the singularities and power series with integral
coefficients. For the functions f ∈ A of the form (1.1), in 1976, Noonan and Thomas [23] stated the
ℓth Hankel determinant as

Hℓ(n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

an an+1 · · · an+ℓ−1

an+1 an · · · an+ℓ−2
...

...
...

an+ℓ−1 an+ℓ−2 · · · an

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(a1 = 1 ℓ, n ∈ N = {1, 2, · · · .}).
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In particular, we have

H2(1) =

∣∣∣∣∣∣∣∣∣
a1 a2

a2 a3

∣∣∣∣∣∣∣∣∣ = a3 − a2
2 (a1 = 1, n = 1, ℓ = 2)

and

H2(2) =

∣∣∣∣∣∣∣∣∣
a2 a3

a3 a4

∣∣∣∣∣∣∣∣∣ = a2a4 − a2
3 (n = 2, ℓ = 2).

We note that H2(1) is the well-known Fekete-Szegö functional (see [24–26]).
In recent years, many papers have been devoted to finding the upper bounds for the second-order

Hankel determinant H2(2), for various sub-classes of analytic functions, it is worth mentioning that [13,
19,27–32] (also see references cited therein) and the upper bounds for the third and forth-order Hankel
determinants by many researchers (see [33–38]). Recently, Cho et al. [15] introduced the following
function class S∗s:

S ∗s :=
{

f ∈ A :
ζ f ′(ζ)

f (ζ)
≺ 1 + sin ζ (ζ ∈ D)

}
, (1.2)

which implies that the quantity ζ f ′(ζ)
f (ζ) lies in an eight-shaped region in the right-half plane. Inspired by

the aforementioned works, in this paper, we mainly investigate upper bounds for the second-order
Hankel determinant for the new function class RS∗sin associated with the sine function defined in
Definition 1.

Definition 1. Let 0 ≤ ϑ ≤ 1. Then the class RS∗sin(ϑ) consists of all analytic functions f ∈ A satisfying

( f ′(ζ)ϑ
(
ζ f ′(ζ)

f (ζ)

)1−ϑ

≺ 1 + sin ζ = Φ(ζ).

Note that,

RS
∗
sin(0) = S∗sin =

{
f ∈ A :

(
ζ f ′(ζ)

f (ζ)

)
≺ 1 + sin ζ

}
and

RS
∗
sin(1) = Rsin = { f ∈ A : f ′(ζ) ≺ 1 + sin ζ} .

2. Auxiliary results

To prove our main result, we need the following: Let P represent the family of functions h (ξ) that
are regular with positive part in open unit disc D and of the form

p(ζ) = 1 +
∞∑

n=1

cnζ
n (ξ ∈ D). (2.1)

Lemma 1. [39] If p(ζ) ∈ P as given in (2.1), then

| cn | ≤ 2 f or all n ≥ 1 and |c2 −
c2

1

2
| ≤ 2 −

|c1|
2

2
.
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Lemma 2. [40] If p(ζ) ∈ P as given in (2.1), then

|c2 − vc2
1| ≦ 2 max{1, |2v − 1|}

and the result is sharp for the functions given by

p(ζ) =
1 + ζ2

1 − ζ2 , p(ζ) =
1 + ζ
1 − ζ

.

Lemma 3. [41] If p(ζ) ∈ P as given in (2.1), then

|c2 − vc2
1| ≤


−4v + 2, if v ≤ 0,
2, if 0 ≤ v ≤ 1,
4v − 2, if v ≥ 1.

When v < 0 or v > 1, the equality holds if and only if p(ζ) is (1 + ζ)/(1 − ζ) or one of its rotations. If
0 < v < 1, then equality holds if and only if p(ζ) is (1+ ζ2)/(1− ζ2) or one of its rotations. If v = 0, the
equality holds if and only if

p(ζ) =
(
1
2
+

1
2
λ

)
1 + ζ
1 − ζ

+

(
1
2
−

1
2
λ

)
1 − ζ
1 + ζ

(0 ≤ λ ≤ 1)

or one of its rotations. If v = 1, the equality holds if and only if p is the reciprocal of one of the
functions such that the equality holds in the case of v = 0.

Lemma 4. [40] If p(ζ) ∈ P, then there exist some x, ζ with |x| ≤ 1, |ζ | ≤ 1, such that

2c2 = c2
1 + x(4 − c2

1),

4c3 = c3
1 + 2c1x(4 − c2

1) − (4 − c2
1)c1x2 + 2(4 − c2

1)(1 − |x|2)ζ.

3. Coefficient bounds and Fekete-Szegö inequality for f ∈ RS∗sin(ϑ)

In the first theorem,we will find the coefficient bounds for the function class RS∗sin(ϑ).

Theorem 5. If the function f (ζ) ∈ RS∗sin(ϑ) and is of the form (1.1), then

|a2| ≤
1

1 + ϑ
, (3.1)

|a3| ≤
1

2 + ϑ
max

{
1,

∣∣∣∣∣∣ϑ2 + ϑ − 2
2(1 + ϑ)2

∣∣∣∣∣∣
}
, (3.2)

and

|a3 − µa2
2| ≤

1
2 + ϑ

max
{

1,

∣∣∣∣∣∣ϑ2 + ϑ − 2 + 2µ(2 + ϑ)
2(1 + ϑ)2

∣∣∣∣∣∣
}
, (3.3)

where µ ∈ C.
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Proof. Since f (ζ) ∈ RS∗sin(ϑ), according to subordination relationship, thus there exists a Schwarz
function ω(ζ) with ω(0) = 0 and |ω(ζ)| < 1, satisfying

[ f ′(ζ)]ϑ
(
ζ f ′(ζ)

f (ζ)

)1−ϑ

= 1 + sin(ω(ζ)).

Here

[ f ′(ζ)]ϑ
(
ζ f ′(ζ)

f (ζ)

)1−ϑ

= 1 + (1 + ϑ)a2ζ +
ζ2

2
(2 + ϑ)[2a3 − (1 − ϑ)a2

2]

+
(3 + ϑ)ζ3

6
[(1 − ϑ)(2 − ϑ)a3

2 − 6(1 − ϑ)a2a3 + 6a4] + · · · . (3.4)

Now, we define a function

p(ζ) =
1 + ω(ζ)
1 − ω(ζ)

= 1 + c1ζ + c2ζ
2 + · · · .

It is known that p(ζ) ∈ P and

ω(ζ) =
p(ζ) − 1
1 + p(ζ)

=
c1

2
ζ +

(
c2

2
−

c2
1

4

)
ζ2 +

(
c3

2
−

c1c2

2
+

c3
1

8

)
ζ3 + · · · . (3.5)

On the other hand,

1 + sin(ω(ζ)) = 1 +
1
2

c1ζ + (
c2

2
−

c2
1

4
)ζ2

+

(
5c3

1

48
+

c3 − c1c2

2

)
ζ3 +

(
c4 − c1c3

2
+

5c2
1c2

16
−

c2
2

4
−

c4
1

32

)
ζ4 + · · · . (3.6)

Comparing the coefficients of ζ, ζ2, ζ3 between the Eqs (3.4) and (3.6), we obtain

a2 =
c1

2(1 + ϑ)
, (3.7)

1
2

(2 + ϑ)[2a3 − (1 − ϑ)a2
2] =

c2

2
−

c2
1

4
, (3.8)

(3 + ϑ)
6

[(1 − ϑ)(2 − ϑ)a3
2 − 6(1 − ϑ)a2a3 + 6a4] =

5c3
1

48
+

c3

2
−

c1c2

2
. (3.9)

Applying Lemma 1, we easily get

|a2| ≤
1

1 + ϑ
,

a3 =
1

2(2 + ϑ)

[
c2 − c2

1

(
3ϑ2 + 5ϑ
4(1 + ϑ)2

)]
, (3.10)

|a3| =
1

2(2 + ϑ)

∣∣∣∣∣∣c2 − c2
1

(
3ϑ2 + 5ϑ
4(1 + ϑ)2

)∣∣∣∣∣∣ = 1
2(2 + ϑ)

∣∣∣c2 − νc2
1

∣∣∣ ,
AIMS Mathematics Volume 7, Issue 4, 6365–6380.
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where ν = 3ϑ2+5ϑ
4(1+ϑ)2 . Now by applying Lemma 2, we get

|a3| ≤
1

2 + ϑ
max

{
1,

∣∣∣∣∣∣ϑ2 + ϑ − 2
2(1 + ϑ)2

∣∣∣∣∣∣
}
.

From (3.7) and (3.10), we have

a3 − µa2
2 =

1
2(2 + ϑ)

[
c2 − c2

1

(
3ϑ2 + 5ϑ
4(1 + ϑ)2

)
− c2

1
2µ(2 + ϑ)
4(1 + ϑ)2

]
=

1
2(2 + ϑ)

[
c2 − c2

1

(
3ϑ2 + 5ϑ + 2µ(2 + ϑ)

4(1 + ϑ)2

)]
(3.11)

=
1

2(2 + ϑ)

{
c2 − vc2

1

}
,

where

v :=
3ϑ2 + 5ϑ + 2µ(2 + ϑ)

4(1 + ϑ)2 .

Our result now follows by an application of Lemma 2 to get

|a3 − µa2
2| ≤

1
2 + ϑ

max
{

1,

∣∣∣∣∣∣ϑ2 + ϑ − 2 + 2µ(2 + ϑ)
2(1 + ϑ)2

∣∣∣∣∣∣
}
. (3.12)

Hence the proof is complete. □

Remark 1.

By taking µ = 1, we have |a3 − a2
2| ≤

1
2+ϑ max

{
1,

∣∣∣∣ϑ2+3ϑ+2
2(1+ϑ)2

∣∣∣∣} .
If ϑ = 0 and f ∈ S∗sin, then we get |a3 − a2

2| ≤
1
2 and if ϑ = 1 and f ∈ Rsin, we get |a3 − a2

2| ≤
1
3 .

Theorem 6. If the function f ∈ RS∗sin(ϑ) is given by (1.1), with µ ∈ R, then

∣∣∣a3 − µ a2
2

∣∣∣ ≤


−1
2(2 + ϑ)

(
ϑ2 + ϑ − 2

(1 + ϑ)2 +
2µ(2 + ϑ)
(1 + ϑ)2

)
, if µ < σ1,

1
2 + ϑ

, if σ1 ≤ µ ≤ σ2,

1
2(2 + ϑ)

(
ϑ2 + ϑ − 2

(1 + ϑ)2 +
2µ(2 + ϑ)
(1 + ϑ)2

)
, if µ > σ2,

where

σ1 :=
−3ϑ2 − 5ϑ
2(2 + ϑ)

and σ2 :=
ϑ2 + 3ϑ + 4

2(2 + ϑ)
.

Proof. From (3.11), we have

a3 − µ a2
2 =

1
2(2 + ϑ)

[
c2 −

(
3ϑ2 + 5ϑ
4(1 + ϑ)2 +

2µ(2 + ϑ)
4(1 + ϑ)2

)
c2

1

]
=

1
2(2 + ϑ)

(
c2 − νc2

1

)
,
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where

ν :=
3ϑ2 + 5ϑ + 2µ(2 + ϑ)

4(1 + ϑ)2 . (3.13)

The assertion of Theorem 6 now follows by an application of Lemma 3. □

4. Coefficient inequalities for the function f −1

Theorem 7. If the function f ∈ RS∗sin(ϑ) given by (1.1) and f −1(w) = w +
∞∑

n=2
dnwn is the analytic

continuation to D of the inverse function of f with |w| < r0, where r0 ≥
1
4 the radius of the Koebe

domain, then for any complex number µ, we have

|d2| ≤
1

1 + ϑ
, (4.1)

|d3| ≤
1

(2 + ϑ)
max

{
1,

∣∣∣∣∣∣ϑ2 + 5ϑ + 6
2(1 + ϑ)2

∣∣∣∣∣∣ } (4.2)

and

| d3 − µd2
2 |≤

1
(2 + ϑ)

max
{
1,

∣∣∣∣∣∣ϑ2 + 5ϑ + 6
2(1 + ϑ)2 −

µ(2 + ϑ)
(1 + ϑ)2

∣∣∣∣∣∣ }. (4.3)

Proof. If

f −1(w) = w +
∞∑

n=2

dnwn (4.4)

is the inverse function of f , it can be seen that

f −1( f (ζ)) = f
(

f −1(ζ)
)
= ζ. (4.5)

From Eq (4.5), we have

f −1(ζ +
∞∑

n=2

anζ
n) = ζ. (4.6)

Thus (4.5) and (4.6) yield

ζ + (a2 + d2)ζ2 + (a3 + 2a2d2 + d3)ζ3 + · · · = ζ, (4.7)

hence by equating the corresponding coefficients of ζ, it can be seen that

d2 = −a2, (4.8)
d3 = 2a2

2 − a3. (4.9)

From relations (3.7), (3.10), (4.8) and (4.9)

d2 = −
c1

2(1 + ϑ)
, (4.10)

AIMS Mathematics Volume 7, Issue 4, 6365–6380.
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d3 =
2c2

1

4(1 + ϑ)2 −
1

2(2 + ϑ)

[
c2 −

3ϑ2 + 5ϑ
4(1 + ϑ)2 c2

1

]
;

= −
1

2(2 + ϑ)

[
c2 −

(
3ϑ2 + 9ϑ + 8

4(1 + ϑ)2

)
c2

1

]
. (4.11)

Taking modulus on both sides and by applying Lemma 2, we get (4.1) and (4.2). For any complex
number µ, consider

d3 − µd2
2 = −

1
2(2 + ϑ)

[
c2 −

(
3ϑ2 + 9ϑ + 8

4(1 + ϑ)2 −
µ(2 + ϑ)
2(1 + ϑ)2

)
c2

1

]
. (4.12)

Taking modulus on both sides and by applying Lemma 2 on the right hand side of (4.12), one can
obtain the result as in (4.3). Hence this completes the proof. □

5. Functions defined by Poisson distribution

A variable X is said to be Poisson distributed if it takes the values 0, 1, 2, 3, · · · with probabilities
e−κ, κ e−κ

1! , κ2 e−κ
2! , κ3 e−κ

3! , ... respectively, where κ is called the parameter. Thus

P(X = τ) =
κre−κ

τ!
, τ = 0, 1, 2, 3, · · · .

In [42], Porwal introduced a power series whose coefficients are probabilities of Poisson distribution

I(κ, ζ) = ζ +
∞∑

n=2

κn−1

(n − 1)!
e−κζn, ζ ∈ D,

where κ > 0. We note that by the ratio test the radius of convergence of the above series is infinity. Due
to the recent works in [42–45], let the linear operator

Iκ(ζ) : A → A

be given by

Iκ f (ζ) = I(κ, ζ) ∗ f (ζ)

= ζ +

∞∑
n=2

κn−1

(n − 1)!
e−κanζ

n

= ζ +

∞∑
n=2

Υn(κ)anζ
n,

where Υn = Υn(κ) = κn−1

(n−1)!e
−κ and ∗ denote the convolution or the Hadamard product of two series. In

particular

Υ2 = κe−κ and Υ3 =
κ2

2
e−κ. (5.1)

We define the class RS∗sin(ϑ,Υ) in the following way:

RS
∗
sin(ϑ,Υ) = { f ∈ A : Iκ f ∈ RS∗sin(ϑ)},

AIMS Mathematics Volume 7, Issue 4, 6365–6380.
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where RS∗sin(ϑ) is given by Definition 1 and

Iκ f (ζ) = ζ + Υ2a2ζ
2 + Υ3a3ζ

3 + Υ4a4ζ
4 · · · .

Proceeding as in Theorems 5 and 6, we could obtain the coefficient estimates for functions of this class
RS

∗
sin(ϑ,Υ) from the corresponding estimates for functions of the class RS∗sin(ϑ).

Theorem 8. Let 0 ≤ ϑ ≤ 1 and Iκ f (ζ) = ζ + Υ2a2ζ
2 + Υ3a3ζ

3 + · · · . If f ∈ RS∗sin(ϑ,Υ), then for
complex µ, we have

|a3 − µa2
2| ≤

1
(2 + ϑ)Υ3

max
{

1,

∣∣∣∣∣∣µ(2 + ϑ)Υ3

(1 + ϑ)2Υ2
2

+
ϑ2 + ϑ − 2
2(1 + ϑ)2

∣∣∣∣∣∣
}
. (5.2)

Proof. Since f ∈ RS∗sin(ϑ,Υ), for Iκ f (ζ) = ζ + Υ2a2ζ
2 + Υ3a3ζ

3 + · · · we have

[(Iκ f (ζ))′]ϑ
(
ζ(Iκ f (ζ))′

Iκ f (ζ)

)1−ϑ

= 1 + sin(ω(ζ)).

By (3.4), we can easily get

[(Iκ f (ζ))′]ϑ
(
ζ(Iκ f (ζ))′

Iκ f (ζ)

)1−ϑ

= 1 + (1 + ϑ)Υ2a2ζ + (2 + ϑ)[2Υ3a3 − (1 − ϑ)Υ2
2a2

2]
ζ2

2

+ (3 + ϑ)
[
(1 − ϑ)(2 − ϑ)Υ3

2a3
2 − 6(1 − ϑ)Υ2Υ3a2a3

+ 6Υ4a4]
ζ3

6
+ · · · . (5.3)

Thus by (5.3) and (3.6) we have

1 + (1 + ϑ)Υ2a2ζ + (2 + ϑ)[2Υ3a3 − (1 − ϑ)Υ2
2a2

2]
ζ2

2

+ (3 + ϑ)[(1 − ϑ)(2 − ϑ)Υ3
2a3

2 − 6(1 − ϑ)Υ2Υ3a2a3 + 6Υ4a4]
ζ3

6
+ · · ·

= 1 +
1
2

c1ζ + (
c2

2
−

c2
1

4
)ζ2

+

(
5c3

1

48
+

c3 − c1c2

2

)
ζ3 +

(
c4 − c1c3

2
+

5c2
1c2

16
−

c2
2

4
−

c4
1

32

)
ζ4 + · · · .

Now by equating corresponding coefficients of ζ, ζ2 and proceeding as in Theorem 5,

a2 =
c1

2(1 + ϑ)Υ2
, (5.4)

a3 =
1

2(2 + ϑ)Υ3

[
c2 − c2

1

(
3ϑ2 + 5ϑ
4(1 + ϑ)2

)]
. (5.5)

From (5.4) and (5.5), we get

a3 − µa2
2 =

1
2(2 + ϑ)Υ3

[
c2 − c2

1

(
3ϑ2 + 5ϑ
4(1 + ϑ)2

)
− c2

1
2µ(2 + ϑ)Υ3

4(1 + ϑ)2Υ2
2

]
=

1
2(2 + ϑ)

[
c2 − c2

1

(
3ϑ2 + 5ϑ
4(1 + ϑ)2 +

2µ(2 + ϑ)Υ3

4(1 + ϑ)2Υ2
2

)]
. (5.6)

Now by an application of Lemma 2 we get the desired result. □
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Theorem 9. Let 0 ≤ ϑ ≤ 1 and Iκ f (ζ) = ζ + Υ2a2ζ
2 + Υ3a3ζ

3 + · · · , with µ ∈ R, then

∣∣∣a3 − µ a2
2

∣∣∣ ≤


−1
2(2 + ϑ)Υ3

(
ϑ2 + ϑ − 2

(1 + ϑ)2 +
2µ(2 + ϑ)Υ3

(1 + ϑ)2Υ2
2

)
, if µ < σ1,

1
(2 + ϑ)Υ3

, if σ1 ≤ µ ≤ σ2,

1
2(2 + ϑ)Υ3

(
ϑ2 + ϑ − 2

(1 + ϑ)2 +
2µ(2 + ϑ)Υ3

(1 + ϑ)2Υ2
2

)
, if µ > σ2,

where

σ1 :=
−(3ϑ2 + 5ϑ)

2(2 + ϑ)
Υ2

2

Υ3
and σ2 :=

ϑ2 + 3ϑ + 4
2(2 + ϑ)

Υ2
2

Υ3
.

Specially, taking Υ2 = κe−κ and Υ3 =
κ2

2 e−κ, we easily state the above results related with Poisson
distribution series.

Using (5.6), and applying Lemma 3 we get desired result.

6. Second Hankel inequality for f ∈ RS∗sin(ϑ)

Theorem 10. If the function f ∈ RS∗sin(ϑ) and is given by (1.1), then

|a2a4 − a2
3| ≤

1
(2 + ϑ)2 .

Proof. Using the Eqs (3.7) and (3.10) in (3.9) it follows that

a4 =
1

2(3 + ϑ)

[
c3 +

(
(1 − ϑ)(3 + ϑ)

2(1 + ϑ)(2 + ϑ)
− 1

)
c1c2

+

(
5

24
−

(1 − ϑ)(2 − ϑ)(3 + ϑ)
24(1 + ϑ)3 −

(1 − ϑ)(3 + ϑ)(3ϑ2 + 5ϑ)
8(1 + ϑ)2(2 + ϑ)

)
c1

3
]
.

(6.1)

By simple computation we get,

a4 =
1

2(3 + ϑ)

[
c3 −

(
3ϑ2 + 8ϑ + 1

2(1 + ϑ)(2 + ϑ)

)
c1c2 +

(
13ϑ4 + 56ϑ3 + 55ϑ2 − 2ϑ − 2

24(1 + ϑ)3(2 + ϑ)

)
c1

3
]

=
1

2(3 + ϑ)
c3 −

(
3ϑ2 + 8ϑ + 1

4(ϑ3 + 6ϑ2 + 11ϑ + 6)

)
c1c2 +

(
13ϑ4 + 56ϑ3 + 55ϑ2 − 2ϑ − 2

48(1 + ϑ)3(2 + ϑ)(3 + ϑ)

)
c1

3.

Thus we establish that the estimate of the second Hankel determinant,

a2a4 − a2
3 =

1
16

[
−

{
ϑ4 + 6ϑ3 + 5ϑ2 + 4ϑ + 8
12(1 + ϑ)3(2 + ϑ)2(3 + ϑ)

}
c1

4

−

{
4

(1 + ϑ)(2 + ϑ)2(3 + ϑ)

}
c1

2c2 −
4

(2 + ϑ)2 c2
2 +

4
(1 + ϑ)(3 + ϑ)

c1c3

]
. (6.2)
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Since p ∈ P it follows that p
(
e−iθz

)
∈ P; (θ ∈ R), hence we may assume without loss of generality that

c := c1 ≥ 0. Substituting the values of c2 and c3 as in Lemma 4 in (6.2), we get

|a2a4 − a2
3| =

1
16

∣∣∣∣∣∣ −
(

ϑ2 + 2ϑ + 5
12(1 + ϑ)3(3 + ϑ)

)
c4

−

{
c2

(1 + ϑ)(3 + ϑ)
+

(4 − c2)
(2 + ϑ)2

}
(4 − c2)x2

+
2

(1 + ϑ)(3 + ϑ)
c(4 − c2)(1 − |x|2)y

∣∣∣∣∣ . (6.3)

Replacing |x| by δ and by making use of the triangle inequality and the fact that |y| ≤ 1 in the above
expression, we get

|a2a4 − a2
3| ≤

1
16

[ (
ϑ2 + 2ϑ + 5

12(1 + ϑ)3(3 + ϑ)

)
c4 +

2c
(1 + ϑ)(3 + ϑ)

(4 − c2)

+

{
c2

(1 + ϑ)(3 + ϑ)
−

2c
(1 + ϑ)(3 + ϑ)

+
(4 − c2)
(2 + ϑ)2

}
(4 − c2)δ2

]
= F (c, δ). (6.4)

We shall now maximize F (c, δ), for (c, δ) ∈ [0, 2]× [0, 1]. Differentiating F (c, δ), partially with respect
to δ we get

∂F

∂δ
=

1
8

{
c2

(1 + ϑ)(3 + ϑ)
−

2c
(1 + ϑ)(3 + ϑ)

+
(4 − c2)
(2 + ϑ)2

}
(4 − c2)δ. (6.5)

For 0 ≤ δ ≤ 1, and for any fixed c ∈ [0, 2], we observe that ∂F
∂δ

> 0. Thus F (c, δ) is an increasing
function of δ, and for c ∈ [0, 2], F (c, δ) has a maximum value at δ = 1. So, we have

max
0≤δ≤1
F (c, δ) = F (c, 1) = G(c).

On a simplification, we find that

F (c, δ) = F (c, 1) = G(c) =
1
16

[ (
ϑ2 + 2ϑ + 5

12(1 + ϑ)3(3 + ϑ)

)
c4

+

{
c2

(1 + ϑ)(3 + ϑ)
+

(4 − c2)
(2 + ϑ)2

}
(4 − c2)

]
. (6.6)

Equivalently,

F (c, δ) = F (c, 1) = G(c) =
1

16

[ (
ϑ2 + 2ϑ + 5

12(1 + ϑ)3(3 + ϑ)

)
c4 +

c2(4 − c2)
(1 + ϑ)(3 + ϑ)

+
(4 − c2)2

(2 + ϑ)2

]
.

Now we note that

G′(c) =
1

16

[
4
(

ϑ2 + 2ϑ + 5
12(1 + ϑ)3(3 + ϑ)

)
c3 +

8c − 4c3

(1 + ϑ)(3 + ϑ)
+

(4c3 − 16c)
(2 + ϑ)2

]
.

If G′(c) = 0, then the root is c = 0. Also, we have

AIMS Mathematics Volume 7, Issue 4, 6365–6380.



6376

G′′(c) =
1

16

[ (
ϑ2 + 2ϑ + 5

(1 + ϑ)3(3 + ϑ)

)
c1

3 +

(
8 − 12c2

(1 + ϑ)(3 + ϑ)
+

12c2

(2 + ϑ)2 −
16

(2 + ϑ)2

) ]
=

1
16

[ (
ϑ2 + 2ϑ + 5

(1 + ϑ)3(3 + ϑ)

)
c1

3 − 12
(

1
(1 + ϑ)(3 + ϑ)(2 + ϑ)2

)
c2 −

8(ϑ2 + 4ϑ + 2)
(1 + ϑ)(3 + ϑ)(2 + ϑ)2

]
is negative for c = 0, which means that the function G(c) can take the maximum value at c = 0, also
which is

|a2a4 − a2
3| ≤

1
(2 + ϑ)2 .

□

Remark 2.

When ϑ = 1, then f ∈ Rsin and we get

|a2a4 − a2
3| ≤

1
9
.

Also by fixing ϑ = 0, then f ∈ S∗sin and we get

|a2a4 − a2
3| ≤

1
4
.

7. Conclusions and observations

In the present paper, we mainly get upper bounds of the second-order Hankel determinant of new
class of starlike functions connected with the sine function. Also, we can discuss the related research
of the coefficient problem and Fekete-Szegö inequality. Further for this function class we state the
application of Poisson distribution related to Fekete-Szegö inequality. By fixing ϑ = 0 and ϑ = 1 we
can state the above results for f ∈ Rsin and f ∈ S∗sin. For motivating further researches on the subject-
matter of this, we have chosen to draw the attention of the interested readers toward a considerably
large number of related recent publications (see, for example, [46–51]) and developments in the area
of mathematical analysis, which are not as closely related to the subject-matter of this presentation as
many of the other publications cited here. In conclusion, with an opinion mostly to encouraging and
inspiring further researches on applications of the basic (or q−) analysis and the basic (or q−) calculus
in geometric function theory of complex analysis along the lines (see [52]), considering our present
investigation and based on recently-published works on the Fekete-Szegö and Hankel determinant
problem (see, for details, [8,23,47–53], one can extend or generalize our results for f ∈ RSsin(ϑ) is left
as an exercise to interested readers. In addition, we choose to reiterate an important observation, which
was presented in the recently-published review-cum-expository review article by Srivastava ( [52],
p. 340, [54] pp. 1511–1512), who pointed out the fact that the results for the above-mentioned or new
q− analogues can easily (and possibly trivially) be translated into the corresponding results for the
so-called (p; q)− analogues (with 0 < |q| < p ≤ 1) by applying some obvious parametric and argument
variations with the additional parameter p being redundant.

Acknowledgements

The first-named author (Huo Tang) was partly supported by the Natural Science Foundation of the
People’s Republic of China under Grant 11561001, the Program for Young Talents of Science and

AIMS Mathematics Volume 7, Issue 4, 6365–6380.



6377

Technology in Universities of Inner Mongolia Autonomous Region under Grant NJYT-18-A14, the
Natural Science Foundation of Inner Mongolia of the People’s Republic of China under Grant
2018MS01026, and the Higher School Foundation of Inner Mongolia of the People’s Republic of
China under Grant NJZY20200, the Program for Key Laboratory Construction of Chifeng University
(No.CFXYZD202004), the Research and Innovation Team of Complex Analysis and Nonlinear
Dynamic Systems of Chifeng University (No.cfxykycxtd202005) and the Youth Science Foundation
of Chifeng University (No.cfxyqn202133).

Conflict of interest

The authors declare that they have no competing interests.

References

1. S. S. Miller, P. T. Mocanu, Differential subordinations: Theory and applications, Series on
Monographs and Textbooks in Pure and Applied Mathematics, No. 225, CRC Press, 2000.

2. L. De Branges, A proof of the Bieberbach conjecture, Acta Math., 154 (1985), 137–152.
http://dx.doi.org/10.1007/BF02392821

3. W. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In:
Proceeding of the International Conference on Complex Analysis at the Nankai Institute of
Mathematics, International Press, 1992, 157–169.

4. W. Janowski, Extremal problems for a family of functions with positive real part and for some
related families, Annales Polonici Mathematici, Institute of Mathematics Polish Academy of
Sciences, 23 (1970), 159–177.

5. M. S. Robertson, Certain classes of starlike functions, Mich. Math. J., 32 (1985), 135–140.

6. F. Ronning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Am.
Math. Soc., 118 (1993), 189–196.
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