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Abstract: Davie defined a Levy variant and the combination of single random variables to ensure
that the diffusion matrix did not degenerate. The use of the method proposed by Davie, which is
a combination of the Euler method and the exact combination, was investigated for applying the
degenerate Levy diffusion approach to

(
Bik(Y)

)
. We use certain degenerate conditions of diffusion

which contribute to order convergence. We also show MATLAB codes to apply the integrated solution
to an SDE and observe a convergence behavior. We also evaluate the agreement between the theoretical
values and the MATLAB numerical example.
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1. Introduction

The stochastic differential equation (SDE) computational solution plays an essential role in a broad
spectrum of applications. The approximate solution of SDEs has received great attention because of
their implementation in many science fields. This paper aims at a modern approach involving the
simulation of an SDE solution. A method that combines trivial coupling with exact coupling is
discussed in [1]. However, we use the Euler scheme to tackle trivial coupling in the present study.
In [3], the The important approach mentioned used a random Taylor expansion to evaluate the optimal
order of the estimated solution. In [3, 4, 6], a method is developed to approximate double integrals in
all dimensions using the Fourier expansion in the Wiener approach. This method, however, required a
significant amount of computation time.There are many applications for finding numerical solutions
to stochastic differential equations using several innovative methods, see [13–19]. Also Rio in [7]
continues his research for the Vaserstein bound to give precise bound estimates. In [5], Alhojilan used
the Brownian multidimensional motion and established a good stochastic difference equation
solution. Convergence of an approximation to a strong solution on a given probability space was
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established by Gyöngy and Krylov in [11] using coupling. Due to its superior properties for many
problems, solutions to fractional stochastic differential equations (FSDEs) driven by Brownain motion
have recently received much attention from scientific researchers, see [8–10]. We also checked some
prior studies on SDE numbering using a coupling method. We reflect primarily on the study of
Davie [2], which used an exact combination and an estimated coupling method to achieve order 1,
under some conditions for a good convergence. Because the stochastic difference equation is not an
invertible matrix, we established the result of the convergence of the exact coupling method
combination using the Euler process. We’ve frequently used a condition to govern how the entity
matrix behaves while it’s at zero. The convergence cannot be in order one due to the fluctuation
between the exact method and the Euler technique. So, the combined approach O(S 3/4sqrt|log(S )|)
was established and given order better than Euler. As a result, this approach is seen to be superior to
the Euler method. This document is structured accordingly. Section 2 summarizes recent SDE studies
and addresses Davie’s methodology [2]. Section three discusses the integrated correct relation and
system of Euler. Section 4 offers a numerical example of convergence behavior.

2. Stochastic differential equations (SDEs)

Consider the following SDE

dYi(t) = Oi(t,Y(t))dt +

n∑
k=1

Bik(t,Y(t))dVk(t), Yi(0) = Y (0)
i , (2.1)

where i =1,...,n on [0,T ], Y(t) is a n-dimensional vector, and V(t) is a n-dimensional path. Further the
coefficients Bik(t,Y(t)) satisfy a global Lipschitz condition

|O(t,Y) − O(t, y)| ≤ A |Y − y| , (2.2)

and
|B(t,Y) − B(t, y)| ≤ A |Y − y| , (2.3)

for all t ∈ [t0,T] and Y , y ∈ R, with A > 0 is a constant.
Now assuming Ai and Bi are continuously on t for each Y . Then there is a unique solution Y(t) to the

Eq (2.1). To find an approximate solution on this interval [0,T ], we divided this interval into positive
into N intervals which are equal length, i.e. S = T/N. Adding the following quadratic terms to the
Euler scheme yields the Milstein scheme:

∑d
k,l=1 χikl( jS ,Y ( j))P( j)

kl . Thus we get the following scheme

Y ( j+1)
i = Y ( j)

i + Ai( jS ,Y ( j))S +

d∑
k=1

Bik( jS ,Y ( j))∆V ( j)
k +

d∑
k,l=1

χikl( jS ,Y ( j))P( j)
kl , (2.4)

where
∆V ( j)

k = Vk(( j + 1)S ) − Vk( jS ), (2.5)

P( j)
kl =

∫ ( j+1)S

jS
{Vk(t) − Vk( jS )}dVl(t), (2.6)
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and

χikl(t,Y) =

q∑
m=1

Bmk(t,Y)
∂Bil

∂Ym
(t,Y). (2.7)

If the commutativity condition
χikl(t,Y) = χilk(t,Y), (2.8)

holds for all Y ∈ Rd, t ∈ [0,T ] and all i, k, l, Milstein’s scheme is reduced to

Y ( j+1)
i = Y ( j)

i + Ai( jS ,Y ( j))S +

d∑
k=1

Bik( jS ,Y ( j))∆V ( j)
k +

d∑
k,l=1

χikl( jS ,Y ( j))P( j)
kl . (2.9)

Note that the prior approach is just reliant on Brownian motion implementation ∆V ( j)
k . We may use

∆V ( j)
k only and apply the special equations for Milstein method. This can be implemented from:

The observation that P( j)
kl + P( j)

lk = 2F( j)
kl where F( j)

kl = 1
2∆V ( j)

k ∆V ( j)
l for k , l and F( j)

kk = 1
2 {(∆V ( j)

k )2 − S }.
Moreover, we note that if d = 1 or d > 1, the scheme (2.9) is of the first order or of order 1

2 ,
respectively. As delineated in Davie’s paper [2], we tend to modify scheme (2.9), which can provide
the order 1 with the invertible diffusion. The interpretation of producing the distribution will be
modified in scheme (2.9), according to the Davie article to produce a convergence of order one under
a certain condition.

Therefore, if we need to implement the Milstein method, we begin by implementing the random
variables as follows: ∆V ( j)

k and P( j)
kl on an individual basis. Later, we add these random variables to

obtain the right-hand side of scheme (2.9). Here, we are seeking to directly generate the subsequent

Y :=
∑

Bik( jS ,Y ( j))∆V ( j)
k +

∑
χikl( jS ,Y ( j))P( j)

kl . (2.10)

If we have a scheme

Y ( j+1)
i = Y ( j)

i + Ai( jS ,Y ( j))S +
∑

Bik( jS ,Y ( j))Y ( j)
k +

∑
χikl( jS ,Y ( j))(Y ( j)

k Y ( j)
l − S δkl), (2.11)

where the increment Y ( j)
k are independent of N(0, S ) random variables, then it is similar to scheme (2.9)

with ∆V ( j)
k replaced by Y ( j)

k without assuming ∆V ( j)
k = Y ( j)

k .

3. Euler with exact coupling in two-dimensional SDE

3.1. Exact coupling scheme

First, we’ll look at scheme (2.11) in its explicit form. For the sake of simplicity, we’ll let Bik(y) rely
solely on y and leave the drift term at zero. So

y( j+1)
i = y( j)

i +
∑

Bik(y( j))Y ( j)
k +

∑
χikl(y( j))(Y ( j)

k Y ( j)
l − S δkl). (3.1)

In [12], after showing the order of exact coupling method we obtained the following scheme

Y (r, j)
i =Y (r+1,2 j)

i + Y (r+1,2 j+1)
i

+

d∑
k,l=1

τikl(Y
(r+1,2 j+1)
k Y (r+1,2 j)

l − Y (r+1,2 j+1)
l Y (r+1,2 j)

k ) + O((S (r))3/2), (3.2)
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where τikl = 1
2

∑
j ci jχikl, and the size of the step is S (r) = T

2r . So as we established in [1], the order of
local error of the exact coupling method is E|y(r,1) − y(r+1,2)|2 ≤ D2a2S 3, where a and D2 are functions
of y(r, j).

3.2. Local error of Euler scheme

In [3], the local error of the Euler method is E|y(r,1) − y(r+1,2)|2 ≤ D1S 2, where D1 is a constant.

3.3. Local error of Euler with exact coupling in two-dimensional SDE

A similar proof of the combined method exact coupling and Euler method is used in [1]. As a result,
using the combined approach, we get the following order of local error:

E[min(D1S 2,D2a2S 3)] = O(|S 5/2(log(S )|). (3.3)

So, we have a similar approach to the theoretical concept; however, our method uses a completely
different scheme. That is the Euler scheme rather than trivial coupling. Therefore, the MATLAB code
and the results of the implementation is different.

3.4. Explanation of the combined method

We want to determine the value of a as a function of y(r, j) at the jth step. In addition, we’d want
to determine D1 and D2 in (3.4) as functions of y(r, j). Thus in each loop and within the same stage,
we can choose between two approximate solutions. The first is an estimated solution with the exact
coupling utilizing scheme (2.11). This gives the local error E|y(r,1)−y(r+1,2)|2 ≤ D2a2S 3. The alternative
approximate solution utilizes the Euler method, which obtain the local error E|y(r,1) − y(r+1,2)|2 ≤ D1S 2

where D1, may be a constant independent of S . Therefore, from the value of the function a and using
the next condition, for D2a2S 3 > D1S 2 follows to select the answer that has the Euler scheme. If not,
we use the other answer, which follows scheme (2.11) with exact coupling.

It is found that we cannot explicitly use exact coupling with a single matrix (2.11) in the MATLAB
execution since the

(
Bik(Y)

)
matrix determinant is 0 or similar to 0. This will change the convergence

order. We therefore regulate this issue with the above-mentioned situation.
We currently demonstrate how the local error for the merged procedure is complied with and what

local error can be achieved. We need to clarify this principle and then numerically evaluate it for a
specific stochastic differential equation with application examples.

Consider

E|y(r,1) − y(r+1,2 j+2)|2 ≤ E
(

min
[
D1S 2,D2a2S 3]). (3.4)

Thus, the following convergence of the local error is obtained for the combined method

E[min(D1S 2,D2a4S 3)] = O(|S 5/2(log(S )|), (3.5)

and we obtain the global error for the combined method, which is as follows:

S
5
4−

1
2
√
| log(S )| = S 3/4

√
| log(S )|. (3.6)

Finally, we show that for the combined approach, the order of convergence is h3/4
√
| log(S )|, for a

variety of implementation for a selected SDE, which is singular.
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4. Matlab implementation

Consider the following two-dimensional not-invertible SDE:

dY1(t) = Y2(t)dV1(t) + (Y1(t) + t)dV2(t),

dY2(t) = e−Y2
2 (t)dV1(t) + (Y1(t) − Y2(t))dV2(t),

for 0 ≤ t ≤ 1, with Y1(0) = 2 and Y2(0) = 0,

(4.1)

where V1(t) and V2(t) are two separate standard Brownian motions. To solve this SDE using a numerical
technique. Simulate the solutions for the same Brownian path using two distinct step sizes (S and S/2)
at the same time. The MATLAB code in the listing presented below views at the strong convergence of
the combined Euler and exact coupling method in two-dimensional SDE. We compute (for example,
R = 2000) different Brownian paths over the interval [0, 2] at a range of step-sizes.

Listing 1. Combined Euler and exact coupling method.

f u n c t i o n
QE1A=e r r o r c o u p l i n g E u l e r E N D ( bk , Y0 , T1 , N1 )
S1=T1 / N1 ;
hh=T1 / ( 2 * N1 ) ; s= s q r t ( T1 / ( N1 ) ) ;
qw= s q r t ( T1 / ( 2 * N1 ) ) ; RR1=100000; q =0;

f o r r =1:RR1 , Y1=Y0 ; y=Y0 ;
f o r m=1:N1 ;

uu11= r andn ; uu21= r andn ;
uus11= r andn ; uus21= r andn ;

1 z1 = ( 1 / 2 ) * ( uu11−uus11 ) ; 2 z1 = ( 1 / 2 ) * ( uu21−uus21 ) ;
Y11 = ( 1 / 2 ) * ( uu11+uus11 ) ; Y21 = ( 1 / 2 ) * ( uu21+uus21 ) ;
[YX, UU, LK]=mfileEYACTCCC ( bk , qw1 ,m, S1 , Y1 ) ;

a11=LK1 ( 1 , 2 , 1 1 ) ;
a22=LK2 ( 1 , 2 , 2 1 ) ;
QE1=( a11 ˆ2+ a22 ˆ 2 ) ˆ ( 1 / 2 ) ;
EO=QE1 . ˆ 2 ;

i f EO> ( 1 / S1 )
vLL1=qw1* randn ; vrR1=qw1* randn ;
vvn11=vLL1+vrR1 ; v l 1=qw1* randn ;
vR1=qw1* randn ; vv1=v l 1+vR1 ;
B111 =1 /2* vLL1* vrR1 ;
B221 =1 /2* v l 1 *vR1 ; BB1=1 /2* vvn11 *vv1 ;
Y1=Y1+UU1*[ vLL1 ; v l 1 ]+YX1 ( : , : , 1 ) * [ 1 / 2

*( vLL1 . ˆ2 − hh ) ; B111]+YX1 ( : , : , 2 )

* [ B111 ; ( 1 / 2 ) * ( v l 1 . ˆ2 − hh ) ] ;
[YX1, UU1]=mfileEYACTCCC ( bk , qw1 ,m+1 /2 , S1 , Y1 ) ;
Y1=Y1+UU1*[ vrR1 ; vR1]+YX1 ( : , : , 1 )

* [ 1 / 2 * ( vrR1 . ˆ2 − hh ) ; B221]+YX1 ( : , : , 2 )
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*[ B221 ; ( 1 / 2 ) * ( vR1 . ˆ2 − hh ) ] ;
[YX1, UU1]=mfileEYACTCCC ( bk , s ,m, S1 , y ) ;

y=y+UU1*[ vvn11 ; vv ]+YX1 ( : , : , 1 )

* [ 1 / 2 * ( vvn11 . ˆ2 −S ) ; BB1]+YX1 ( : , : , 2 )

* [BB1 ; ( 1 / 2 ) * ( vv1 . ˆ2 −S1 ) ] ;
e l s e

[1 z , 2z , Y11 , Y21 , V11 , V21 ]
= c o u p l i n g ( QE1 , a1 , a2 , s ) ;

vLL1=s *Y11 ; vrR1=s *1 z ; w=s *V11 ;
vL1=s *Y21 ; vr1=s *2 z ; v=s *V21 ;
B11 =1 /2* vLL1*vL1 ; B21=1 /2* vrR1 * vr1 ;
B1=1 /2*w*v ;
Y1=Y1+UU1*[ vLL1 ; vL1]+YX1 ( : , : , 1 )

* [ 1 / 2 * ( vLL1 . ˆ2 − hh ) ; B11 ]
+YX1 ( : , : , 2 ) * [ B11 ; ( 1 / 2 ) * ( vL1 . ˆ2 − hh ) ] ;

[ C11 , C22 , C , UU]= mfileCCC ( bk , qw1 ,m+1 /2 , S1 , Y1 ) ;
Y1=Y1+UU1*[ vrR1 ; vr1 ]+C11 * [ 1 / 2

*( vrR1 . ˆ2 − hh ) ; B21]+C22

*[ B21 ; ( 1 / 2 ) * ( vr1 . ˆ2 − hh ) ] ;

[ C11 , C22 , C , UU]= mfileCCC ( bk , s ,m, S1 , y ) ;
y=y+UU1*[w; v ]+C11 * [ 1 / 2 * (w. ˆ2 −S1 ) ; B1 ]
+C22 *[ B1 ; ( 1 / 2 ) * ( v . ˆ2 −S1 ) ] ;

end
end
q=q+abs ( Y1(1) −y ( 1 ) ) + abs ( Y1(2) −y ( 2 ) ) ;

end
QE1=q ;

QE1A=q /RR
end

As mentioned earlier, the strong order for the combined method is S 3/4
√
| log(S )|. The above

MATALB code runs with totally different step sizes over an oversized number of paths, R, as follows:

Listing 2. Error with different step sizes.

S=[ 40 , 80 , 160 , 320 , 6 4 0 ] ;
E r r o r R e s u l t =z e r o s ( 1 , l e n g t h ( SD2 ) ) ;
f o r K=1: l e n g t h ( SD2 )

E r r o r R e s u l 3 3 3 ( 1 ,K)=
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l o g ( Er ro rcoup l ingEu le rEND333 ( ‘ bk33 ’ , [ 2 ; 0 ] , 1 ,
SD2 ( 1 ,K ) ) ) ;
end
S2 = 1 . / SD2 ;
fad333= l o g ( S2 )
p l o t ( l o g ( S2 ) , E r r o r R e s u l t 3 3 3 )

The command (ErrorResult333(1,i)=log(ErrorcouplingEulerEND333(‘bk33’,[2; 0],1,S2(1,K)));)
calculates the ε = 1

R

∑R
K=1 |Y

(K)
S − Y (K)

S/2| with different step sizes. The following table outlines the
experimental error with respect to the five different time steps.

We can see from the results presented in Table 1 and the plot in Figure 1 that the combined Euler
and coupling method converges strongly with order S 3/4

√
| log(S )|.

Table 1. Euler with exact coupling for the non-invertible diffusion.

S Error-Resulti.i.e. ε
0.025 0.1917
0.0125 0.1109
0.00625 0.0686
0.003125 0.0425
0.0015625 0.0273
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lo
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Combind method for the exact coupling with Euler

 

 

log(error) against log(h)
   slope

y = p1*x + p2 

Coefficients:
  p1 = 0.70081
  p2 = 0.89904

Figure 1. Combined method.

5. Conclusions

We established the result of the convergence of the exact combination with the Euler procedure
because the stochastic difference equation is not invertibly diffused. We have often used a certain
condition that controls the behavior of the entity matrix at zero. Obviously, because of the fluctuation
between the exact joining phase and the Euler method the convergence cannot be in order one. The
combined method O(S 3/4

√
| log(S )|) was then obtained. This technique is thus considered to be better

order than the Euler method.
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