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1. Introduction

The algebraic structure of left almost semigroups (for short, LA-semigroups), which is a
generalization of commutative semigroups, was first introduced by Kazim and Naseeruddin [20] in
1972. An Abel-Grassmann groupoid (for short, AG-groupoid) is another name for it [33]. A
non-associative and a non-commutative algebraic structure that lies midway between a groupoid and a
commutative semigroup is known as an LA-semigroup. Regularities are interesting and important
properties to examine in LA-semigroups. In 2010, Khan and Asif [21] characterized intra-regular
LA-semigroups by the properties of their fuzzy ideals. Later, Abdullah et al. [3] discussed
characterizations of regular LA-semigroups using interval valued (α, β)-fuzzy ideals. Also, Khan et
al. [22] characterized right regular LA-semigroups using their fuzzy left ideals and fuzzy right ideals.
In 2016, Khan et al. [25] characterized the class of (m, n)-regular LA-semigroups by their
(m, n)-ideals. Some characterizations of weakly regular LA-semigroups by using the smallest ideals
and fuzzy ideals of LA-semigroups are investigated by Yousafzai et al. [40]. In addition, Sezer [36]
have used the concept of soft sets to characterize regular, intra-regular, completely regular, weakly
regular and quasi-regular LA-semigroups. Now, many mathematicians have investigated various
characterizations of LA-semigroups (see, e.g., [2, 9, 41]). Furthermore, some mathematicians have
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considered the notion of left almost semirings (for short, LA-semirings), that is a generalization of left
almost rings (for short, LA-rings) [37], to have different features. In 2021, the left almost structures
are now widely studied such as Elmoasry [13] studied the concepts of rough prime and rough fuzzy
prime ideals in LA-semigroups, Massouros and Yaqoob [26] investigated the theory of left and right
almost groups and focused on more general structures, and Rehman et al. [34] introduced the notion
of neutrosophic LA-rings and discussed various types of ideals and establish several results to better
understand the characteristic behavior of neutrosophic LA-rings. In addition, the concept of left
almost has been investigated in various algebraic structures (for example, in ordered
LA-semigroups [4, 18, 46], in ordered LA-Γ-semigroups [8], in gamma LA-rings and gamma
LA-semigroups [24], in LA-polygroups [7, 42, 44]).

Marty [28] introduced the concept of hyperstructures, as a generalization of ordinary algebraic
structures. The composition of two elements in an ordinary algebraic structure is an element, but in an
algebraic hyperstructure, the composition of two elements is a nonempty set. Many authors have
developed on the concept of hyperstructures (see, e.g., [1, 12, 38]). Rehman et al. [35] introduced the
concept of left almost hypergroups (for short, LA-hypergroups) and gave the examples of
LA-hypergroups. Moreover, they introduced the concept of LA-hyperrings and characterized
LA-hyperrings by their hyperideals and hypersystems. Next, the concept of weak LA-hypergroups
was investigated by Nawaz et al. [30]. In 2020, Hu et al. [17] extended the notion of neutrosophic to
LA-hypergroups and strong pure LA-semihypergroups. The concept of left almost semihypergroups
(for short, LA-semihypergroups) is a generalization of LA-semigroups and commutative
semihypergroups developed by Hila and Dine [16]. An LA-semihypergroups is a non-associative and
non-commutative hyperstructure midway between a hypergroupoid and a commutative
semihypergroup. Yaqoob et al. [43] have characterized intra-regular LA-semihypergroups by using
the properties of their left and right hyperideals. Then, Gulistan et al. [14] defined the class of regular
LA-semihypergroups in terms of (∈Γ, ∈Γ ∨q∆)-cubic (resp., left, right, two-sided, bi, generalized bi,
interior, quasi) hyperideals of LA-semihypergroups. Furthermore, Khan et al. [19] investigated some
properties of fuzzy left hyperideals and fuzzy right hyperideals in regular and intra-regular
LA-semihypergroups. Meanwhile, the notion of ordered LA-semihypergroups which is a
generalization of LA-semihypergroups was introduced by Yaqoob and Gulistan [45]. Also, Azhar et
al. discussed some results related with fuzzy hyperideals and generalized fuzzy hyperideals of
ordered LA-semihypergroups [5, 15].

It is known that every semiring can be considered to be a semihyperring. This implies that some
results in intra-regular semihyperrings generalized the results in intra-regular semirings. The class of
intra-regular semihyperrings was investigated by Nakkhasen and Pibaljommee [32] in 2019.
Afterward, Nawaz et al. [31] introduced the notion of left almost semihyperrings (for short,
LA-semihyperrings), which is a generalization of LA-semirings. Recently, Nakkhasen [29]
characterized some classes of regularities in LA-semihyperrings, that is, weakly regular
LA-semihyperrings and regular LA-semihyperrings by the properties of their hyperideals. In this
paper, we are interested in the class of intra-regular LA-semihyperrings. Then, we give some
characterizations of intra-regular LA-semihyperrings by means of their hyperideals. In addition, we
show how ordered LA-semirings can be used to create LA-semihyperrings.
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2. Preliminaries

First, we will review some fundamental notions and properties that are needed for this study. Let
H be a nonempty set. Then, the mapping ◦ : H × H → P∗(H) is called a hyperoperation (see,
e.g., [10, 11, 39]) on H where P∗(H) = P(H) \ {∅} denotes the set of all nonempty subsets of H. A
hypergroupoid is a nonempty set H together with a hyperopartion ◦ on H. If x ∈ H and A, B are two
nonempty subsets of H, then we denote

A ◦ B =
⋃

a∈A,b∈B

a ◦ b, A ◦ x = A ◦ {x} and x ◦ B = {x} ◦ B.

A hypergroupoid (H, ◦) is called an LA-semihypergroup [16] if for all x, y, z ∈ H, (x ◦ y) ◦ z =

(z ◦ y) ◦ x. This law is known as a left invertive law. For any nonempty subsets A, B and C of an
LA-semihypergroup (H, ◦), we have that (A ◦ B) ◦C = (C ◦ B) ◦ A.

A hyperstructure (S ,+, ·) is called an LA-semihyperring [31] if it satisfies the following conditions:

(i) (S ,+) is an LA-semihypergroup;
(ii) (S , ·) is an LA-semihypergroup;

(iii) x · (y + z) = x · y + x · z and (y + z) · x = y · x + z · x for all x, y, z ∈ S .

Example 2.1. Let Z be the set of all integers. The hyperoperations 	 and � on Z are defined by
x 	 y = {y − x} and x � y = {xy} for all x, y ∈ Z, respectively. We have that (Z,	,�) is an LA-
semihyperrings.

Example 2.2. [35] Let S = {a, b, c} be a set with the hyperoperations + and · on S defined as follows:

+ a b c
a {a} {a, b, c} {a, b, c}
b {a, b, c} {b, c} {b, c}
c {a, b, c} {a, b, c} {a, b, c}

· a b c
a {a} {a} {a}
b {a} {a, b, c} {c}
c {a} {a, b, c} {a, b, c}

Then, (S ,+, ·) is an LA-semihyperring.

Throughout this paper, we say an LA-semihyperring S instead of an LA-semihyperring (S ,+, ·) and
we write xy instead of x · y for any x, y ∈ S .

The concepts listed below will be considered in this research, as they occurred in [31]. For any
LA-semihyperring S , the medial law (xy)(zw) = (xz)(yw) holds for all x, y, z,w ∈ S . An element e
of an LA-semihyperring S is called a left identity (resp., pure left identity) if for all x ∈ S , x ∈ ex
(resp., x = ex). We have that S 2 = S , for any LA-semihyperring S with a left identity e. If an LA-
semihyperring S contains a pure left identity e, then it is unique. In an LA-semihyperring S with a
pure left identity e, the paramedial law (xy)(zw) = (wy)(zx) holds for all x, y, z,w ∈ S . An element a of
an LA-semihyperring S with a left identity (resp., pure left identity) e is called a left invertible (resp.,
pure left invertible) if there exists x ∈ S such that e ∈ xa (resp., e = xa). An LA-semihyperring S is
called a left invertible (resp., pure left invertible) if every element of S is a left invertible (resp., pure
left invertible). We observe that if an element e is a pure left identity of an LA-semihyperring S , then
e is also a left identity, but the converse is not true in general, see in [29].

Lemma 2.1. [31] If S is an LA-semihyperring with a pure left identity e, then x(yz) = y(xz) for all
x, y, z ∈ S .
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Let S be an LA-semihyperring. Then, the following law holds (AB)(CD) = (AC)(BD) for all
nonempty subsets A, B,C,D of S . If an LA-semihyperring S contains the pure left identity e, then
(AB)(CD) = (DB)(CA) and A(BC) = B(AC) for every nonempty subsets A, B,C,D of S .

Let S be an LA-semihyperring and a nonempty subset A of S such that A + A ⊆ A. Then:

(i) A is called a left hyperideal [31] of S if S A ⊆ A;
(ii) A is called a right hyperideal [31] of S if AS ⊆ A;

(iii) A is called a hyperideal [31] of S if it is both a left and a right hyperideal of S ;
(iv) A is called a quasi-hyperideal [31] of S if S A ∩ AS ⊆ A;
(v) A is called a bi-hyperideal [31] of S if AA ⊆ A and (AS )A ⊆ A.

Example 2.3. Let S = {a, b, c, d}. Define hyperoperations + and · on S by the following tables:

+ a b c d
a {a} {a, b} {c} {d}
b {a, b} {a, b} {c} {d}
c {c} {c} {c} {d}
d {d} {d} {d} {d}

· a b c d
a {a} {a} {a} {a}
b {a} {a} {a} {a}
c {a} {a} {a} {a, b}
d {a} {a} {a, b} {a, b}

We can see that (S ,+, ·) is an LA-semihyperring. Consider A = {a, b, c} and B = {a, c}. It is easy to see
that A is a quasi-hyperideal of S . In addition, B is a bi-hyperideal of S , but it is not a quasi-hyperideal
of S because S B ∩ BS = {a, b} * B.

A nonempty subset G of an LA-semihyperring S is called a generalized bi-hyperideal of S if G+G ⊆
G and (GS )G ⊆ G. Obviously, every bi-hyperideal of an LA-semihyperring S is a generalized bi-
hyperideal, but the converse is not true in general. We can show this with the following example.

Example 2.4. From Example 2.3, consider G = {a, c, d}. It is not difficult to show that G is a
generalized bi-hyperideal of S . But G is not a bi-hyperideal of S , because c · d = {a, b} * G.

An ordered LA-semiring is a system (S ,+, ·,≤) consisting of a nonempty set S such that (S ,+, ·) is
an LA-semiring, (S ,≤) is a partially ordered set, and for every a, b, x ∈ S the following conditions are
satisfied: (i) if a ≤ b, then a + x ≤ b + x and x + a ≤ x + b; (ii) if a ≤ b, then a · x ≤ b · x and x · a ≤ x · b.
For an ordered LA-semiring (S ,+, ·,≤) and x ∈ S , we denote (x] = {s ∈ S | s ≤ x}.

In 2014, Amjad and Yousafzai [6] have shown that every ordered LA-semigroup (S , ·,≤) can be
considered as an LA-semihypergroup (S , ◦) where a hyperoperation ◦ on S defined by

a ◦ b = {x ∈ S | x ≤ a · b} = (a · b] for all a, b ∈ S .

Now, we apply this idea to construct an LA-semihyperring from an ordered LA-semiring as the
following lemma.

Lemma 2.2. Let (S ,+, ·,≤) be an ordered LA-semiring. Then (S ,⊕,�) is an LA-semihyperring where
the hyperoperations ⊕ and � on S are defined by letting a, b ∈ S ,

a ⊕ b = {x ∈ S | x ≤ a + b} = (a + b] and a � b = {x ∈ S | x ≤ a · b} = (a · b].

Proof. By the Example in [6], it follows that (S ,⊕) and (S ,�) are LA-semihypergroups. Next, we will
show that the hyperoperation � is distributive with respect to the hyperoperation ⊕ on S . First, we
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claim that a � (b ⊕ c) = (a · (b + c)]. Let t ∈ a � (b ⊕ c). Then, t ∈ a � x for some x ∈ b ⊕ c. So,
t ≤ a · x ≤ a · (b + c), then t ∈ (a · (b + c)]. Hence, a � (b ⊕ c) ⊆ (a · (b + c)]. Let s ∈ (a · (b + c)]. Then,
s ≤ a · (b + c), and so

s ∈ a � (b + c) ⊆
⋃

x∈b⊕c

a � x = a � (b ⊕ c).

That is, (a · (b + c)] ⊆ a � (b ⊕ c). It follows that a � (b ⊕ c) = (a · (b + c)]. Next, we show that
(a� b)⊕ (a� c) = (a · b + a · c]. Let t ∈ (a� b)⊕ (a� c). Then t ∈ x⊕ y for some x ∈ a� b and y ∈ a� c.
This implies that t ≤ x + y ≤ a · b + a · c. Thus, t ∈ (a · b + a · c]. Hence, (a� b)⊕ (a� c) ⊆ (a · b + a · c].
Let s ∈ (a · b + a · c]. Then

s ∈ a · b ⊕ a · c ⊆
⋃

x∈a�b,y∈a�c

x ⊕ y = (a � b) ⊕ (a � c).

Hence, (a · b + a · c] ⊆ (a � b) ⊕ (a � c). Therefore, (a � b) ⊕ (a � c) = (a · b + a · c]. Since
(a · (b + c)] = (a · b + a · c], we obtain that a � (b ⊕ c) = (a � b) ⊕ (a � c). Similarly, we can show that
(b ⊕ c) � a = (b � a) ⊕ (c � a). Consequently, (S ,⊕,�) is an LA-semihyperring. �

Example 2.5. Let S = {a, b, c} be a set with two binary operations + and · on S defined as follows:

+ a b c
a a a a
b a a c
c a a a

· a b c
a a a a
b a a c
c a a a

Then, (S ,+, ·) is an LA-semiring [27]. We define an order relation ≤ on S by

≤:= {(a, a), (b, b), (c, c), (a, b), (a, c)}.

The figure of ≤ on S is given by

a

b c

It is a routine matter to check that (S ,+, ·,≤) is an ordered LA-semiring. We obtain that its associated
LA-semihyperring (S ,⊕,�) where ⊕ and � are defined by Lemma 2.2 as follows:

⊕ a b c
a {a} {a} {a}
b {a} {a} {a, c}
c {a} {a} {a}

� a b c
a {a} {a} {a}
b {a} {a} {a, c}
c {a} {a} {a}

Now, we can see that A = {a, b} is a left hyperideal of S , but it is not a right hyperideal of S because
b � c = {a, c} * A.

Lemma 2.3. [29] Let S be an LA-semihyperring with a pure left identity e. Then every right hyperideal
of S is a hyperideal of S .
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Lemma 2.4. [29] Every left (resp., right) hyperideal of an LA-semihyperring S is a quasi-hyperideal
of S .

Lemma 2.5. Every left (resp., right) hyperideal of an LA-semihyperring S is a bi-hyperideal of S .

Proof. Let B be a left hyperideal of an LA-semihyperring S . Then, BB ⊆ S B ⊆ B, and so (BS )B ⊆
S B ⊆ B. Thus, B is a bi-hyperideal of S . For the case right hyperideals, we can prove similarly. �

Lemma 2.6. [29] Let S be an LA-semihyperring with a left identity e such that (xe)S ⊆ xS for all
x ∈ S . Then every quasi-hyperideal of S is a bi-hyperideal of S .

Lemma 2.7. [29] If S is an LA-semihyperring with a pure left identity e, then for every a ∈ S , a2S is
a hyperideal of S such that a2 ⊆ a2S .

Lemma 2.8. If S is an LA-semihyperring with a left identity e, then for every a ∈ S , S a is a left
hyperideal of S such that a ∈ S a.

Proof. Assume that S is an LA-semihyperring with a left identity e. Let a ∈ S . Then, a ∈ ea ⊆ S a and
S a + S a = (S + S )a ⊆ S a. Now, by using paramedial law and left invertive law, we have

S (S a) ⊆ (eS )(S a) = (aS )(S e) = ((S e)S )a ⊆ S a.

It follows that S a is a left hyperideal of S . �

Let J be a finite nonempty subset of N such that J = { j1, j2, j3, . . . , jn}, where j1, j2, j3, . . . , jn ∈ N.
For any a ∈ S , we denote ∑

i∈J

ai = (· · · ((a j1 + a j2) + a j3) + · · · ) + a jn .

For any nonempty subsets A and B of LA-semihyperring S and a ∈ S , we denote

ΣA = {t ∈ S | t ∈
∑
i∈I

ai, ai ∈ A and I is a finite nonempty subset of N},

ΣAB = {t ∈ S | t ∈
∑
i∈I

aibi, ai ∈ A, bi ∈ B and I is a finite nonempty subset of N},

Σa = Σ{a}.

Remark 2.1. Let A and B be any nonempty subsets of an LA-semihyperring S . Then the following
statements hold:

(i) A ⊆ ΣA;
(ii) A(ΣB) ⊆ ΣAB and (ΣA)B ⊆ ΣAB.

Lemma 2.9. Let A be any nonempty subset of an LA-semihyperring S . If A + A ⊆ A, then ΣaA = aA
and ΣAa = Aa for all a ∈ S .
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3. Characterizations of intra-regular LA-semihyperrings

In this section, we apply the concept of intra-regular LA-rings, defined in [23], to define the notion
of intra-regular LA-semihyperrings and study some of its properties. Finally, we give some
characterizations of intra-regular LA-semihyperrings by the properties of many types of hyperideals
of LA-semihyperrings.

Definition 3.1. An LA-semihyperring S is said to be intra-regular if for every a ∈ S , a ∈ Σ(S a2)S .

Example 3.1. Let S = {a, b, c} be a set with the hyperoperations + and · on S defined as follows:

+ a b c
a {a} {a, b, c} {a, b, c}
b {b, c} {b, c} {b, c}
c {a, b, c} {a, b, c} {a, b, c}

· a b c
a {a} {a} {a}
b {a} {a, b, c} {c}
c {a} {a, b, c} {a, b, c}

Then, (S ,+, ·) is an LA-semihyperring [31]. Now, we can see that S is intra-regular.

However, the set S = {a, b, c, d, e} with two hyperoperations ⊕ and � on S as defined in Example
2.5 is not intra-regular, because b < {a} = Σ(S � b2) � S .

Proposition 3.1. Every left (resp., right) hyperideal of an intra-regular LA-semihyperring S is a
hyperideal of S .

Proof. Let S be an intra-regular LA-semihyperring and x ∈ S . Assume that L is a left hyperideal of S
and a ∈ L. Then, a ∈ Σ(S a2)S . Now, by using Remark 2.1 and left invertive law, we have

ax ⊆ (Σ(S a2)S )x ⊆ Σ((S a2)S )x = Σ(xS )(S a2) ⊆ ΣS L ⊆ ΣL ⊆ L.

Thus, L is a right hyperideal of S , and so L is a hyperideal of S . Suppose that R is a right hyperideal
of S and r ∈ R. Then,

xr ⊆ (Σ(S x2)S )r ⊆ Σ((S x2)S )r = Σ(rS )(S x2) ⊆ ΣRS ⊆ ΣR ⊆ R.

Hence, R is a left hyperideal of S . It follows that R is a hyperideal of S . �

Proposition 3.2. If S is an intra-regular LA-semihyperring with a pure left identity e, then ΣI2 = I for
every left hyperideal I of S .

Proof. Assume that S is an intra-regular LA-semihyperring with a pure left identity e. Let I be a left
hyperideal of S . Then, ΣI2 ⊆ I. Let a ∈ I. By using left invertive law, medial law and Lemma 2.1, we
have

a ∈ Σ(S a2)S = Σ(S (aa))S = Σ(a(S a))S = Σ(a(S a))(eS ) = Σ(ae)((S a)S )
= Σ(S a)((ae)S ) = Σ(S a)((S e)a) ⊆ Σ(S I)(S I) ⊆ ΣII = ΣI2.

Thus, I ⊆ ΣI2. Therefore, ΣI2 = I. �

A (resp., left, right) hyperideal P of an LA-semihyperring S is called semiprime if for any a ∈ S ,
a2 ⊆ P implies a ∈ P.

AIMS Mathematics Volume 7, Issue 4, 5844–5859.
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Proposition 3.3. Every hyperideal of an intra-regular LA-semihyperring is semiprime.

Proof. Assume that S is an intra-regular LA-semihyperring. Let I be a hyperideal of S and a ∈ S such
that a2 ⊆ I. Then, a ∈ Σ(S a2)S ⊆ Σ(S I)S ⊆ ΣIS ⊆ ΣI = I. Hence, I is semiprime. �

Proposition 3.4. Let S be an LA-semihyperring S with a pure left identity e. If S satisfies L∪R = ΣLR,
for every left hyperideal L and every right hyperideal R of S such that R is semiprime, then S is intra-
regular.

Proof. Let a ∈ S . By Lemma 2.8 and Lemma 2.7, we have that S a is a left hyperideal and a2S is a
right hyperideal of S such that a ∈ S a and a2 ⊆ a2S , respectively. Thus, by the given assumption,
a ∈ a2S . Now, by using left invertive law, medial law and Lemma 2.1, we have

a ∈ S a ∪ a2S = Σ(S a)(a2S ) = Σ(S a)((aa)S ) ⊆ Σ(S a)((aS )S ) = Σ(aS )((S a)S )
= Σ(a(S a))(S S ) = Σ(a(S a))S = Σ(S (aa))S = Σ(S a2)S .

This shows that S is intra-regular. �

Next, we give characterizations of intra-regular LA-semihyperrings by means of (resp., left, right)
hyperideals, quasi-hyperideals, bi-hyperideals and generalized bi-hyperideals of LA-semihyperrings as
show by the following theorems.

Theorem 3.1. Let S be an LA-semihyperring with a pure left identity e. Then S is intra-regular if and
only if L = L3, for every left hyperideal L of S .

Proof. Assume that S is intra-regular. Let L be any left hyperideal of S . Then, L3 = (LL)L ⊆ (S L)L ⊆
LL ⊆ L. Now, let a ∈ L. By Lemma 2.7, a2S is a hyperideal of S such that a2 ⊆ a2S . Thus, by given
assumption and Proposition 3.3, we have that a2S is semiprime, and so a ∈ a2S . Thus, by using left
invertive law and Lemma 2.1, we have

a ∈ a2S = (aa)S = (S a)a ⊆ (S (a2S ))a = (a2(S S ))a = ((aa)S )a
= ((S a)a)a ⊆ ((S L)L)L ⊆ (LL)L = L3.

Hence, L ⊆ L3. Therefore, L = L3.
Conversely, assume that L = L3, for every left hyperideal L of S . Let a ∈ S . By Lemma 2.8, S a is

a left hyperideal of S such that a ∈ S a. Then, by the given assumption and using medial law, we have

a ∈ S a = ((S a)(S a))(S a) = ((S S )(aa))(S a) ⊆ (S a2)S ⊆ Σ(S a2)S .

This shows that S is intra-regular. �

Theorem 3.2. Let S be a pure left invertible LA-semihyperring with a pure left identity e. Then the
following conditions are equivalent:

(i) S is intra-regular;
(ii) L ∩ R ⊆ ΣLR, where L and R are any left and right hyperideals of S , respectively.
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Proof. (i) ⇒ (ii) Assume that S is intra-regular. Let L be a left hyperideal and R be a right hyperideal
of S , and let a ∈ L ∩ R. Then, by using left invertive law and Lemma 2.1, we have

a ∈ Σ(S a2)S = Σ(S (aa))S = Σ(a(S a))S = Σ(S (S a))a ⊆ Σ(S (S L))R ⊆ ΣLR.

Hence, L ∩ R ⊆ ΣLR.
(ii)⇒ (i) Assume that (ii) holds. Let a ∈ S . Since S is a pure left invertible, there exists x ∈ S such

that e = xa. By Lemma 2.7, a2S is both a left and a right hyperideal of S such that a2 ⊆ a2S . Then, by
using left interive law, Lemma 2.1 and given assumption, we have

a2 ⊆ a2S ∩ a2S ⊆ Σ(a2S )(a2S ) = Σa2((a2S )S )
= Σa2((S S )a2) = Σ(aa)(S a2) = Σ((S a2)a)a.

Now, by using left invertive law and Remark 2.1, we have

a = ea = (xa)a = (aa)x ⊆ (Σ((S a2)a)a)x ⊆ Σ(((S a2)a)a)x

= Σ(xa)((S a2)a) = Σe((S a2)a) = Σ(S a2)a ⊆ Σ(S a2)S .

Therefore, S is intra-regular. �

Theorem 3.3. Let S be a pure left invertible LA-semihyperring with a pure left identity e. Then the
following statements are equivalent:

(i) S is intra-regular;
(ii) L ∩ R = ΣRL, for every left hyperideal L and every right hyperideal R of S .

Proof. (i)⇒ (ii) Assume that S is intra-regular. Let L and R be a left hyperideal and a right hyperideal
of S , respectively. It is easy to see that ΣRL ⊆ L ∩ R. On the other hand, let a ∈ L ∩ R. Then,
a ∈ Σ(S a2)S . By using left invertive law, paramedial law and Lemma 2.1, we have

a ∈ Σ(S a2)S = Σ(S (aa))S = Σ(a(S a))S = Σ(S (S a))a = Σ((eS )(S a))a
= Σ((aS )(S e))a ⊆ Σ((RS )S )L ⊆ ΣRL.

Hence, L ∩ R ⊆ ΣRL. Therefore, L ∩ R = ΣRL.
(ii) ⇒ (i) This proof is similar to the proof of (ii) ⇒ (i) in Theorem 3.2, because a2S is both a left

hyperideal and a right hyperideal of S . �

Theorem 3.4. Let S be a pure left invertible LA-semihyperring with a pure left identity e such that
(xe)S ⊆ xS for all x ∈ S . Then the following statements are equivalent:

(i) S is intra-regular;
(ii) G ∩ I = (GI)G, for every generalized bi-hyperideal G and every hyperideal I of S ;

(iii) B ∩ I = (BI)B, for every bi-hyperideal B and every hyperideal I of S ;
(iv) Q ∩ I = (QI)Q, for every quasi-hyperideal Q and every hyperideal I of S .
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Proof. (i) ⇒ (ii) Assume that S is intra-regular. Let G be a generalized bi-hyperideal and I be a
hyperideal of S , and let a ∈ G ∩ I. Then, a ∈ Σ(S a2)S . Now, by using left invertive law and Lemma
2.1, we have

a ∈ Σ(S a2)S = Σ(S (aa))S = Σ(a(S a))S = Σ(S (S a))a.

Consider,

S (S a) ⊆ S (S (Σ(S a2)S )) ⊆ ΣS (S ((S a2)S )) = ΣS ((S a2)(S S ))
= Σ(S a2)(S (S S )) ⊆ Σ(S (aa))S = Σ(a(S a))S
= Σ(S (S a))a = (ΣS (S a))a ⊆ S a. (3.1)

Then, by using (3.1), medial law, Lemma 2.1 and Lemma 2.9, we have

S (S a) ⊆ (ΣS (S a))a ⊆ (ΣS a)a = (S a)a = (S a)(ea) = (S e)(aa) = a((S e)a) ⊆ a(S a) ⊆ S (S a).

It follows that S (S a) = a(S a). Thus, a ∈ Σ(S (S a))a = Σ(a(S a))a = (a(S a))a ⊆ (G(S I))G ⊆ (GI)G.
Hence, G ∩ I ⊆ (GI)G. On the other hand, (GI)G ⊆ (S I)S ⊆ I and (GI)G ⊆ (GS )G ⊆ G, that is,
(GI)G ⊆ G ∩ I. Therefore, G ∩ I = (GI)G.

(ii)⇒ (iii) Since every bi-hyperideal is a generalized bi-hyperideal of S , it follows that (iii) holds.
(iii)⇒ (iv) By Lemma 2.6, we have that every quasi-hyperideal of S is a bi-hyperideal. Hence, (iv)

holds.
(iv) ⇒ (i) Let L be a left hyperideal and R be a right hyperideal of S . By Lemma 2.3 and Lemma

2.4, we have that R is a hyperideal and L is a quasi-hyperideal of S , respectively. By assumption,
L ∩ R = (LR)L ⊆ (S R)L ⊆ RL ⊆ ΣRL. On the other hand, ΣRL ⊆ L ∩ R. Therefore, L ∩ R = ΣRL. By
Theorem 3.3, we have that S is intra-regular. �

Theorem 3.5. Let S be a pure left invertible LA-semihyperring with a pure left identity e such that
(xe)S ⊆ xS for all x ∈ S . Then the following statements are equivalent:

(i) S is intra-regular;
(ii) R ∩G ⊆ ΣGR, for every generalized bi-hyperideal G and every right hyperideal R of S ;

(iii) R ∩ B ⊆ ΣBR, for every bi-hyperideal B and every right hyperideal R of S ;
(iv) R ∩ Q ⊆ ΣQR, for every quasi-hyperideal Q and every right hyperideal R of S .

Proof. (i) ⇒ (ii) Assume that S is intra-regular. Let R be a right hyperideal and G be a generalized
bi-hyperideal of S , and let a ∈ R∩G. Then, a ∈ Σ(S a2)S . Since S (S a) ⊆ S a, left invertive law, medial
law and Lemma 2.1, we obtain that

a ∈ Σ(S a2)S = Σ(S (aa))S = Σ(a(S a))S = Σ(S (S a))a ⊆ Σ(S a)a
= Σ(S a)(ea) = Σ(S e)(aa) = Σa((S e)a)
= Σa((ae)S ) ⊆ ΣG((RS )S ) ⊆ ΣGR.

Hence, R ∩G ⊆ ΣGR.
(ii)⇒ (iii) Since every bi-hyperideal is a generalized bi-hyperideal of S , it follows that (iii) holds.
(iii)⇒ (iv) By Lemma 2.6, we have that every quasi-hyperideal of S is a bi-hyperideal. Hence, (iv)

holds.
(iv) ⇒ (i) Let L be a left hyperideal and R be a right hyperideal of S . By Lemma 2.4, L is a

quasi-hyperideal of S . By assumption, L∩R ⊆ ΣLR. Therefore, S is intra-regular by Theorem 3.2. �
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Theorem 3.6. Let S be a pure left invertible LA-semihyperring with a pure left identity e such that
(xe)S ⊆ xS for all x ∈ S . Then the following conditions are equivalent:

(i) S is intra-regular;
(ii) R ∩G ⊆ ΣRG, for every generalized bi-hyperideal G and every right hyperideal R of S ;

(iii) R ∩ B ⊆ ΣRB, for every bi-hyperideal B and every right hyperideal R of S ;
(iv) R ∩ Q ⊆ ΣRQ, for every quasi-hyperideal Q and every right hyperideal R of S .

Proof. (i) ⇒ (ii) Assume that S is intra-regular. Let G be a generalized bi-hyperideal and R be a right
hyperideal of S . Let a ∈ R ∩G. Then, a ∈ Σ(S a2)S . Thus, by using left invertive law and Lemma 2.1,
we have a ∈ Σ(S a2)S = Σ(S (aa))S = Σ(a(S a))S = Σ(S (S a))a. Since S (S a) = a(S a), we have

a ∈ Σ(S (S a))a = Σ(a(S a))a ⊆ Σ(RS )G ⊆ ΣRG.

This implies that R ∩G ⊆ ΣRG.
(ii)⇒ (iii) Since every bi-hyperideal is a generalized bi-hyperideal of S , it turns out that (iii) holds.
(iii) ⇒ (iv) By Lemma 2.6, we have that every quasi-hyperideal of S is a bi-hyperideal. So, (iv)

holds.
(iv) ⇒ (v) Let L and R be a left hyperideal and a right hyperideal of S , respectively. By Lemma

2.4, L is also a quasi-hyperideal of S . By hypothesis, L ∩ R ⊆ ΣRL. Otherwise, ΣRL ⊆ L ∩ R. Hence,
L ∩ R = ΣRL. Therefore, S is intra-regular by Theorem 3.3. �

Theorem 3.7. Let S be a pure left invertibleLA-semihyperring with a pure left identity e such that
(xe)S ⊆ xS for all x ∈ S . Then the following statements are equivalent:

(i) S is intra-regular;
(ii) L ∩G ⊆ ΣLG, for every generalized bi-hyperideal G and every left hyperideal L of S ;

(iii) L ∩ B ⊆ ΣLB, for every bi-hyperideal B and every left hyperideal L of S ;
(iv) L ∩ Q ⊆ ΣLQ, for every quasi-hyperideal Q and every left hyperideal L of S .

Proof. (i) ⇒ (ii) Assume that S is intra-regular. Let L be a left hyperideal and G be a generalized
bi-hyperideal of S , and let a ∈ L∩G. Then, a ∈ Σ(S a2)S . Now, by using left invertive law and Lemma
2.1, we have

a ∈ Σ(S a2)S = Σ(S (aa))S = Σ(a(S a))S = Σ(S (S a))a ⊆ Σ(S (S L))G ⊆ ΣLG.

This implies that L ∩G ⊆ ΣLG.
(ii)⇒ (iii) Since every bi-hyperideal is a generalized bi-hyperideal of S , it follows that (iii) holds.
(iii)⇒ (iv) By Lemma 2.6, we have that every quasi-hyperideal of S is a bi-hyperideal. Hence, (iv)

holds.
(iv) ⇒ (i) Let L be a left hyperideal and R be a right hyperideal of S . By Lemma 2.4, R is also a

quasi-hyperideal of S . By assumption, L∩R ⊆ ΣLR. Therefore, S is intra-regular by Theorem 3.2. �

Theorem 3.8. Let S be a pure left invertible LA-semihyperring with a pure left identity e such that
(xe)S ⊆ xS for all x ∈ S . Then the following statements are equivalent:

(i) S is intra-regular;
(ii) L ∩G ⊆ ΣGL, for every generalized bi-hyperideal G and every left hyperideal L of S ;
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(iii) L ∩ B ⊆ ΣBL, for every bi-hyperideal B and every left hyperideal L of S ;
(iv) L ∩ Q ⊆ ΣQL, for every quasi-hyperideal Q and every left hyperideal L of S .

Proof. (i) ⇒ (ii) Assume that S is intra-regular. Let G be a generalized bi-hyperideal and L be a left
hyperideal of S and let a ∈ L ∩G. Then, a ∈ Σ(S a2)S . Thus, by using S (S a) ⊆ S a, left invertive law,
medial law and Lemma 2.1, we have

a ∈ Σ(S a2)S = Σ(a(S a))S = Σ(S (S a))a ⊆ Σ(S a)a = Σ(S a)(ea) = Σ(S e)(aa)
= Σa((S e)a) ⊆ Σa(S a) ⊆ ΣG(S L) ⊆ ΣGL.

Hence, L ∩G ⊆ ΣGL.
(ii)⇒ (iii) Since every bi-hyperideal of S is a generalized bi-hyperideal, it follows that (iii) holds.
(iii)⇒ (iv) The implication holds from Lemma 2.6.
(iv)⇒ (i) Let L and R be a left hyperideal and a right hyperideal of S , respectively. By Lemma 2.4,

R is also a quasi-hyperideal of S . By the given assumption, we have L ∩ R ⊆ ΣRL. On the other hand,
ΣRL ⊆ L ∩ R. Therefore, L ∩ R = ΣRL. By Theorem 3.3, we obtain that S is intra-regular. �

Theorem 3.9. Let S be a pure left invertible LA-semihyperring with a pure left identity e such that
(xe)S ⊆ xS for all x ∈ S . Then the following conditions are equivalent:

(i) S is intra-regular;
(ii) L ∩ G ∩ R ⊆ Σ(LG)R, for every generalized bi-hyperideal G, every left hyperideal L and every

right hyperideal R of S ;
(iii) L∩B∩R ⊆ Σ(LB)R, for every bi-hyperideal B, every left hyperideal L and every right hyperideal

R of S ;
(iv) L ∩ Q ∩ R ⊆ Σ(LQ)R, for every quasi-hyperideal Q, every left hyperideal L and every right

hyperideal R of S .

Proof. (i) ⇒ (ii) Assume that S is intra-regular. Let G be a generalized bi-hyperideal, L be a left
hyperideal and R be a right hyperideal of S , and let a ∈ L ∩G ∩ R. Then, a ∈ Σ(S a2)S . We note that
S (S a) = a(S a). Then, by using left invertive law, medial law, paramedial law and Lemma 2.1, we have

a ∈ Σ(S a2)S = Σ(a(S a))S = Σ(S (S a))a = Σ(a(S a))a = Σ(a(S a))(ea) = Σ(S (aa))(ea)
= Σ(ae)((aa)S ) = Σ(aa)((ae)S ) ⊆ Σ(LG)((RS )S ) ⊆ Σ(LG)R.

Hence, L ∩G ∩ R ⊆ Σ(LG)R.
(ii)⇒ (iii) Since every bi-hyperideal is a generalized bi-hyperideal of S , it follows that (iii) holds.
(iii)⇒ (iv) By Lemma 2.6, we have that every quasi-hyperideal of S is a bi-hyperideal. Hence, (iv)

holds.
(iv) ⇒ (i) Let L be a left hyperideal and R be a right hyperideal of S . By Lemma 2.4, L is a quasi-

hyperideal of S . By assumption, L ∩ R = L ∩ L ∩ R ⊆ Σ(LL)R ⊆ Σ(S L)R ⊆ ΣLR. By Theorem 3.2, we
obtain that S is intra-regular. �

Theorem 3.10. Let S be a pure left invertible LA-semihyperring with a pure left identity e such that
(xe)S ⊆ xS for all x ∈ S . Then the following statements are equivalent:

(i) S is intra-regular;
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(ii) L ∩ G ∩ R ⊆ Σ(RG)L, for every generalized bi-hyperideal G, every left hyperideal L and every
right hyperideal R of S ;

(iii) L∩B∩R ⊆ Σ(RB)L, for every bi-hyperideal B, every left hyperideal L and every right hyperideal
R of S ;

(iv) L ∩ Q ∩ R ⊆ Σ(RQ)L, for every quasi-hyperideal Q, every left hyperideal L and every right
hyperideal R of S .

Proof. (i) ⇒ (ii) Assume that S is intra-regular. Let G be a generalized bi-hyperideal, L be a left
hyperideal and R be a right hyperideal of S . Let a ∈ L ∩ G ∩ R. Then, a ∈ Σ(S a2)S . Since S (S a) ⊆
(ΣS (S a))a ⊆ S a and by Lemma 2.9, we have S (S a) ⊆ (ΣS (S a))a ⊆ (ΣS a)a = (S a)a. By the given
assumption, left invertive law, medial law, paramedial law and Lemma 2.1, we have

a ∈ Σ(S a2)S = Σ(a(S a)S ) = Σ(S (S a))a ⊆ Σ((S a)a)a = Σ((S a)(ea))a = Σ((ae)(aS ))a
= Σ(((aS )e)a)a ⊆ Σ(((RS )S )G)L ⊆ Σ(RG)L.

This shows that, L ∩G ∩ R ⊆ Σ(RG)L.
(ii) ⇒ (iii) Since every bi-hyperideal of S is a generalized bi-hyperideal, which implies that (iii)

holds.
(iii)⇒ (iv) The proof follows from Lemma 2.6.
(iv)⇒ (v) Let L be a left hyperideal and R be a right hyperideal of S . Also, L is a quasi-hyperideal

of S by Lemma 2.4. By assumption, we have that L ∩ R = L ∩ L ∩ R ⊆ Σ(RL)L ⊆ Σ(RS )L ⊆ ΣRL.
Otherwise, ΣRL ⊆ L ∩ R. Hence, L ∩ R = ΣRL. Therefore, S is intra-regular by Theorem 3.3. �

The following theorem, we can prove similarly.

Theorem 3.11. Let S be a pure left invertible LA-semihyperring with a pure left identity e such that
(xe)S ⊆ xS for all x ∈ S . Then the following conditions are equivalent:

(i) S is intra-regular;
(ii) R ∩G ⊆ Σ(RG)R, for every generalized bi-hyperideal G and every right hyperideal R of S ;

(iii) R ∩ B ⊆ Σ(RB)R, for every bi-hyperideal B every right hyperideal R of S ;
(iv) R ∩ Q ⊆ Σ(RQ)R, for every quasi-hyperideal Q and every right hyperideal R of S .

4. Conclusions

In 2018, the concept of LA-semihyperrings was introduced by Nawaz et al. [31] as a generalization
of LA-semirings. In Section 2, we have shown that some LA-semihyperring can be constructed from
an ordered LA-semiring as shown in Lemma 2.2. This means that the LA-semihyperring is also a
generalization of an ordered LA-semiring. In Section 3, we applied the concept of intra-regular
LA-rings, appeared in [23], to define the concept of intra-regular LA-semihyperrings and discussed
some of its properties. Finally, we characterized the class of intra-regular LA-semihyperrings by using
(resp., left, right) hyperideals, quasi-hyperideals, bi-hyperideals and generalized bi-hyperideals of
LA-semihyperrings were shown in Theorem 3.1 - Theorem 3.11. In our future study, we can consider
the characterizations of the class of both regular and intra-regular LA-semihyperrings based on
different types of hyperideals of LA-semihyperrings.
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