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Abstract: In this study, a mathematical model for the differentiation of stem cells is proposed
to understand the dynamics of cell differentiation in a complex network. For this, myeloid cells,
which are differentiated from stem cells, are introduced in this study. We introduce the threshold
quantity R0 to understand the population dynamics of stem cells. The local stability analysis of
three equilibria, namely (i) free equilibrium points, (ii) absence of stem and progenitor cells, and
(iii) endemic equilibrium points are investigated in this study. The model is first formulated in non-
fractional order and after that converted into a fractional sense by utilizing the Atangana-Baleanu
derivative in Caputo (ABC) sense in the form of a non-singular kernel. The model is solved by using
numerical techniques. It is seen that the myeloid cell population significantly affects the stem cell
population.
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1. Introduction

Stem cells are central to regulate the body mechanism which governs development and tissue
regeneration. These cells are self-improving with the capacity to both differentiate and multiply into

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2022289


5176

two hundred cell types that make up the human body. Stem cells are primitive that have the potential to
differentiate or develop into a variety of specific cell types. The two main varieties of stem cells in the
biological system are embryonic and adult and have a unique capability to develop into well-known
cell types in the human body. Moreover, these cells have an important role in the synchronization of
the development of human body, tissue homeostasis as well as tissue regeneration. Their potential to
differentiate and self-improvement distinguishes them. These two procedures are complementary in
several ways in biologically dynamical processes. The self-regeneration ability refers to the stem cells
that can create a new cell with similar characteristics to their progenitor, guaranteeing the survival
of the basic stem cell population. However, differentiable measures the process by which these
offspring become additional specialized and lose stem cell properties, in particular, the potential for
self-regeneration [14].

Likewise, a stem cell, a progenitor cell is also a biological cell. Progenitor cells tend to differentiate
into a fixed type of cell. But these cells are already more fixed than stem cells and are impelled to
differentiate into their presence [7]. The main important difference between progenitor and stem cells
is that progenitor cells can differentiate into more than two types of cells based upon their origin and
ability but stem cells can reproduce indefinitely [21]. So, the conflict about the accurate definition
remains and the abstraction is still in progress [22]. The progenitor cells are early descendents of stem
cells that can differentiate to form one or more kinds of cells but they cannot be divided and reproduce
indefinitely. There has been very small proof of this oligopotent concept of cells [8]. But progenitor
cells speak of being in an extra stage of cell differentiation. Sometimes these cells lie in between stem
and fully differentiable cells. This type of ability depends on the differentiation of their big stem cells
and likewise on their function. But some progenitor cells could move through the body and migrate
towards the tissue where they are needed. So many properties are captured by adult cells as well as
progenitor cells.

Marciniak-Czochra and some other mathematical modeller proposed compartmental mathematical
models of a discrete group of cell sub-populations to look into possible procedures for stabilization as
well as regulation of red blood cell production after perturbations like bone narrow transplantation,
which we used as a starting point for our research. Different forms of non-linearities in the
mathematical model equations result from various conceivable regulatory feedback processes [18, 6].
It was studied that to maintain such a stabilization cell system, two concurrent estimation populations
are required [19].

The model provided with six compartments is an isolated negative response curve that describes
how mature cells regulate the entire process [3]. In particular, the theories about how external
signaling regulates hematopoiesis in feedback to a scarcity of mature cells are being investigated.
The first hypothesis argues that the differentiation of cells is controlled solely by increasing the rate of
accumulation, whereas the second hypothesis assumes that the prosecution of self-regeneration until
differentiation is influenced by outside signals. A unique non-positive regulatory population (matching
to hypotheses first or second) is potentially enough to manage the organization. The mathematical
modeling in biology has been performed in various age structures [23, 24]. The modelling of the
COVID-19 pandemic has been observed in the environment [25, 26]. We hope to validate this discovery
in this work by performing a qualitative analysis of four compartmental mathematical models under
the hypothesis first. The structure under Hypothesis Two was examined as well as requirements for
the existence of partially free equilibrium points and positively for a four-compartment mathematical
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model, which have been established in the work of the authors [27]. The following properties of a stem
cell population were discovered through mathematical and computational analysis of the biological
system of equilibrium points: (i) The mortality rate is lower than the basic reproduction rate for some
cytokine levels, and (ii) the signal intensity level of cytokine that is required to maintain the population
density is lower than for all supplementary cell populations [16].

In this study, we mainly concentrate on circulation relating to the cell differentiation procedure and
its stability analysis. In a few stabilizations cell models, like the cascade of circumstances originating in
stem cells earlier than in thoroughly differentiable cells, the hematopoietic system is well outlined [2].
On the other hand, in some blood tissues like the erythrocytes, thrombocytes, and leukocytes, the
condition is almost transparent as the total upcoming stages are unknown [13]. As a result, we use
mathematical models with as well as without progenitor cells to investigate the impact of intermediary
stages among stem, progenitor, and mature cells on stem cell dynamics. For the development of a new
concept in differentiation in cell dynamics, incorporated the concept of a myeloid cell. This is the fresh
work in cell division modeling through fractional calculus. In hematopoiesis, myelogenous or myeloid
cells arise from the progenitor cells after their differentiation [9, 10]. They were differentiated from
descendants of common progenitors that derived from hematopoietic cells. Also, these cells(common
progenitors) are the well-known defenders against infection in the human body.

So, based on cell differentiation facts, we concentrate briefly on the stability analysis of the
characterization of stem cells. Here are two important questions still open: (i) Does the stem cell
collection remain constant throughout the life of a living entity? (ii) Does it decay the age of a living
entity passes? So some moderation of the model from to explore the dynamical behavior of the system
less than the satisfaction of all cells, together with stem, progenitor, myeloid and mature cells, explode
into replicative senescence has been given in [4, 11]. Based on this understanding of differentiation in
cell dynamics class in the proposed model. For the implementation of this class, the mathematical
model is constructed by using the four compartmental model. The numerical simulations of the
proposed model abcd utilizing the estimated data were presented.

This pipeline is described with the assistance of differential as well as delayed differential equations.
But in this work, we apply fractional differential equations due to their good explanations in the real
world. The mathematical modeling approaches through the fractional differential equation have gained
interest as well as another service in the last few years, in the researcher’s opinion. This is due to
the concept that fractional-order mathematical models have the capability of gaining the crossover
dynamical behavior and fading memory that is shown by the biological process. Most of the absorbing
facts are the data fitting that can be described as non-integer order rather than ordinary-order [5, 20].
Moreover, some fractional derivatives that are identified in their kernels, such as singular and non-
singular, are utilized very efficiently to address real-world problems [15]. The fractional differential
operator mathematical model generated through the Atangana-Baleanu derivative in the Caputo sense
is more important and explains the dynamics systems more effectively than the Caputo-Fabrizio
because of its derivative introduced at the basic point of departure in the Mittag-Leffler kernel, which is
non-local and non-singular [1]. Thus, the mathematical models created through the Atangana-Baleanu
derivative in the Caputo sense are more important and better survey the dynamics of an epidemic. In
the ongoing research work, many well-known researchers have established mathematical models with
fractional-order derivatives, which are proposed as a good tool for the current life problem response.
We extended the model proposed by [28] by using the Atangana-Baleanu derivative in the Caputo sense
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into ‘abcd’ cell model by incorporating the myeloid cell class which is an important class of stem cell.
The aim of this mathematical model is to simulate the concentration of stem and progenitor cells.

The remaining work on the paper is arranged as follows. Section 2 is devoted to the basic preliminaries
related to non-integer fractional derivatives which are utilized in the formulation of mathematical
model considerations. The mathematical model description in the Atangana-Baleanu derivative in
Caputo sense is given in Section 3. Some basic properties of the mathematical model are given in
Section 4. The analysis work is done in Section 5. The numerical solution is carried out in Section 6
by using the Adams Bashforth Moulton method. The numerical results are facilitated in Section 7.
Finally, the conclusion is drawn in Section 8.

2. Preliminaries on fractional calculus

In this section, we present some valuable concepts and basic definitions of fractional operators.

Definition 2.1. For ϕ(t) ∈ Cv, the Caputo derivative is defined as:

C
0 Dα

t ϕ(t) =
1

Γ(v − α)

∫ t

0

ϕ(v)(x)
(t − x)α−v+1 dx, where α ∈ (v − 1, v], in which v ∈ N.

Obviously, C
0 Dα

t ϕ(t)→ Dα
t ϕ(t) whenever α→ 1.

Definition 2.2. The Atangana-Baleanu derivative in the Caputo sense is defined as:
ABC
a Dα

t ϕ(t) =
AB(α)
1 − α

∫ t

a
ϕ′(x) × Eα

[
− α

(t − x)α

1 − α

]
dx, where 0 ≤ α ≤ 1, ϕ is in C[a, b] space and AB(α)

is the normalization function, such that AB(0) = AB(1) = 1.

Definition 2.3. The new fractional derivative associated to integral with the Mittag-Leffler kernel is
defined as:

ABC
a Iαt ϕ(t) =

1 − α
AB(α)

ϕ(t) +
α

AB(α)Γ(α)

∫ t

a
ϕ(x)(t − x)α−1dx.

3. Mathematical model

In this section, the integer order mathematical model is formulated. This mathematical model is
formulated by the sub-division of the total cell population of stem cell by ∆(t) as t → ∞. The proposed
model is described by the sub-division of the total cell population given by stem cells a(t), progenitor
cells b(t), myeloid cells c(t) and mature cells d(t). The other biological parameters involved in the
formulation of the model are ua, ub, uc. These three biological parametric cells are the rate of stem,
progenitor, and myeloid cells. The division of stem, progenitor, and myeloid cells that regenerate
are represented by va, vb, vc. Also, va(d), vb(d), vc(d) represents the divisional quantities of the stem,
progenitor, and myeloid cell dynamical populations, and additionally, µa, µb, µc, µd represents the
mortality rate of the corresponding cell populations. On division, the flow of stem cells population is

(2ua − 1)va(d(t))a(t).

The transition diagram of stem cells dynamics is depicted in Figure 1.
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Figure 1. Transition diagram of stem cells dynamics.

The population of progenitor cells is given by

2(1 − ua)va(d(t))a(t),

due to the differentiation of stem cells. Also, the population of progenitor cells is given by

(2ub − 1)vb(d(t))b(t).

In the same fashion, the biological system class of myeloid cells due to differentiation of progenitor
cells is

2(1 − ub)vb(d(t))b(t).

Similarly, the flow populations of myeloid cells are

(2uc − 1)vc(d(t))c(t).

Also, in the same fashion, the flow in the class of mature cells due to differentiation of myeloid
cells is

2(1 − uc)vc(d(t))c(t).

The model is given as follow:

a′(t) =(2ua − 1)va(d(t))a(t) − µaa(t),
b′(t) =(2ub − 1)vb(d(t))b(t) + 2(1 − ua)va(d(t))a(t) − µbb(t),
c′(t) =(2uc − 1)vc(d(t))c(t) + 2(1 − ub)vb(d(t))b(t) − µcc(t),
d′(t) =2(1 − uc)vc(d(t))c(t) − µdd(t), (3.1)

AIMS Mathematics Volume 7, Issue 4, 5175–5198.



5180

with initial conditions:

a(0) = a0 > 0, b(0) = b0 ≥ 0, c(0) = c0 ≥ 0 and d(0) = d0 ≥ 0. (3.2)

The comprehensive cells division quantities measure the rule of the two procedures by the mature
cell production. Take this for ua, ub, uc ∈ [0, 1) and µa, µb, µc, µd > 0. The division amounts of the stem,
progenitor, and myeloid cells are examined by extracellular biological signaling particles. Specifically,
the division amounts of stem, progenitor, and myeloid cells are given by

ea f (t), eb f (t) and ec f (t),

where ea, eb and ec are the uncontrolled divisions of stem, progenitor, myeloid cells, and f (t) is
signal strength at time t. Suppose that cytokines are discharged by comprehensive cells and that this
production is synchronized by mechanisms sensitive to the rate of mature cells,

f (t) =
1

1 + ld(t)
, where l > 0.

To estimate the sensitivity to the number of mature cells. This explicit dependency can be
rationalized by using a pseudo equilibrium point approximation of the plausible dynamical behavior
of the cytokine particles. This estimation throws back the supposition that signal strength attains
its efficiency at a lower threshold than the significance of mature cells and mitigates the asymptotic
towards zero if the quantity of mature cells increases. The state variables and the biological parameters
are shown in Table 1 and Table 2 respectively as below.

Table 1. Biological description of the model (3.1).

State Variables Biological Description
a(t) Stem cell class
b(t) Progenitor cell class
c(t) Myeloid cell class
d(t) Mature cell class

Table 2. Explanation of parameters of the model (3.1).

Parameter Explanation Parametric values Source
ua Rate of self-regeneration of stem cells 0.50 − 0.60 [28]
ub Rate of self-regeneration of progenitor cells 0.90 − 0.95 [14]
uc Rate of self-regeneration of myeloid cells 0.56 − 0.66 Assumed
va Division rate of stem cells 0.1 − 0.5 Assumed
vb Division rates of progenitor cells 0.3 − 0.8 Assumed
vc Division rates of myeloid cells 0.5 − 0.9 Assumed
µa Natural death rates of stem cells 0.01 [28]
µb Natural death rates of progenitor cells 0.05 [28]
µc Natural death rates of myeloid cells 0.10 Assumed
µd Natural death rates of mature cells 0.75 [28]
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Thus, the spitting amounts of stem, progenitor, and myeloid cells depend on the size of mature cells:
va(d) =

ea

1 + ld
, vb(d) =

eb

1 + ld
, vc(d) =

ec

1 + ld
, where ea, eb, ec > 0.

We explain the total volume of self-regeneration as the chance that a progeny cell remains
in the same position of differentiable as the parent cells. We are additionally supposing that
mature cells do not increase and thus really proceed into the mature cell mathematical compartment
complementary to differentiable stem cells (two-dimensional mathematical compartmental model),
progenitor cells (three-dimensional mathematical compartmental model), or myeloid cells (four-
dimensional mathematical compartment model).

We present mathematical model equations in dimensionless expressions divided by µa, and establish
the dimensionless time t̃ := µat :

ã(t̃) := a
( t̃
µa

)
, b̃(t̃) := b

( t̃
µb

)
, c̃(t̃) := c

( t̃
µc

)
, d̃(t̃) := d

( t̃
µd

)
,

sa =
ea

µa
, sb =

eb

µa
, sc =

ec

µa
, gb =

µb

µa
, gc =

µc

µa
, gd =

µd

µa
.

For the sake of convenience, we are dropping the tilde, Eq (3.1) suit

a′(t) =(2ua − 1)
sa

1 + ld(t)
a(t) − a(t),

b′(t) =(2ub − 1)
sb

1 + ld(t)
b(t) + 2(1 − ua)

sa

1 + ld(t)
a(t) − gbb(t),

c′(t) =(2uc − 1)
sc

1 + ld(t)
c(t) + 2(1 − ub)

sb

1 + ld(t)
b(t) − gcc(t),

d′(t) =2(1 − uc)
sc

1 + ld(t)
c(t) − gdd(t). (3.3)

Fractional-order model

The fractional-order derivative of Atangana-Baleanu in the Caputo sense is extra comprehensive as
the kernel elaborated in this operator is both non-singular as well as non-local. Also, this aforesaid
operator tends to catch the memory effects as well as the crossover dynamical behavior that persists in
the system of biological cells. On taking these points into mind, in this subsection, we again formulate
the abcd mathematical model (3.3) with the assistance of the fractional-order operator of Atangana-
Baleanu in the Caputo sense, with the order i.e., α ∈ [0, 1). Therefore, the resulting fractional-order
mathematical model demonstrated below is acquired with the substitution of the ordinary derivative by
the fractional-order Atangana-Baleanu in the Caputo sense operator:

ABC
0 Dα

t a(t) =(2ua − 1)
sa

1 + ld(t)
a(t) − a(t),

ABC
0 Dα

t b(t) =(2ub − 1)
sb

1 + ld(t)
b(t) + 2(1 − ua)

sa

1 + ld(t)
a(t) − gbb(t),

ABC
0 Dα

t c(t) =(2uc − 1)
sc

1 + ld(t)
c(t) + 2(1 − ub)

sb

1 + ld(t)
b(t) − gcc(t),

ABC
0 Dα

t d(t) =2(1 − uc)
sc

1 + ld(t)
c(t) − gdd(t). (3.4)

Thus, in the above proposed mathematical model (3.4), the fractional operator is the Atangana-
Baleanu in Caputo sense.
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4. Basic properties of the model

In this section, the well-posedness of the proposed model is discussed below:

4.1. Existence and uniqueness

In this subsection, we have the powerful feature of the abcd model, said to be existence and
uniqueness. For existence and uniqueness purpose we apply the fixed point theory. Initially, the
fractional-order model (3.4) is reformulated through the following one-point boundary-value problem:

ABC
0 Dα

t Θ(t) =H(t,Θ(t)),Θ(0) = Θ0, 0 < t < T < ∞. (4.1)

From the Eq (4.1), the vector demonstrated by Θ = (a(t), b(t), c(t), d(t)) represents the corresponding
state variables, and simply the vector Θ0 = (a(t0), b(t0), c(t0), d(t0)) demonstrates the corresponding
one-point boundary-value conditions. Furthermore, H a continuous vector function as described below:

H =


H1

H2

H3

H4

 =



(2ua − 1)
sa

1 + ld(t)
a(t) − a(t)

(2ub − 1)
sb

1 + ld(t)
b(t) + 2(1 − ua)

sa

1 + ld(t)
a(t) − gbb(t)

(2uc − 1)
sc

1 + ld(t)
c(t) + 2(1 − ub)

sb

1 + ld(t)
b(t) − gcc(t)

2(1 − uc)
sc

1 + ld(t)
c(t) − gdd(t)


.

Also, the function H satisfies the Lipschitz-criteria demonstrated as below:

‖H(t,Θ1) − H(t,Θ2)‖ ≤ E‖Θ1(t) − Θ2(t)‖, f or all E > 0. (4.2)

Moreover, the below theorem gives out the required existence and uniqueness result.

Theorem 4.1. Let ψ1(α) =
1 − α

ABC(α)
, and ψ2(α) =

α

ABC(α)Γ(α)
.

If

ψ1(α)E + ψ2(α)Tα
maxE < 1, (4.3)

then the unique solution of the abcd model will exist.

Proof. To take the integral in ABC sense of the Eq (4.1), we have the non-linear Volterra integral
equation as follows:

Θ(t) = Θ0(t) + ψ1(α)H(t,Θ) + ψ2(α)
∫ t

0
(t − x)α−1H(x, v(x))dx.

To going next, we interpret ℵ = (0,T ) and the correlated function H : C(ℵ,R4
+) → C(ℵ,R4

+)
defined as:

H
[
Θ(t)

]
= Θ0(t) + ψ1(α)H(t,Θ) + ψ2(α)

∫ t

0
(t − x)α−1H(x, v(x))dx. (4.4)
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So, the Eq (4.4) takes the following form:

Θ =H
[
Θ
]
. (4.5)

We represent the supremum norm on ℵ by ‖.‖ℵ states as follows:

‖Θ‖ℵ = sup
t∈ℵ
‖Θ‖,Θ ∈ C. (4.6)

The Banach space is constructed by continuous space C(ℵ,R4
+) along with the norm ‖.‖ℵ. The

following inequality can be easily demonstrated:∥∥∥∥∥∥
∫ t

0
H(t, x)Θ(x)dx

∥∥∥∥∥∥ ≤‖H(t, x)‖ℵ‖Θ‖ℵ, (4.7)

with Θ ∈ C(ℵ,R4
+) and H(t, x) ∈ C(ℵ,R) such that

‖H(t, x)‖x = sup
t∈ℵ
|H(t, x)|. (4.8)

By the use of Eq (4.6), we have the following result

‖H[Θ1(t)] − H[Θ2(t)]‖ℵ ≤
∥∥∥∥ψ1(α)(H(t,Θ1(t)) − H(t,Θ2(t))) + ψ2(α)

×

∫ t

0
(t − x)α−1(H(x,Θ1(x)) − H(x,Θ2(x)))dx

∥∥∥∥
ℵ
. (4.9)

By using Eqs (4.2) and (4.8) as well as triangular inequality, the Eq (4.9) the following form:

‖H[Θ1(t)] − H[Θ2(t)]‖ℵ ≤
(
ψ1(α)E + ψ2(α)Tα

maxE
)
‖Θ1(t) − Θ2(t)‖ℵ. (4.10)

Thus, we obtained

‖H[Θ1(t)] − H[Θ2(t)]‖ℵ ≤ P‖Θ1(t) − Θ2(t)‖ℵ, (4.11)

where, P = ψ1(α)E + ψ2(α)Tα
maxE. Hence, if the function H holds the Eq (4.3), this function will be a

contradiction. This implies that the Eq (4.1) has a unique solution.

4.2. Invariant region and attractivity

In this subsection, we show the feasible region in which our solution lies. The feasible region for

cell population is Θ ⊂ R4
+, such that Θ =

{(
a(t), b(t), c(t), d(t)

)
∈ R4

+, a(t) > 0, b(t) ≥ 0, c(t) ≥ 0, d(t) ≥

0 : a(t) + b(t) + c(t) + d(t) ≤
Θ

1 + ld(t)

}
.

Theorem 4.2. The biological feasible region Θ ⊂ R4
+ is positive invariant and attractive for the

fractional-order model (3.4) with respect to one-point boundary-value conditions in R4
+.
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Proof. Let Θ = a(t) + b(t) + c(t) + d(t). By adding all the four equations on the left hand side of
model (3.4), we have

ABC
0 Dα

t Θ(t) =ABC
0 Dα

t a(t) +ABC
0 Dα

t b(t) +ABC
0 Dα

t c(t) +ABC
0 Dα

t d(t),

=
sa

1 + ld(t)
a(t) +

sb

1 + ld(t)
b(t) +

sc

1 + ld(t)
c(t) − a(t) − gb(t) − gc(t) − gd(t),

=
1

1 + ld(t)
[
saa(t) + sbb(t) + scc(t)

]
− a(t) − gbb(t) − gcc(t) − gdd(t),

=
1

1 + ld(t)
[
Θ − sd

]
− a(t) − gbb(t) − gcc(t) − gdd(t),

≤
1

1 + ld(t)
[
Θ − sd

]
. (4.12)

This implies,
ABC
0 Dα

t Θ(t) +
Θ

1 + ld(t)
≤

sd

1 + ld(t)
.

As a result of the laplace transformation, we have the following:

lim
t→∞

S upΘ(t) ≤
sd

1 + ld(t)
.

Therefore, Θ(t) →
sd

1 + ld(t)
whenever t → ∞ for all positive values of time, all the terms given

by the closed period with its exact one-point boundary values of the fractional-order abcd model (3.4)
factors in Θ persist in Θ. Hence, the biological feasible region Θ is said to be positively invariant and
will fascinate all the solutions in R4

+.

4.3. Positivity

In this subsection, we explore the positivity of solution of the model (3.4).

Theorem 4.3. For t > 0, the solution to the fractional-order abcd model (3.4) is positive as well as
bounded for (a(t0), b(t0), c(t0), d(t0)) ∈ R4

+.

Proof. We have:

ABC
0 Dα

t a(t)(at a(t) = 0) = 0 ≥ 0,
ABC
0 Dα

t b(t)(at b(t) = 0) = 2(1 − ua)
sa

1 + ld(t)
a(t) ≥ 0,

ABC
0 Dα

t c(t)(at c(t) = 0) = 2(1 − ub)
sb

1 + ld(t)
b(t) ≥ 0,

ABC
0 Dα

t d(t)(at d(t) = 0) = 2(1 − uc)scc(t) ≥ 0. (4.13)

Thus, we have the following feasible region: Θ = {(a(t0), b(t0), c(t0), d(t0)) ∈ R4
+ :

a(t0), b(t0), c(t0), d(t0) ≥ 0}. Hence, the sum of all four terms is positive.
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5. The analysis

In this section, we explore the stability of equilibrium points by using the reproduction number
of stem cell, progenitor cell and myeloid cell. The reproduction number of stem cell entering in
the first compartment mixing the number of stem cell leaving out from the same compartment after
division in the life time of stem cell which is denoted by Ra = (2ua − 1)sa. Similarly for progenitor

cell, the reproduction number is Rb =
(2ub − 1)sb

gb
for myeloid cell, the reproduction number is Rc =

(2uc − 1)sc

gc
.

The combination of the basic reproduction numbers Ra,Rb and Rc characterizes the existence and
stability analysis of the equilibrium point. For the sake of convenience, we take the following

fa,1(d) = (2ua − 1)
sa

1 + ld(t)
, fa,2(d) =2(1 − ua)

sa

1 + ld(t)
, (5.1)

fb,1(d) = (2ub − 1)
sb

1 + ld(t)
, fb,2(d) =2(1 − ub)

sb

1 + ld(t)
, (5.2)

fc,1(d) = (2uc − 1)
sc

1 + ld(t)
, fc,2(d) =2(1 − uc)

sc

1 + ld(t)
. (5.3)

Existence and stability of equilibrium points

In this subsection, we discuss the existence of equilibrium points, namely free equilibrium points,
the absence of stem and progenitor cell equilibrium and endemic equilibrium points.

Theorem 5.1. (a) There exists a free equilibrium E∗0 = (0, 0, 0, 0) of model (3.4).
(b) There exists a no stem and progenitor cell equilibrium E∗1 = (0, 0, c1, d1) of model (3.4) given by

E∗1 =

(
0, 0,

gdRc

2(1 − uc)sc
d1,

1
l
(Rc − 1)

)
,

if

Rc > 1. (5.4)

(c) There exists an endemic equilibrium E2 = (a2, b2, c2, d2) of model (3.4) given by

E2 =

(gb(Ra − Rb)
2(1 − ua)sa

b2,
gc(Ra − Rc)
2(1 − ub)sb

c2,
gdRa

2(1 − uc)sc
d2,

1
l
(Ra − 1)

)
,

if

Ra > 1, (5.5)

and

Ra > Rb & Ra > Rc. (5.6)
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Theorem 5.2. The free equilibrium point E∗0 of the model (3.4) has four real eigenvalues Ra−1, gb(Rb−

1), gc(Rc − 1) and −gd and is locally asymptotically stable if

max.{Rc,Rb,Ra} < 1, (5.7)

and unstable if

max.{Rc,Rb,Ra} > 1. (5.8)

Proof. At E∗0 = (0, 0, 0, 0), the variational matrix of the model (3.4) is described as below:

JE∗0
=


(2ua − 1)sa − 1 0 0 0

2(1 − ua)sa (2ub − 1)sa − gb 0 0
0 2(1 − ub)sb (2uc − 1)sc − gc 0
0 0 0 −gd



=



(2ua − 1)sa − 1 0 0 0

2(1 − ua)sa

[
(2ub − 1)

sb

gb
− 1

]
gb 0 0

0 2(1 − ub)sb

[
(2uc − 1)

sc

gc
− 1

]
gc 0

0 0 0 −gd



=


Ra − 1 0 0 0

2(1 − ua)
[
Rb − 1

]
0 0

sa gb

0 2(1 − ub)sb
[
Rc − 1

]
gc 0

0 0 0 −gd


. (5.9)

From Eq (5.9) we observed that the eigenvalues of the variational matrix at free equilibrium points
are λ1 = Ra − 1, λ2 = gb(Rb − 1), λ3 = gc(Rc − 1) and λ4 = −gd and is locally asymptotically stable if

max.{Rc,Rb,Ra} < 1, (5.10)

and unstable if

max.{Rc,Rb,Ra} > 1. (5.11)

Now, we will discuss the stability analysis of the absence of stem and progenitor cell equilibrium
points. Suppose the condition (5.4) holds. We introduced two positive constants for the sake of
eigenvalues connected with the absence of stem and progenitor cell equilibrium points.

φc
1 =gd

(
2 −

1
Rc

)
and φc

2 = gcgd

(
1 −

1
Rc

)
. (5.12)

Theorem 5.3. The absence of stem and progenitor cell equilibrium E∗1 of model (3.4) has four eigen
values λi, i = 1, 2, 3, 4 where

λ1 =
Ra

Rb
− 1, λ2 = gb

Rb

Rc
− gd and λ3,4 =

1
2

{
−φc

1 ± ((φc
1)2 − 4φc

2)
1
2
}

(5.13)
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and λ3,4 lies on the left side of the half plane. The absence of stem and progenitor cell steady point E∗1
is locally asymptotically stable if

Rb > Ra and Rc > Rb, (5.14)

and unstable if

Rb < Ra and Rc < Rb. (5.15)

Proof. Since, we have fc,1(d1)−gc = 0 and c1 =
gdd1

fc,2(d1)
. By dropping the sign from c1 and d1, we have

the following characteristic equation:

λ{λ − ( fa,1(d) − 1)}{λ − ( fb,1(d1) − gd)}
{
λ + gd

(
1 −

f ′c,2(d)

fc,2(d)
d
)}
− f ′c,1(d)gdd =0. (5.16)

We obtain roots,

λ1 = fa,1(d) − 1 =
Ra

Rb
− 1,

λ2 = fb,1(d) − gd =
gbRb

Rc
− gd,

from Eq (5.2) and the identity
1 + ld(t) = Rb.

It follows E∗1 is locally asymptotically stable if Rb > Ra and Rc > Rb and unstable if Rb <

Ra and Rc < Rb.

Now finally we will look into the stability of the endemic equilibrium points. Suppose that the
condition (5.5) holds, and we define

ε =(2ub − 1)sb and ρ(ε) =
u
Ra
, u ∈ R. (5.17)

Then,

gb > max{0, ρ(ε)}. (5.18)

Theorem 5.4. If Ra > 1 holds, then E2 is locally asymptotically stable if

gb >λ(ε, gd), (5.19)

and is unstable if

0 <gb < λ(ε, gd). (5.20)

Proof. We have fa,1(d2) = 1, b2 =
gdd2

fb,2(d2)
and a2 =

(gb − fb,1(d2))gdd2

fa,2(d2) fb,2(d2)
, by omitting the index from

a2, b2 and d2, we have the characteristic equation:

λ
[
λ(λ − fb,1(d) + gb)

{
λ − gd

( f ′b,2(d)

fb,2(d)
d − 1

)}
− gdd

{
f ′b,1(d) + (gb − fb,1)

f ′a,2(d)

fa,2(d)

}]
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− f ′a,1(d)(gb − fb,1(d))gdd = 0. (5.21)

We have the following expressions:

−
f ′b,2(d)

fb,2(d)
d = −

f ′a,2(d)

fa,2(d)
d = 1 −

1
Ra
,

f ′b,1(d)d = fb,1(d)
(
1 −

1
Ra

)
= 1 −

1
Ra
,

f ′a,1(d)d = fa,1(d)
(
1 −

1
Ra

)
= 1 −

1
Ra
,

− fb,1(d) + gb =gb

(
1 −

Rb

1 + ld

)
= gb

(
1 −
Rb

Ra

)
.

Therefore, Eq (5.21) becomes

λ
[
λ
{
λ + gb

(
1 −
Rb

Ra

)}{
λ + gd

(
2 −

1
Ra

)}
+ gdgb

(
1 −

1
Ra

)]
+ gdgb

(
1 −
Rb

Ra

)(
1 −

1
Ra

)
= 0. (5.22)

By using the gb(Rb/Ra) = ρ(ε), in Eq (5.22), we have following characteristic equation

b0λ
4 + b1λ

3 + b2λ
2 + b3λ

1 + b4 =0 (5.23)

where,

b0 =1,

b1 =gb

(
1 −
Rb

Ra

)
+ gd

(
2 −

1
Ra

)
,

b2 =gbgd

(
1 −

1
Ra

)(
1 −
Rb

Ra

)
,

b3 =gbgd

(
1 −

1
Ra

)
,

b4 =gbgd

(
1 −
Rb

Ra

)(
1 −

1
Ra

)
.

By using the Routh-Hurwitz criteria [12] for Eq (5.23), all the roots have negative real parts if and
only if

b0 >0,
b1 >0,

b1b2 − b0b3 >0,
b1b2b3 − b2

1b4 − b0b2
3 >0,

b4 >0.
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6. Numerical solution

In this section, we employed the iterative approach of the fractional-order cell division model (3.4)
with Atangana-Baleanu in the Caputo sense to obtain the graphical results of abundant biological
parameters and memory index on cell division. The well-organized numerical technique [17] is
utilized for this determination. First of all, a brief derivation of the approximate approach is introduced
for Eq (4.1) and then implemented on the system for (3.4) in compensation.

Using definition 2.3 on both sides of the initial condition (4.1). Then we obtain the integral equation
as below:

z(t)−z(0) = ψ1(α)H(t, x) + ψ2(α)
∫ t

0
H(y, z(y))(t − y)α−1dy, (6.1)

where, ψ1(α) =
1 − α

ABC(α)
and ψ2(α) =

α

ABC(α)Γ(α)
.

Moreover, at t = ti+1 = (i + 1)h, we have

z(ti+1)−z(0) = ψ1(α)H(ti, z(ti)) + ψ2(α)
∫ ti+1

0
H(y, z(y))(ti+1 − y)α−1dy,

=
1

AB(α)

[
(1 − α)H(ti, z(ti)) +

α

Γ(α)

i∑
g=0

∫ tg+1

tg
H(y, z(y))(ti+1 − y)α−1dy

]
. (6.2)

In addition to the support of a polynomial interpolation scheme, the operator H(y, z(y)) is
approximated by employing a two-step Lagrange polynomial on the closed interval [tq, tq+1]. So, we
started as follows:

R(y, z(y))=̃Qi(y) =
H(tq, z(tq))

h
(y − tq−1) −

H(tq−1, z(tq−1))
h

(z − tq). (6.3)

The Eq (6.2) becomes:

z(ti+1) =z(t0) +
1

AB(α)

[
(1 − α)H(ti, z(ti)) +

α

hΓ(α)

i∑
g=0

(
H(tq, z(tq))

∫ tg+1

tg
(y − tq−1)

× (ti+1 − y)α−1dy − H(tq−1, z(tq−1))
∫ tg+1

tg
(y − tq)(ti+1 − y)α−1dy

)]
. (6.4)

Furthermore, for the simplification of the Eq (6.4), the approximate solution is considered as
follows:

a(ti+1) =a(t0) +
1

AB(α)

[
(1 − α)H1(ti, z(ti)) +

αhα

Γ(α + 2)

i∑
m=0

(
H1(ti, z(ti))

{
pα2 p3 − pα1 p4

}
−z1

{
pα+1

2 − pα1 p3
})]
,

b(ti+1) =b(t0) +
1

AB(α)

[
(1 − α)H2(ti, z(ti)) +

αhα

Γ(α + 2)

i∑
m=0

(
H2(ti, z(ti))

{
pα2 p3 − pα1 p4

}
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−z2
{
pα+1

2 − pα1 p3
})]
,

c(ti+1) =c(t0) +
1

AB(α)

[
(1 − α)H3(ti, z(ti)) +

αhα

Γ(α + 2)

i∑
m=0

(
H3(ti, z(ti))

{
pα2 p3 − pα1 p4

}
−z3

{
pα+1

2 − pα1 p3
})]
,

d(ti+1) =d(t0) +
1

AB(α)

[
(1 − α)H4(ti, z(ti)) +

αhα

Γ(α + 2)

i∑
m=0

(
H4(ti, z(ti))

{
pα2 p3 − pα1 p4

}
−z4

{
pα+1

2 − pα1 p3
})]
, (6.5)

where,
p1 = i − q, p2 = i + 1 − q, p3 = i + 2 − q + α, p4 = i + 2 − q + 2α,
z1 = H1(ti−1, z(ti−1)), z2 = H2(ti−1, z(ti−1)), z3 = H3(ti−1, z(ti−1)), z4 = H4(ti−1, z(ti−1)).

7. Numerical results

In this section, we simulate the mathematical model (3.4) to validate the analytic results. The default
parameter are given in Table 2. Figures 2–4 show the variation of all three types of cell population
versus time for different of their self-regeneration rates. Figure 2 displays the variation of stem cell
population a(t) with respect to time for different values of self-regeneration rate of stem cell. It is seen
that as we increase the value of ua from 0.52, 0.54, 0.56, the population of stem cell increases but it
decreases with time. Figure 3 also displays the variation of progenitor cell b(t) with respect to time
for different values of self-regeneration rate of progenitor cell. It is seen that as we increases the value
of ub from 0.90, 0.92, 0.94, the population of progenitor cell increases but it also decreases with time.
Figure 4 shows the effects of self-generation rate on the dynamics of myeloid cell c(t). It is clear from
the figure that the value of self-generation significantly affects the myeloid cell population.

Figure 5 demonstrates the effects of division rate va = 0.1, 0.2, 0.3 on the dynamics of stem cell. It is
seen that the population of stem cells decreases with the increase in the values of the division of stem
cells. The effects of the self-regeneration rate of the stem cell on the population are seen. Figure 6
shows the effects of the division rate on the population of progenitor cells. It is noticed that as we
increase the value of division rate vb from 0.5, 0.7, 0.9, the population of progenitor cells decreases. It
suddenly attains maximum value at t = 2 and afterward, it remains almost constant. Figure 7 depicts
the variation of myeloid cell with respect to time for different values of division rate of myeloid cell.

Figures 8–11 exhibit the effect of α on all four cell populations. In Figure 8, it is seen that by
varying the α from 0.3, 0.5, 0.7 the stem cell a(t) is affected significantly and it increases with time but
decreases with increases in α. We can also find similar trends in Figures 9 and 10, but in Figure 11, the
population of d(t) sharply falls and decreasing with time and become almost zero.
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Figure 2. Dynamics of stem cells for ua = 0.52, 0.54, 0.56.

Figure 3. Dynamics of stem cells for ub = 0.90, 0.92, 0.94.
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Figure 4. Dynamics of stem cells for uc = 0.57, 0.60, 0.63.

Figure 5. Dynamics of stem cells for va = 0.1, 0.2, 0.3.
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Figure 6. Dynamics of stem cells for vb = 0.5, 0.7, 0.9.

Figure 7. Dynamics of stem cells for vc = 0.6, 0.7, 0.8.
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Figure 8. Variations of stem cells w.r.t. time for α = 0.3, 0.5, 0.7.

Figure 9. Variations of progenitor cells w.r.t. time for α = 0.3, 0.5, 0.7.
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Figure 10. Variations of myeloid cells w.r.t. time for α = 0.3, 0.5, 0.7.

Figure 11. Variations of mature cells w.r.t. time for α = 0.3, 0.5, 0.7.
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8. Conclusions

In this study, a fractional-order mathematical model is analyzed to understand the dynamical
behavior of the stem cell maturation that is responsible for self-renewal, cell death, and regulation
of cell division. We considered four compartmental models for a different kind of cell population
differentiated for stem cells. The concept of reproduction number is introduced that facilitates our
analysis. This reproduction number quality is a threshold parameter that is used to characterize
the existence of equilibria and decide the stability of the equilibrium points. It is found that the
equilibrium points are stable when max{Ra,Rb,Rc} < 1 and unstable when max{Ra,Rb,Rc} > 1. Our
results indicate that the rate of stem cell division and stem cell self-renewal directly depends upon the
environment heterogeneity. In further, these results could be verified by using real data from realistic
sources to validate the proposed model.
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