

http://www.aimspress.com/journal/Math

AIMS Mathematics, 7(4): 5844–5859.

DOI:10.3934/math.2022324 Received: 01 October 2021 Revised: 05 December 2021 Accepted: 04 January 2022

Published: 12 January 2022

Research article

Characterizations of intra-regular LA-semihyperrings in terms of their hyperideals

Warud Nakkhasen*

Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand

* Correspondence: Email: warud.n@msu.ac.th.

Abstract: The purpose of this article is to investigate the class of intra-regular *LA*-semihyperrings. Then, characterizations of intra-regular *LA*-semihyperrings by the properties of many types of their hyperideals are obtained. Moreover, we present a construction of *LA*-semihyperrings from ordered *LA*-semirings.

Keywords: LA-semihypergroup; LA-semihyperring; intra-regular LA-semihyperring

Mathematics Subject Classification: 16Y60, 20M17, 20N20

1. Introduction

The algebraic structure of left almost semigroups (for short, LA-semigroups), which is a generalization of commutative semigroups, was first introduced by Kazim and Naseeruddin [20] in 1972. An Abel-Grassmann groupoid (for short, AG-groupoid) is another name for it [33]. A non-associative and a non-commutative algebraic structure that lies midway between a groupoid and a commutative semigroup is known as an LA-semigroup. Regularities are interesting and important properties to examine in LA-semigroups. In 2010, Khan and Asif [21] characterized intra-regular Later, Abdullah et al. [3] discussed LA-semigroups by the properties of their fuzzy ideals. characterizations of regular LA-semigroups using interval valued (α, β) -fuzzy ideals. Also, Khan et al. [22] characterized right regular LA-semigroups using their fuzzy left ideals and fuzzy right ideals. In 2016, Khan et al. [25] characterized the class of (m,n)-regular LA-semigroups by their (m, n)-ideals. Some characterizations of weakly regular LA-semigroups by using the smallest ideals and fuzzy ideals of LA-semigroups are investigated by Yousafzai et al. [40]. In addition, Sezer [36] have used the concept of soft sets to characterize regular, intra-regular, completely regular, weakly regular and quasi-regular LA-semigroups. Now, many mathematicians have investigated various characterizations of LA-semigroups (see, e.g., [2, 9, 41]). Furthermore, some mathematicians have

considered the notion of left almost semirings (for short, *LA*-semirings), that is a generalization of left almost rings (for short, *LA*-rings) [37], to have different features. In 2021, the left almost structures are now widely studied such as Elmoasry [13] studied the concepts of rough prime and rough fuzzy prime ideals in *LA*-semigroups, Massouros and Yaqoob [26] investigated the theory of left and right almost groups and focused on more general structures, and Rehman et al. [34] introduced the notion of neutrosophic *LA*-rings and discussed various types of ideals and establish several results to better understand the characteristic behavior of neutrosophic *LA*-rings. In addition, the concept of left almost has been investigated in various algebraic structures (for example, in ordered *LA*-semigroups [4, 18, 46], in ordered *LA*-Γ-semigroups [8], in gamma *LA*-rings and gamma *LA*-semigroups [24], in *LA*-polygroups [7,42,44]).

Marty [28] introduced the concept of hyperstructures, as a generalization of ordinary algebraic structures. The composition of two elements in an ordinary algebraic structure is an element, but in an algebraic hyperstructure, the composition of two elements is a nonempty set. Many authors have developed on the concept of hyperstructures (see, e.g., [1, 12, 38]). Rehman et al. [35] introduced the concept of left almost hypergroups (for short, LA-hypergroups) and gave the examples of Moreover, they introduced the concept of LA-hyperrings and characterized LA-hypergroups. LA-hyperrings by their hyperideals and hypersystems. Next, the concept of weak LA-hypergroups was investigated by Nawaz et al. [30]. In 2020, Hu et al. [17] extended the notion of neutrosophic to LA-hypergroups and strong pure LA-semihypergroups. The concept of left almost semihypergroups (for short, LA-semihypergroups) is a generalization of LA-semigroups and commutative semihypergroups developed by Hila and Dine [16]. An LA-semihypergroups is a non-associative and non-commutative hyperstructure midway between a hypergroupoid and a commutative semihypergroup. Yaqoob et al. [43] have characterized intra-regular LA-semihypergroups by using the properties of their left and right hyperideals. Then, Gulistan et al. [14] defined the class of regular LA-semihypergroups in terms of $(\in_{\Gamma}, \in_{\Gamma} \lor q_{\Lambda})$ -cubic (resp., left, right, two-sided, bi, generalized bi, interior, quasi) hyperideals of LA-semihypergroups. Furthermore, Khan et al. [19] investigated some properties of fuzzy left hyperideals and fuzzy right hyperideals in regular and intra-regular *LA*-semihypergroups. Meanwhile, the notion of ordered LA-semihypergroups which is a generalization of LA-semihypergroups was introduced by Yaqoob and Gulistan [45]. Also, Azhar et discussed some results related with fuzzy hyperideals and generalized fuzzy hyperideals of ordered *LA*-semihypergroups [5, 15].

It is known that every semiring can be considered to be a semihyperring. This implies that some results in intra-regular semihyperrings generalized the results in intra-regular semirings. The class of intra-regular semihyperrings was investigated by Nakkhasen and Pibaljommee [32] in 2019. Afterward, Nawaz et al. [31] introduced the notion of left almost semihyperrings (for short, LA-semihyperrings), which is a generalization of LA-semirings. Recently, Nakkhasen [29] characterized some classes of regularities in LA-semihyperrings, that is, weakly regular LA-semihyperrings and regular LA-semihyperrings by the properties of their hyperideals. In this paper, we are interested in the class of intra-regular LA-semihyperrings. Then, we give some characterizations of intra-regular LA-semihyperrings by means of their hyperideals. In addition, we show how ordered LA-semirings can be used to create LA-semihyperrings.

2. Preliminaries

First, we will review some fundamental notions and properties that are needed for this study. Let H be a nonempty set. Then, the mapping $\circ: H \times H \to \mathcal{P}^*(H)$ is called a *hyperoperation* (see, e.g., [10, 11, 39]) on H where $\mathcal{P}^*(H) = \mathcal{P}(H) \setminus \{\emptyset\}$ denotes the set of all nonempty subsets of H. A *hypergroupoid* is a nonempty set H together with a hyperopartion \circ on H. If $x \in H$ and A, B are two nonempty subsets of H, then we denote

$$A \circ B = \bigcup_{a \in A, b \in B} a \circ b, A \circ x = A \circ \{x\} \text{ and } x \circ B = \{x\} \circ B.$$

A hypergroupoid (H, \circ) is called an *LA-semihypergroup* [16] if for all $x, y, z \in H$, $(x \circ y) \circ z = (z \circ y) \circ x$. This law is known as a left invertive law. For any nonempty subsets A, B and C of an *LA-semihypergroup* (H, \circ) , we have that $(A \circ B) \circ C = (C \circ B) \circ A$.

A hyperstructure $(S, +, \cdot)$ is called an *LA-semihyperring* [31] if it satisfies the following conditions:

- (i) (S, +) is an LA-semihypergroup;
- (ii) (S, \cdot) is an LA-semihypergroup;
- (iii) $x \cdot (y + z) = x \cdot y + x \cdot z$ and $(y + z) \cdot x = y \cdot x + z \cdot x$ for all $x, y, z \in S$.

Example 2.1. Let \mathbb{Z} be the set of all integers. The hyperoperations \ominus and \odot on \mathbb{Z} are defined by $x \ominus y = \{y - x\}$ and $x \odot y = \{xy\}$ for all $x, y \in \mathbb{Z}$, respectively. We have that $(\mathbb{Z}, \ominus, \odot)$ is an *LA*-semihyperrings.

Example 2.2. [35] Let $S = \{a, b, c\}$ be a set with the hyperoperations + and \cdot on S defined as follows:

+	а	b	c			a	b	c
a	<i>{a}</i>	$\{a,b,c\}$	$\{a,b,c\}$	-	a	<i>{a}</i>	<i>{a}</i>	<i>{a}</i>
b	$\{a,b,c\}$	$\{b,c\}$	$\{b,c\}$				$\{a,b,c\}$	
c	$\{a,b,c\}$	$\{b,c\}$ $\{a,b,c\}$	$\{a,b,c\}$		c	{ <i>a</i> }	$\{a,b,c\}$	$\{a,b,c\}$

Then, $(S, +, \cdot)$ is an *LA*-semihyperring.

Throughout this paper, we say an *LA*-semihyperring *S* instead of an *LA*-semihyperring $(S, +, \cdot)$ and we write xy instead of $x \cdot y$ for any $x, y \in S$.

The concepts listed below will be considered in this research, as they occurred in [31]. For any LA-semihyperring S, the medial law (xy)(zw) = (xz)(yw) holds for all $x, y, z, w \in S$. An element e of an LA-semihyperring S is called a *left identity* (resp., pure *left identity*) if for all $x \in S$, $x \in ex$ (resp., x = ex). We have that $S^2 = S$, for any LA-semihyperring S with a left identity e. If an LA-semihyperring S contains a pure left identity e, then it is unique. In an LA-semihyperring S with a pure left identity e, the paramedial law (xy)(zw) = (wy)(zx) holds for all $x, y, z, w \in S$. An element e of an LA-semihyperring e with a left identity (resp., pure left identity) e is called a *left invertible* (resp., pure *left invertible*) if there exists e e such that e e e e (resp., e e e). An LA-semihyperring e is called a *left invertible* (resp., pure left invertible). We observe that if an element e is a pure left identity of an LA-semihyperring e, then e is also a left identity, but the converse is not true in general, see in [29].

Lemma 2.1. [31] If S is an LA-semihyperring with a pure left identity e, then x(yz) = y(xz) for all $x, y, z \in S$.

Let S be an LA-semihyperring. Then, the following law holds (AB)(CD) = (AC)(BD) for all nonempty subsets A, B, C, D of S. If an LA-semihyperring S contains the pure left identity e, then (AB)(CD) = (DB)(CA) and A(BC) = B(AC) for every nonempty subsets A, B, C, D of S.

Let S be an LA-semihyperring and a nonempty subset A of S such that $A + A \subseteq A$. Then:

- (i) A is called a *left hyperideal* [31] of S if $SA \subseteq A$;
- (ii) A is called a right hyperideal [31] of S if $AS \subseteq A$;
- (iii) A is called a hyperideal [31] of S if it is both a left and a right hyperideal of S;
- (iv) A is called a *quasi-hyperideal* [31] of S if $SA \cap AS \subseteq A$;
- (v) A is called a bi-hyperideal [31] of S if $AA \subseteq A$ and $(AS)A \subseteq A$.

Example 2.3. Let $S = \{a, b, c, d\}$. Define hyperoperations + and \cdot on S by the following tables:

+	а	b	c	d			a	b	c	d
a	{ <i>a</i> }	{ <i>a</i> , <i>b</i> }	{c}	<i>{d}</i>	-	a	<i>{a}</i>	<i>{a}</i>	<i>{a}</i>	<i>{a}</i>
b	$\{a,b\}$	$\{a,b\}$	{ <i>c</i> }	{ <i>d</i> }		b	{ <i>a</i> }	{ <i>a</i> }	{ <i>a</i> }	{ <i>a</i> }
\boldsymbol{c}	{ <i>c</i> }	{ <i>c</i> }	{ <i>c</i> }	{ <i>d</i> }		С	{ <i>a</i> }	{ <i>a</i> }	{ <i>a</i> }	$\{a,b\}$
d	{ <i>d</i> }	{ <i>d</i> }	{ <i>d</i> }	{ <i>d</i> }		d	{ <i>a</i> }	{ <i>a</i> }	$\{a,b\}$	$\{a,b\}$

We can see that $(S, +, \cdot)$ is an LA-semihyperring. Consider $A = \{a, b, c\}$ and $B = \{a, c\}$. It is easy to see that A is a quasi-hyperideal of S. In addition, B is a bi-hyperideal of S, but it is not a quasi-hyperideal of S because $SB \cap BS = \{a, b\} \nsubseteq B$.

A nonempty subset G of an LA-semihyperring S is called a *generalized bi-hyperideal* of S if $G+G \subseteq G$ and $(GS)G \subseteq G$. Obviously, every bi-hyperideal of an LA-semihyperring S is a generalized bi-hyperideal, but the converse is not true in general. We can show this with the following example.

Example 2.4. From Example 2.3, consider $G = \{a, c, d\}$. It is not difficult to show that G is a generalized bi-hyperideal of S. But G is not a bi-hyperideal of S, because $c \cdot d = \{a, b\} \nsubseteq G$.

An *ordered LA-semiring* is a system $(S, +, \cdot, \leq)$ consisting of a nonempty set S such that $(S, +, \cdot)$ is an LA-semiring, (S, \leq) is a partially ordered set, and for every $a, b, x \in S$ the following conditions are satisfied: (i) if $a \leq b$, then $a + x \leq b + x$ and $x + a \leq x + b$; (ii) if $a \leq b$, then $a \cdot x \leq b \cdot x$ and $x \cdot a \leq x \cdot b$. For an ordered LA-semiring $(S, +, \cdot, \leq)$ and $x \in S$, we denote $(x] = \{s \in S \mid s \leq x\}$.

In 2014, Amjad and Yousafzai [6] have shown that every ordered LA-semigroup (S, \cdot, \leq) can be considered as an LA-semihypergroup (S, \circ) where a hyperoperation \circ on S defined by

$$a \circ b = \{x \in S \mid x \le a \cdot b\} = (a \cdot b) \text{ for all } a, b \in S.$$

Now, we apply this idea to construct an LA-semihyperring from an ordered LA-semiring as the following lemma.

Lemma 2.2. Let $(S, +, \cdot, \leq)$ be an ordered LA-semiring. Then (S, \oplus, \odot) is an LA-semihyperring where the hyperoperations \oplus and \odot on S are defined by letting $a, b \in S$,

$$a \oplus b = \{x \in S \mid x \le a + b\} = (a + b) \text{ and } a \odot b = \{x \in S \mid x \le a \cdot b\} = (a \cdot b).$$

Proof. By the Example in [6], it follows that (S, \oplus) and (S, \odot) are LA-semihypergroups. Next, we will show that the hyperoperation \odot is distributive with respect to the hyperoperation \oplus on S. First, we

claim that $a \odot (b \oplus c) = (a \cdot (b+c)]$. Let $t \in a \odot (b \oplus c)$. Then, $t \in a \odot x$ for some $x \in b \oplus c$. So, $t \le a \cdot x \le a \cdot (b+c)$, then $t \in (a \cdot (b+c)]$. Hence, $a \odot (b \oplus c) \subseteq (a \cdot (b+c)]$. Let $s \in (a \cdot (b+c)]$. Then, $s \le a \cdot (b+c)$, and so

$$s \in a \odot (b + c) \subseteq \bigcup_{x \in b \oplus c} a \odot x = a \odot (b \oplus c).$$

That is, $(a \cdot (b+c)] \subseteq a \odot (b \oplus c)$. It follows that $a \odot (b \oplus c) = (a \cdot (b+c)]$. Next, we show that $(a \odot b) \oplus (a \odot c) = (a \cdot b + a \cdot c]$. Let $t \in (a \odot b) \oplus (a \odot c)$. Then $t \in x \oplus y$ for some $x \in a \odot b$ and $y \in a \odot c$. This implies that $t \le x + y \le a \cdot b + a \cdot c$. Thus, $t \in (a \cdot b + a \cdot c]$. Hence, $(a \odot b) \oplus (a \odot c) \subseteq (a \cdot b + a \cdot c]$. Let $s \in (a \cdot b + a \cdot c]$. Then

$$s \in a \cdot b \oplus a \cdot c \subseteq \bigcup_{x \in a \odot b, y \in a \odot c} x \oplus y = (a \odot b) \oplus (a \odot c).$$

Hence, $(a \cdot b + a \cdot c] \subseteq (a \odot b) \oplus (a \odot c)$. Therefore, $(a \odot b) \oplus (a \odot c) = (a \cdot b + a \cdot c]$. Since $(a \cdot (b + c)] = (a \cdot b + a \cdot c]$, we obtain that $a \odot (b \oplus c) = (a \odot b) \oplus (a \odot c)$. Similarly, we can show that $(b \oplus c) \odot a = (b \odot a) \oplus (c \odot a)$. Consequently, (S, \oplus, \odot) is an *LA*-semihyperring.

Example 2.5. Let $S = \{a, b, c\}$ be a set with two binary operations + and \cdot on S defined as follows:

Then, $(S, +, \cdot)$ is an LA-semiring [27]. We define an order relation \leq on S by

$$\leq := \{(a, a), (b, b), (c, c), (a, b), (a, c)\}.$$

The figure of \leq on S is given by

It is a routine matter to check that $(S, +, \cdot, \leq)$ is an ordered LA-semiring. We obtain that its associated LA-semihyperring (S, \oplus, \odot) where \oplus and \odot are defined by Lemma 2.2 as follows:

\oplus	a	b	c	\odot	a	b	c
			{ <i>a</i> }	а	{ <i>a</i> }	<i>{a}</i>	{ <i>a</i> }
b	{ <i>a</i> }	{ <i>a</i> }	$\{a,c\}$	b	{ <i>a</i> }	{ <i>a</i> }	$\{a,c\}$
c	{ <i>a</i> }	{ <i>a</i> }	{ <i>a</i> }	С	{ <i>a</i> }	{ <i>a</i> }	{ <i>a</i> }

Now, we can see that $A = \{a, b\}$ is a left hyperideal of S, but it is not a right hyperideal of S because $b \odot c = \{a, c\} \nsubseteq A$.

Lemma 2.3. [29] Let S be an LA-semihyperring with a pure left identity e. Then every right hyperideal of S is a hyperideal of S.

Lemma 2.4. [29] Every left (resp., right) hyperideal of an LA-semihyperring S is a quasi-hyperideal of S.

Lemma 2.5. Every left (resp., right) hyperideal of an LA-semihyperring S is a bi-hyperideal of S.

Proof. Let B be a left hyperideal of an LA-semihyperring S. Then, $BB \subseteq SB \subseteq B$, and so $(BS)B \subseteq SB \subseteq B$. Thus, B is a bi-hyperideal of S. For the case right hyperideals, we can prove similarly. \square

Lemma 2.6. [29] Let S be an LA-semihyperring with a left identity e such that $(xe)S \subseteq xS$ for all $x \in S$. Then every quasi-hyperideal of S is a bi-hyperideal of S.

Lemma 2.7. [29] If S is an LA-semihyperring with a pure left identity e, then for every $a \in S$, a^2S is a hyperideal of S such that $a^2 \subseteq a^2S$.

Lemma 2.8. If S is an LA-semihyperring with a left identity e, then for every $a \in S$, Sa is a left hyperideal of S such that $a \in Sa$.

Proof. Assume that S is an LA-semihyperring with a left identity e. Let $a \in S$. Then, $a \in ea \subseteq Sa$ and $Sa + Sa = (S + S)a \subseteq Sa$. Now, by using paramedial law and left invertive law, we have

$$S(Sa) \subseteq (eS)(Sa) = (aS)(Se) = ((Se)S)a \subseteq Sa.$$

It follows that Sa is a left hyperideal of S.

Let *J* be a finite nonempty subset of \mathbb{N} such that $J = \{j_1, j_2, j_3, \dots, j_n\}$, where $j_1, j_2, j_3, \dots, j_n \in \mathbb{N}$. For any $a \in S$, we denote

$$\sum_{i\in J} a_i = (\cdots((a_{j_1} + a_{j_2}) + a_{j_3}) + \cdots) + a_{j_n}.$$

For any nonempty subsets A and B of LA-semihyperring S and $a \in S$, we denote

$$\Sigma A = \{t \in S \mid t \in \sum_{i \in I} a_i, a_i \in A \text{ and } I \text{ is a finite nonempty subset of } \mathbb{N}\},$$

$$\Sigma AB = \{t \in S \mid t \in \sum_{i \in I} a_i b_i, a_i \in A, b_i \in B \text{ and } I \text{ is a finite nonempty subset of } \mathbb{N}\},$$

$$\Sigma a = \Sigma \{a\}.$$

Remark 2.1. Let A and B be any nonempty subsets of an LA-semihyperring S. Then the following statements hold:

- (i) $A \subseteq \Sigma A$;
- (ii) $A(\Sigma B) \subseteq \Sigma AB$ and $(\Sigma A)B \subseteq \Sigma AB$.

Lemma 2.9. Let A be any nonempty subset of an LA-semihyperring S. If $A + A \subseteq A$, then $\Sigma aA = aA$ and $\Sigma Aa = Aa$ for all $a \in S$.

3. Characterizations of intra-regular LA-semihyperrings

In this section, we apply the concept of intra-regular *LA*-rings, defined in [23], to define the notion of intra-regular *LA*-semihyperrings and study some of its properties. Finally, we give some characterizations of intra-regular *LA*-semihyperrings by the properties of many types of hyperideals of *LA*-semihyperrings.

Definition 3.1. An *LA*-semihyperring *S* is said to be *intra-regular* if for every $a \in S$, $a \in \Sigma(Sa^2)S$.

Example 3.1. Let $S = \{a, b, c\}$ be a set with the hyperoperations + and \cdot on S defined as follows:

+	a	b	c				b	
		$\{a,b,c\}$		_	a	<i>{a}</i>	<i>{a}</i>	<i>{a}</i>
b	$\{b,c\}$	$\{b,c\}$	$\{b,c\}$		b	{ <i>a</i> }	$\{a,b,c\}$	{ <i>c</i> }
c	$\{a,b,c\}$	$\{a,b,c\}$	$\{a,b,c\}$		c	{ <i>a</i> }	$\{a,b,c\}$	$\{a,b,c\}$

Then, $(S, +, \cdot)$ is an LA-semihyperring [31]. Now, we can see that S is intra-regular.

However, the set $S = \{a, b, c, d, e\}$ with two hyperoperations \oplus and \odot on S as defined in Example 2.5 is not intra-regular, because $b \notin \{a\} = \Sigma(S \odot b^2) \odot S$.

Proposition 3.1. Every left (resp., right) hyperideal of an intra-regular LA-semihyperring S is a hyperideal of S.

Proof. Let S be an intra-regular LA-semihyperring and $x \in S$. Assume that L is a left hyperideal of S and $a \in L$. Then, $a \in \Sigma(Sa^2)S$. Now, by using Remark 2.1 and left invertive law, we have

$$ax \subseteq (\Sigma(Sa^2)S)x \subseteq \Sigma((Sa^2)S)x = \Sigma(xS)(Sa^2) \subseteq \Sigma SL \subseteq \Sigma L \subseteq L.$$

Thus, L is a right hyperideal of S, and so L is a hyperideal of S. Suppose that R is a right hyperideal of S and $r \in R$. Then,

$$xr \subseteq (\Sigma(Sx^2)S)r \subseteq \Sigma((Sx^2)S)r = \Sigma(rS)(Sx^2) \subseteq \Sigma RS \subseteq \Sigma R \subseteq R.$$

Hence, R is a left hyperideal of S. It follows that R is a hyperideal of S.

Proposition 3.2. If S is an intra-regular LA-semihyperring with a pure left identity e, then $\Sigma I^2 = I$ for every left hyperideal I of S.

Proof. Assume that S is an intra-regular LA-semihyperring with a pure left identity e. Let I be a left hyperideal of S. Then, $\Sigma I^2 \subseteq I$. Let $a \in I$. By using left invertive law, medial law and Lemma 2.1, we have

$$a \in \Sigma(S a^2)S = \Sigma(S(aa))S = \Sigma(a(Sa))S = \Sigma(a(Sa))(eS) = \Sigma(ae)((Sa)S)$$
$$= \Sigma(Sa)((ae)S) = \Sigma(Sa)((Se)a) \subseteq \Sigma(SI)(SI) \subseteq \Sigma II = \Sigma I^2.$$

Thus, $I \subseteq \Sigma I^2$. Therefore, $\Sigma I^2 = I$.

A (resp., left, right) hyperideal P of an LA-semihyperring S is called *semiprime* if for any $a \in S$, $a^2 \subseteq P$ implies $a \in P$.

Proposition 3.3. Every hyperideal of an intra-regular LA-semihyperring is semiprime.

Proof. Assume that *S* is an intra-regular *LA*-semihyperring. Let *I* be a hyperideal of *S* and $a \in S$ such that $a^2 \subseteq I$. Then, $a \in \Sigma(Sa^2)S \subseteq \Sigma(SI)S \subseteq \Sigma I = I$. Hence, *I* is semiprime.

Proposition 3.4. Let S be an LA-semihyperring S with a pure left identity e. If S satisfies $L \cup R = \Sigma LR$, for every left hyperideal L and every right hyperideal R of S such that R is semiprime, then S is intraregular.

Proof. Let $a \in S$. By Lemma 2.8 and Lemma 2.7, we have that Sa is a left hyperideal and a^2S is a right hyperideal of S such that $a \in Sa$ and $a^2 \subseteq a^2S$, respectively. Thus, by the given assumption, $a \in a^2S$. Now, by using left invertive law, medial law and Lemma 2.1, we have

$$a \in Sa \cup a^2S = \Sigma(Sa)(a^2S) = \Sigma(Sa)((aa)S) \subseteq \Sigma(Sa)((aS)S) = \Sigma(aS)((Sa)S)$$
$$= \Sigma(a(Sa))(SS) = \Sigma(a(Sa))S = \Sigma(S(aa))S = \Sigma(Sa^2)S.$$

This shows that *S* is intra-regular.

Next, we give characterizations of intra-regular *LA*-semihyperrings by means of (resp., left, right) hyperideals, quasi-hyperideals, bi-hyperideals and generalized bi-hyperideals of *LA*-semihyperrings as show by the following theorems.

Theorem 3.1. Let S be an LA-semihyperring with a pure left identity e. Then S is intra-regular if and only if $L = L^3$, for every left hyperideal L of S.

Proof. Assume that S is intra-regular. Let L be any left hyperideal of S. Then, $L^3 = (LL)L \subseteq (SL)L \subseteq LL \subseteq L$. Now, let $a \in L$. By Lemma 2.7, a^2S is a hyperideal of S such that $a^2 \subseteq a^2S$. Thus, by given assumption and Proposition 3.3, we have that a^2S is semiprime, and so $a \in a^2S$. Thus, by using left invertive law and Lemma 2.1, we have

$$a \in a^2 S = (aa)S = (Sa)a \subseteq (S(a^2S))a = (a^2(SS))a = ((aa)S)a$$

= $((Sa)a)a \subseteq ((SL)L)L \subseteq (LL)L = L^3$.

Hence, $L \subseteq L^3$. Therefore, $L = L^3$.

Conversely, assume that $L = L^3$, for every left hyperideal L of S. Let $a \in S$. By Lemma 2.8, Sa is a left hyperideal of S such that $a \in Sa$. Then, by the given assumption and using medial law, we have

$$a \in Sa = ((Sa)(Sa))(Sa) = ((SS)(aa))(Sa) \subseteq (Sa^2)S \subseteq \Sigma(Sa^2)S.$$

This shows that S is intra-regular.

Theorem 3.2. Let S be a pure left invertible LA-semihyperring with a pure left identity e. Then the following conditions are equivalent:

- (i) S is intra-regular;
- (ii) $L \cap R \subseteq \Sigma LR$, where L and R are any left and right hyperideals of S, respectively.

Proof. (i) \Rightarrow (ii) Assume that S is intra-regular. Let L be a left hyperideal and R be a right hyperideal of S, and let $a \in L \cap R$. Then, by using left invertive law and Lemma 2.1, we have

$$a \in \Sigma(Sa^2)S = \Sigma(S(aa))S = \Sigma(a(Sa))S = \Sigma(S(Sa))a \subseteq \Sigma(S(SL))R \subseteq \Sigma LR.$$

Hence, $L \cap R \subseteq \Sigma LR$.

 $(ii) \Rightarrow (i)$ Assume that (ii) holds. Let $a \in S$. Since S is a pure left invertible, there exists $x \in S$ such that e = xa. By Lemma 2.7, a^2S is both a left and a right hyperideal of S such that $a^2 \subseteq a^2S$. Then, by using left interive law, Lemma 2.1 and given assumption, we have

$$a^2 \subseteq a^2 S \cap a^2 S \subseteq \Sigma(a^2 S)(a^2 S) = \Sigma a^2((a^2 S)S)$$
$$= \Sigma a^2((SS)a^2) = \Sigma(aa)(Sa^2) = \Sigma((Sa^2)a)a.$$

Now, by using left invertive law and Remark 2.1, we have

$$a = ea = (xa)a = (aa)x \subseteq (\Sigma((Sa^2)a)a)x \subseteq \Sigma(((Sa^2)a)a)x$$
$$= \Sigma(xa)((Sa^2)a) = \Sigma e((Sa^2)a) = \Sigma(Sa^2)a \subseteq \Sigma(Sa^2)S.$$

Therefore, S is intra-regular.

Theorem 3.3. Let S be a pure left invertible LA-semihyperring with a pure left identity e. Then the following statements are equivalent:

- (i) S is intra-regular;
- (ii) $L \cap R = \Sigma RL$, for every left hyperideal L and every right hyperideal R of S.

Proof. (i) \Rightarrow (ii) Assume that S is intra-regular. Let L and R be a left hyperideal and a right hyperideal of S, respectively. It is easy to see that $\Sigma RL \subseteq L \cap R$. On the other hand, let $a \in L \cap R$. Then, $a \in \Sigma(Sa^2)S$. By using left invertive law, paramedial law and Lemma 2.1, we have

$$a \in \Sigma(S a^2)S = \Sigma(S(aa))S = \Sigma(a(Sa))S = \Sigma(S(Sa))a = \Sigma((eS)(Sa))a$$
$$= \Sigma((aS)(Se))a \subseteq \Sigma((RS)S)L \subseteq \Sigma RL.$$

Hence, $L \cap R \subseteq \Sigma RL$. Therefore, $L \cap R = \Sigma RL$.

 $(ii) \Rightarrow (i)$ This proof is similar to the proof of $(ii) \Rightarrow (i)$ in Theorem 3.2, because a^2S is both a left hyperideal and a right hyperideal of S.

Theorem 3.4. Let S be a pure left invertible LA-semihyperring with a pure left identity e such that $(xe)S \subseteq xS$ for all $x \in S$. Then the following statements are equivalent:

- (i) S is intra-regular;
- (ii) $G \cap I = (GI)G$, for every generalized bi-hyperideal G and every hyperideal I of S;
- (iii) $B \cap I = (BI)B$, for every bi-hyperideal B and every hyperideal I of S;
- (iv) $Q \cap I = (QI)Q$, for every quasi-hyperideal Q and every hyperideal I of S.

Proof. (i) \Rightarrow (ii) Assume that S is intra-regular. Let G be a generalized bi-hyperideal and I be a hyperideal of S, and let $a \in G \cap I$. Then, $a \in \Sigma(Sa^2)S$. Now, by using left invertive law and Lemma 2.1, we have

$$a \in \Sigma(Sa^2)S = \Sigma(S(aa))S = \Sigma(a(Sa))S = \Sigma(S(Sa))a.$$

Consider,

$$S(Sa) \subseteq S(S(\Sigma(Sa^{2})S)) \subseteq \Sigma S(S((Sa^{2})S)) = \Sigma S((Sa^{2})(SS))$$

$$= \Sigma(Sa^{2})(S(SS)) \subseteq \Sigma(S(aa))S = \Sigma(a(Sa))S$$

$$= \Sigma(S(Sa))a = (\Sigma S(Sa))a \subseteq Sa. \tag{3.1}$$

Then, by using (3.1), medial law, Lemma 2.1 and Lemma 2.9, we have

$$S(Sa) \subseteq (\Sigma S(Sa))a \subseteq (\Sigma Sa)a = (Sa)a = (Sa)(ea) = (Se)(aa) = a((Se)a) \subseteq a(Sa) \subseteq S(Sa).$$

It follows that S(Sa) = a(Sa). Thus, $a \in \Sigma(S(Sa))a = \Sigma(a(Sa))a = (a(Sa))a \subseteq (G(SI))G \subseteq (GI)G$. Hence, $G \cap I \subseteq (GI)G$. On the other hand, $(GI)G \subseteq (SI)S \subseteq I$ and $(GI)G \subseteq (GS)G \subseteq G$, that is, $(GI)G \subseteq G \cap I$. Therefore, $G \cap I = (GI)G$.

- $(ii) \Rightarrow (iii)$ Since every bi-hyperideal is a generalized bi-hyperideal of S, it follows that (iii) holds.
- $(iii) \Rightarrow (iv)$ By Lemma 2.6, we have that every quasi-hyperideal of S is a bi-hyperideal. Hence, (iv) holds.
- $(iv) \Rightarrow (i)$ Let L be a left hyperideal and R be a right hyperideal of S. By Lemma 2.3 and Lemma 2.4, we have that R is a hyperideal and L is a quasi-hyperideal of S, respectively. By assumption, $L \cap R = (LR)L \subseteq (SR)L \subseteq RL \subseteq \Sigma RL$. On the other hand, $\Sigma RL \subseteq L \cap R$. Therefore, $L \cap R = \Sigma RL$. By Theorem 3.3, we have that S is intra-regular.

Theorem 3.5. Let S be a pure left invertible LA-semihyperring with a pure left identity e such that $(xe)S \subseteq xS$ for all $x \in S$. Then the following statements are equivalent:

- (i) S is intra-regular;
- (ii) $R \cap G \subseteq \Sigma GR$, for every generalized bi-hyperideal G and every right hyperideal R of S;
- (iii) $R \cap B \subseteq \Sigma BR$, for every bi-hyperideal B and every right hyperideal R of S;
- (iv) $R \cap Q \subseteq \Sigma QR$, for every quasi-hyperideal Q and every right hyperideal R of S.

Proof. (i) \Rightarrow (ii) Assume that S is intra-regular. Let R be a right hyperideal and G be a generalized bi-hyperideal of S, and let $a \in R \cap G$. Then, $a \in \Sigma(Sa^2)S$. Since $S(Sa) \subseteq Sa$, left invertive law, medial law and Lemma 2.1, we obtain that

$$a \in \Sigma(S a^2)S = \Sigma(S(aa))S = \Sigma(a(Sa))S = \Sigma(S(Sa))a \subseteq \Sigma(Sa)a$$
$$= \Sigma(Sa)(ea) = \Sigma(Se)(aa) = \Sigma a((Se)a)$$
$$= \Sigma a((ae)S) \subseteq \Sigma G((RS)S) \subseteq \Sigma GR.$$

Hence, $R \cap G \subseteq \Sigma GR$.

- $(ii) \Rightarrow (iii)$ Since every bi-hyperideal is a generalized bi-hyperideal of S, it follows that (iii) holds.
- $(iii) \Rightarrow (iv)$ By Lemma 2.6, we have that every quasi-hyperideal of S is a bi-hyperideal. Hence, (iv) holds.
- $(iv) \Rightarrow (i)$ Let L be a left hyperideal and R be a right hyperideal of S. By Lemma 2.4, L is a quasi-hyperideal of S. By assumption, $L \cap R \subseteq \Sigma LR$. Therefore, S is intra-regular by Theorem 3.2. \square

Theorem 3.6. Let S be a pure left invertible LA-semihyperring with a pure left identity e such that $(xe)S \subseteq xS$ for all $x \in S$. Then the following conditions are equivalent:

- (i) S is intra-regular;
- (ii) $R \cap G \subseteq \Sigma RG$, for every generalized bi-hyperideal G and every right hyperideal R of S;
- (iii) $R \cap B \subseteq \Sigma RB$, for every bi-hyperideal B and every right hyperideal R of S;
- (iv) $R \cap Q \subseteq \Sigma RQ$, for every quasi-hyperideal Q and every right hyperideal R of S.

Proof. (i) \Rightarrow (ii) Assume that S is intra-regular. Let G be a generalized bi-hyperideal and R be a right hyperideal of S. Let $a \in R \cap G$. Then, $a \in \Sigma(Sa^2)S$. Thus, by using left invertive law and Lemma 2.1, we have $a \in \Sigma(Sa^2)S = \Sigma(S(aa))S = \Sigma(S(Sa))S = \Sigma(S(Sa))a$. Since S(Sa) = a(Sa), we have

$$a \in \Sigma(S(Sa))a = \Sigma(a(Sa))a \subseteq \Sigma(RS)G \subseteq \Sigma RG.$$

This implies that $R \cap G \subseteq \Sigma RG$.

- $(ii) \Rightarrow (iii)$ Since every bi-hyperideal is a generalized bi-hyperideal of S, it turns out that (iii) holds.
- $(iii) \Rightarrow (iv)$ By Lemma 2.6, we have that every quasi-hyperideal of S is a bi-hyperideal. So, (iv) holds.
- $(iv) \Rightarrow (v)$ Let L and R be a left hyperideal and a right hyperideal of S, respectively. By Lemma 2.4, L is also a quasi-hyperideal of S. By hypothesis, $L \cap R \subseteq \Sigma RL$. Otherwise, $\Sigma RL \subseteq L \cap R$. Hence, $L \cap R = \Sigma RL$. Therefore, S is intra-regular by Theorem 3.3.

Theorem 3.7. Let S be a pure left invertible LA-semihyperring with a pure left identity e such that $(xe)S \subseteq xS$ for all $x \in S$. Then the following statements are equivalent:

- (i) S is intra-regular;
- (ii) $L \cap G \subseteq \Sigma LG$, for every generalized bi-hyperideal G and every left hyperideal L of S;
- (iii) $L \cap B \subseteq \Sigma LB$, for every bi-hyperideal B and every left hyperideal L of S;
- (iv) $L \cap Q \subseteq \Sigma LQ$, for every quasi-hyperideal Q and every left hyperideal L of S.

Proof. (i) \Rightarrow (ii) Assume that S is intra-regular. Let L be a left hyperideal and G be a generalized bi-hyperideal of S, and let $a \in L \cap G$. Then, $a \in \Sigma(Sa^2)S$. Now, by using left invertive law and Lemma 2.1, we have

$$a \in \Sigma(Sa^2)S = \Sigma(S(aa))S = \Sigma(a(Sa))S = \Sigma(S(Sa))a \subseteq \Sigma(S(SL))G \subseteq \Sigma LG.$$

This implies that $L \cap G \subseteq \Sigma LG$.

- $(ii) \Rightarrow (iii)$ Since every bi-hyperideal is a generalized bi-hyperideal of S, it follows that (iii) holds.
- $(iii) \Rightarrow (iv)$ By Lemma 2.6, we have that every quasi-hyperideal of S is a bi-hyperideal. Hence, (iv) holds.
- $(iv) \Rightarrow (i)$ Let L be a left hyperideal and R be a right hyperideal of S. By Lemma 2.4, R is also a quasi-hyperideal of S. By assumption, $L \cap R \subseteq \Sigma LR$. Therefore, S is intra-regular by Theorem 3.2. \square

Theorem 3.8. Let S be a pure left invertible LA-semihyperring with a pure left identity e such that $(xe)S \subseteq xS$ for all $x \in S$. Then the following statements are equivalent:

- (i) S is intra-regular;
- (ii) $L \cap G \subseteq \Sigma GL$, for every generalized bi-hyperideal G and every left hyperideal L of S;

- (iii) $L \cap B \subseteq \Sigma BL$, for every bi-hyperideal B and every left hyperideal L of S;
- (iv) $L \cap Q \subseteq \Sigma QL$, for every quasi-hyperideal Q and every left hyperideal L of S.

Proof. (i) \Rightarrow (ii) Assume that S is intra-regular. Let G be a generalized bi-hyperideal and L be a left hyperideal of S and let $a \in L \cap G$. Then, $a \in \Sigma(Sa^2)S$. Thus, by using $S(Sa) \subseteq Sa$, left invertive law, medial law and Lemma 2.1, we have

$$a \in \Sigma(S a^2)S = \Sigma(a(S a))S = \Sigma(S(S a))a \subseteq \Sigma(S a)a = \Sigma(S a)(ea) = \Sigma(S e)(aa)$$
$$= \Sigma a((S e)a) \subseteq \Sigma a(S a) \subseteq \Sigma G(S L) \subseteq \Sigma GL.$$

Hence, $L \cap G \subseteq \Sigma GL$.

- $(ii) \Rightarrow (iii)$ Since every bi-hyperideal of S is a generalized bi-hyperideal, it follows that (iii) holds.
- $(iii) \Rightarrow (iv)$ The implication holds from Lemma 2.6.
- $(iv) \Rightarrow (i)$ Let L and R be a left hyperideal and a right hyperideal of S, respectively. By Lemma 2.4, R is also a quasi-hyperideal of S. By the given assumption, we have $L \cap R \subseteq \Sigma RL$. On the other hand, $\Sigma RL \subseteq L \cap R$. Therefore, $L \cap R = \Sigma RL$. By Theorem 3.3, we obtain that S is intra-regular. \square

Theorem 3.9. Let S be a pure left invertible LA-semihyperring with a pure left identity e such that $(xe)S \subseteq xS$ for all $x \in S$. Then the following conditions are equivalent:

- (i) S is intra-regular;
- (ii) $L \cap G \cap R \subseteq \Sigma(LG)R$, for every generalized bi-hyperideal G, every left hyperideal L and every right hyperideal R of S;
- (iii) $L \cap B \cap R \subseteq \Sigma(LB)R$, for every bi-hyperideal B, every left hyperideal L and every right hyperideal R of S;
- (iv) $L \cap Q \cap R \subseteq \Sigma(LQ)R$, for every quasi-hyperideal Q, every left hyperideal L and every right hyperideal R of S.

Proof. (i) \Rightarrow (ii) Assume that S is intra-regular. Let G be a generalized bi-hyperideal, L be a left hyperideal and R be a right hyperideal of S, and let $a \in L \cap G \cap R$. Then, $a \in \Sigma(Sa^2)S$. We note that S(Sa) = a(Sa). Then, by using left invertive law, medial law, paramedial law and Lemma 2.1, we have

$$a \in \Sigma(Sa^2)S = \Sigma(a(Sa))S = \Sigma(S(Sa))a = \Sigma(a(Sa))a = \Sigma(a(Sa))(ea) = \Sigma(S(aa))(ea)$$
$$= \Sigma(ae)((aa)S) = \Sigma(aa)((ae)S) \subseteq \Sigma(LG)((RS)S) \subseteq \Sigma(LG)R.$$

Hence, $L \cap G \cap R \subseteq \Sigma(LG)R$.

- $(ii) \Rightarrow (iii)$ Since every bi-hyperideal is a generalized bi-hyperideal of S, it follows that (iii) holds.
- $(iii) \Rightarrow (iv)$ By Lemma 2.6, we have that every quasi-hyperideal of S is a bi-hyperideal. Hence, (iv) holds.
- $(iv) \Rightarrow (i)$ Let L be a left hyperideal and R be a right hyperideal of S. By Lemma 2.4, L is a quasi-hyperideal of S. By assumption, $L \cap R = L \cap L \cap R \subseteq \Sigma(LL)R \subseteq \Sigma(SL)R \subseteq \Sigma LR$. By Theorem 3.2, we obtain that S is intra-regular.

Theorem 3.10. Let S be a pure left invertible LA-semihyperring with a pure left identity e such that $(xe)S \subseteq xS$ for all $x \in S$. Then the following statements are equivalent:

(i) S is intra-regular;

- (ii) $L \cap G \cap R \subseteq \Sigma(RG)L$, for every generalized bi-hyperideal G, every left hyperideal L and every right hyperideal R of S;
- (iii) $L \cap B \cap R \subseteq \Sigma(RB)L$, for every bi-hyperideal B, every left hyperideal L and every right hyperideal R of S;
- (iv) $L \cap Q \cap R \subseteq \Sigma(RQ)L$, for every quasi-hyperideal Q, every left hyperideal L and every right hyperideal R of S.

Proof. (i) \Rightarrow (ii) Assume that S is intra-regular. Let G be a generalized bi-hyperideal, L be a left hyperideal and R be a right hyperideal of S. Let $a \in L \cap G \cap R$. Then, $a \in \Sigma(Sa^2)S$. Since $S(Sa) \subseteq (\Sigma S(Sa))a \subseteq Sa$ and by Lemma 2.9, we have $S(Sa) \subseteq (\Sigma S(Sa))a \subseteq (\Sigma S(Sa))a = (Sa)a$. By the given assumption, left invertive law, medial law, paramedial law and Lemma 2.1, we have

$$a \in \Sigma(Sa^2)S = \Sigma(a(Sa)S) = \Sigma(S(Sa))a \subseteq \Sigma((Sa)a)a = \Sigma((Sa)(ea))a = \Sigma((ae)(aS))a$$
$$= \Sigma(((aS)e)a)a \subseteq \Sigma(((RS)S)G)L \subseteq \Sigma(RG)L.$$

This shows that, $L \cap G \cap R \subseteq \Sigma(RG)L$.

- $(ii) \Rightarrow (iii)$ Since every bi-hyperideal of S is a generalized bi-hyperideal, which implies that (iii) holds.
 - $(iii) \Rightarrow (iv)$ The proof follows from Lemma 2.6.
- $(iv) \Rightarrow (v)$ Let L be a left hyperideal and R be a right hyperideal of S. Also, L is a quasi-hyperideal of S by Lemma 2.4. By assumption, we have that $L \cap R = L \cap L \cap R \subseteq \Sigma(RL)L \subseteq \Sigma(RS)L \subseteq \Sigma RL$. Otherwise, $\Sigma RL \subseteq L \cap R$. Hence, $L \cap R = \Sigma RL$. Therefore, S is intra-regular by Theorem 3.3. \square

The following theorem, we can prove similarly.

Theorem 3.11. Let S be a pure left invertible LA-semihyperring with a pure left identity e such that $(xe)S \subseteq xS$ for all $x \in S$. Then the following conditions are equivalent:

- (i) S is intra-regular;
- (ii) $R \cap G \subseteq \Sigma(RG)R$, for every generalized bi-hyperideal G and every right hyperideal R of S;
- (iii) $R \cap B \subseteq \Sigma(RB)R$, for every bi-hyperideal B every right hyperideal R of S;
- (iv) $R \cap Q \subseteq \Sigma(RQ)R$, for every quasi-hyperideal Q and every right hyperideal R of S.

4. Conclusions

In 2018, the concept of *LA*-semihyperrings was introduced by Nawaz et al. [31] as a generalization of *LA*-semirings. In Section 2, we have shown that some *LA*-semihyperring can be constructed from an ordered *LA*-semiring as shown in Lemma 2.2. This means that the *LA*-semihyperring is also a generalization of an ordered *LA*-semiring. In Section 3, we applied the concept of intra-regular *LA*-rings, appeared in [23], to define the concept of intra-regular *LA*-semihyperrings and discussed some of its properties. Finally, we characterized the class of intra-regular *LA*-semihyperrings by using (resp., left, right) hyperideals, quasi-hyperideals, bi-hyperideals and generalized bi-hyperideals of *LA*-semihyperrings were shown in Theorem 3.1 - Theorem 3.11. In our future study, we can consider the characterizations of the class of both regular and intra-regular *LA*-semihyperrings based on different types of hyperideals of *LA*-semihyperrings.

Acknowledgments

This research was financially supported by Faculty of Science, Mahasarakham University (Grant year 2020).

Conflict of interest

The author declares no conflict of interest.

References

- 1. A. Alsubie, A. Al-Masarwah, MBJ-neutrosophic hyper *BCK*-ideals in hyper *BCK*-algebras, *AIMS Math.*, **6** (2021), 6107–6121. http://dx.doi.org/10.3934/math.2021358
- 2. I. Ahmad, S. Rahman, M. Iqbal, Amanullah, A note on left abelian distributive *LA*-semigroups, *Punjap Univ. J. Math.*, **52** (2020), 47–63.
- 3. S. Abdullah, S. Aslam, N. U. Amin, *LA*-semigroups characterized by the properties of interval valued (α, β) -fuzzy ideals, *J. Appl. Math. Inform.*, **32** (2014), 405–426. https://doi.org/10.14317/JAMI.2014.405
- 4. M. A. Ansari, Roughness in generalized (m, n) bi-ideals in ordered *LA*-semigroups, *Int. J. Math. Comput. Sc.*, **14** (2019), 371–386.
- 5. M. Azhar, M. Gulistan, N. Yaqoob, S. Kadry, On fuzzy ordered *LA*-semihypergroups, *Int. J. Anal. Appl.*, **16** (2018), 276–289. https://doi.org/10.28924/2291-8639-16-2018-276
- 6. V. Amjad, F. Yousafzai, On pure LA-semihypergroups, Konuralp J. Math., 2 (2014), 53–63.
- 7. N. Abughazalah, N. Yaqoob, A. Bashir, Cayley graphs over *LA*-groups and *LA*-polygroups, *Math. Probl. Eng.*, **2021** (2021), 4226232, 9 pages. https://doi.org/10.1155/2021/4226232
- 8. A. Basar, A note on (m, n)- Γ -ideals of ordered *LA*- Γ -semigroups, *Konuralp J. Math.*, **7** (2019), 107–111.
- 9. S. I. Batool, I. Younas, M. Khan, N. Yaqoob, A new technique for the construction of confusion component based on inverse *LA*-semigroups and its application in stenography, *Multimed. Tools Appl.*, **80** (2021), 28857–28877. https://doi.org/10.1007/s11042-021-11090-w
- 10. P. Corsini, *Prolegomena of hypergroup theory*, Aviani Editore, 1993.
- 11. P. Corsini, V. Leoreanu, *Applications of hyperstructure theory*, Springer Science & Business Media, 2003.
- 12. B. Davvaz, S. Subiono, M. A. Tahan, Calculus of meet plus hyperalgebra (tropical semihyperrings), *Commun. Algebra*, **48** (2020), 2143–2159. https://doi.org/10.1080/00927872.2019.1710178
- 13. A. Elmoasy, On rough fuzzy prime ideals in left almost semigroups, *Int. J. Anal. Appl.*, **19** (2021), 455–464.
- 14. M. Gulistan, M. Khan, N. Yaqoob, M. Shahzad, Structural properties of cubic sets in regular *LA*-semihypergroups, *Fuzzy Inform. Eng.*, **9** (2017), 93–116. https://doi.org/10.1016/j.fiae.2017.03.005

- 15. M. Gulistan, N. Yaqoob, S. Kadry, M. Azhar, On generalized fuzzy sets in ordered *LA*-semihypergroups, *P. Est. Acad. Sci.*, **68** (2019), 43–54. https://doi.org/10.3176/proc.2019.1.06
- 16. K. Hila, J. Dine, On hyperideals in left almost semihypergroups, *International Scholarly Research Notices*, **2011** (2011), 953124. https://doi.org/10.5402/2011/953124
- 17. M. Hu, F. Smarandache, X. Zhang, On neutrosophic extended triplet *LA*-hypergroups and strong pure *LA*-semihypergroups, *Symmetry*, **12** (2020), 163. https://doi.org/10.3390/sym12010163
- 18. W. Jantanan, R. Chinram, P. Petchkaew, On (*m*, *n*)-quasi-gamma-ideals in ordered *LA*-gamma-semigroups, *J. Math. Comput. Sci.*, **11** (2021), 3377–3390. https://doi.org/10.28919/jmcs/5705
- 19. A. Khan, M. Farooq, M. Izhar, B. Davvaz, Fuzzy hyperideals of left almost semihypergroups, *Int. J. Anal. Appl.*, **15** (2017), 155–171.
- 20. M. A. Kazim, M. Neseeruddin, On almost semigroups, Rort. Math., 36 (1977), 41–47.
- 21. M. Khan, T. Asif, Characterizations of intra-regular left almost semigroups by their fuzzy ideals, *J. Math. Res.*, **2** (2010), 87–96.
- 22. M. Khan, Y. B. Jun, F. Yousafzai, Fuzzy ideals in right regular *LA*-semigroups, *Hacet. J. Math. Stat.*, **44** (2015), 569–586.
- 23. N. Kausar, M. Munir, B. Islam, M. Alesemi, Salahuddin, M. Gulzar, Ideals in *LA*-rings, *Ital. J. Pure Appl. Math.*, **44** (2020), 731–744.
- 24. W. A. Khan, A. Taouti, A. Salami, Z. Hussain, On gamma *LA*-rings and gamma *LA*-semirings, *Eur. J. Pure Appl. Math.*, **14** (2021), 989–1001. https://doi.org/10.29020/nybg.ejpam.v14i3.4034
- 25. W. Khan, F. Yousafzai, M. Khan, On generalized ideals of left almost semigroups, *Eur. J. Pure Appl. Math.*, **9** (2016), 277–291.
- 26. C. G. Massouros, N. Yaqoob, On theory of left/right almost groups and hypergroups with their relevant enumerations, *Mathematics*, **9** (2021), 1828. https://doi.org/10.3390/math9151828
- 27. D. Mruduladevi, G. Shobhalatha, T. Padma Praveen, Congruences on la-semirings and variant of semigroup, *Int. J. Math. Trends Technol.*, **40** (2016), 180–182.
- 28. F. Marty, Sur une generalization de la notion de group, 8th Congress Mathematics Scandinaves, Stockholm, 1934.
- 29. W. Nakkhasen, Left almost semihyperrings characterized by their hyperideals, *AIMS Math.*, **6** (2021), 13222–13234. https://doi.org/10.3934/math.2021764
- 30. S. Nawaz, M. Gulistan, S. Khan, Weak *LA*-hypergroups; neutrosophy, enumeration and redox reaction, *Neutrosophic Sets Sy.*, **36** (2020), 352–368.
- 31. S. Nawaz, I. Rehman, M. Gulistan, On left almost semihyperrings, *Int. J. Anal. Appl.*, **16** (2018), 528–541. https://doi.org/10.28924/2291-8639-16-2018-528
- 32. W. Nakkhasen, B. Pibaljommee, Intra-regular semihyperrings, *J. Discret. Math. Sci. C.*, **22** (2019), 1019–1034. https://doi.org/10.1080/09720529.2019.1649818
- 33. P. V. Protić, N. Stevanović, AG-test and some general properties of Abel-Grassmann's groupoids, *Pure Math. Appl.*, **4** (1995), 371–383.
- 34. I. Rehman, A. Razzaque, M. I. Faraz, Neutrosophic set approach to study the characteristic behavior of left almost rings, *Neutrosophic Sets Sy.*, **46** (2021), 24–36.

- 35. I. Rehman, N. Yaqoob, S. Nawaz, Hyperideals and hypersystems in *LA*-hyperrings, *Songklanakarin J. Sci. Technol.*, **39** (2017), 651–657. https://doi.org/10.14456/sjst-psu.2017.80
- 36. A. S. Sezer, Certain characterizations of *LA*-semigroups by soft sets, *J. Intell. Fuzzy Syst.*, **27** (2014), 1035–1046. https://doi.org/10.3233/IFS-131064
- 37. T. Shah, I. Rehman, On *LA*-rings of finitely nonzero functions, *Int. J. Contemp. Math. Sciences*, **5** (2010), 209–222.
- 38. J. Tang, X. Y. Xie, Z. Gu, A study on weak hyperfilters of ordered semihypergroups, *AIMS Math.*, **6** (2021), 4319–4330. https://doi.org/10.3934/math.2021256
- 39. T. Vougiouklis, *Hyperstructures and their representations*, Handronic press, 1994.
- 40. F. Yousafzai, A. Iampam, J. Tang, Study on smallest (fuzzy) ideals of *LA*-semigroups, *Thai J. Math.*, **16** (2018), 549–561.
- 41. I. Younas, Q. Mushtaq, A. Rafiq, Presentation of inverse *LA*-semigroups, *Maejo Int. J. Sci. Technol.*, **14** (2020), 242–251.
- 42. N. Yaqoob, Approximations in left almost polygroups, J. Intell. Fuzzy Syst., **36** (2019), 517–526.
- 43. N. Yaqoob, P. Corsini, F. Yousafzai, On intra-regular left almost semihypergroups with pure left identity, *J. Math.*, **2013** (2013), 510790. https://doi.org/10.1155/2013/510790
- 44. N. Yaqoob, I. Cristea, M. Gulistan, S. Nawaz, Left almost polygroups, *Ital. J. Pure Appl. Math.*, **39** (2018), 465–474.
- 45. N. Yaqoob, M. Gulistan, Partially ordered left almost semihypergroups, *J. Egyptian Math. Soc.*, **23** (2015), 231–235. https://doi.org/10.1016/j.joems.2014.05.012
- 46. P. Yiarayong, On generalizations of quasi-prime ideals of an ordered left almost semigroups, *Afrika Mathematika*, **32** (2021), 969–982. https://doi.org/10.1007/s13370-021-00873-x

© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)